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Abstract Compatibility of phylogenetic trees is the most important concept un-
derlying widely-used methods for assessing the agreement of different phyloge-
netic trees with overlapping taxa and combining them into common supertrees to
reveal the tree of life. The notion of ancestral compatibility of phylogenetic trees
with nested taxa was introduced in [3,10]. In this paper we analyze in detail the
meaning of this compatibility from the points of view of the local structure of the
trees, of the existence of embeddings into a common supertree, and of the joint
properties of their cluster representations. Our analysis leads to a very simple
polynomial-time algorithm for testing this compatibility, which we have imple-
mented and is freely available for download from the BioPerl collection of Perl
modules for computational biology.
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1 Introduction

A rooted phylogenetic tree can be seen as a static description of the evolutive
history of a family of contemporary species: these species are located at the leaves
of the tree, and their common ancestors are organized as the inner nodes of the
tree. These interior nodes represent taxa at a higher level of aggregation or nesting
than that of their descendents, ranging for instance from families over genera to
species. Phylogenetic trees with nested taxa have thus all leaves as well as some
interior nodes labeled, and they need not be fully-resolved trees and may have
unresolved polytomies, that is, they need not be binary trees.
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Often one has to deal with two or more phylogenetic trees with overlapping
taxa, probably obtained through different techniques by the same or different re-
searchers. The problem of combining these trees into a single supertree containing
the evolutive information of all the given trees has recently received much atten-
tion, and it has been identified as a promising approach to the reconstruction of the
tree of life [2]. This information corresponds to evolutive precedence, and hence
it is kept when every arc in each of the trees becomes a path in the supertree.

It is well known that it is not always possible to combine phylogenetic trees
into a single supertree: there are incompatible phylogenetic trees that do not ad-
mit their simultaneous inclusion into a common supertree. Compatibility for leaf-
labeled phylogenetic trees was first studied in [15]. Incompatible phylogenetic
trees can still be partially combined into a maximum agreement subtree [14].
Compatible phylogenetic trees, on the other hand, can be combined into a com-
mon supertree, two of the most widely used methods being matrix representation
with parsimony [1,8] and mincut [5,12] and it is clear that, because of Occam’s
razor, one is interested in obtaining not only a common supertree of the given phy-
logenetic trees, but the smallest possible one. The relationship between the largest
common subtree and the smallest common supertree of two leaf-labeled phyloge-
netic trees was established in [9] by means of simple constructions, which allow
one to obtain the largest common subtree from the smallest common supertree,
and vice versa.

The study of the compatibility of phylogenetic trees with nested taxa, also
known as semi-labeled trees, was asked for in [6]. Polynomial-time algorithms
were proposed in [3,10] for testing a weak form of compatibility, called ancestral
compatibility, and a stronger form called perfect compatibility. Roughly, two or
more semi-labeled trees are ancestrally compatible if they can be refined into a
common supertree, and they are perfectly compatible if there exists a common
supertree whose topological restriction to the taxa in each tree is isomorphic to
that tree.

In this paper, we are concerned with the notion of ancestral compatibility of
semi-labeled trees. In particular, we establish the equivalence between this no-
tion and the absence of certain ‘incompatible’ pairs and triples of labels in the
trees under comparison. We also prove the equivalence between ancestral com-
patibility and a certain property of the cluster representations of the trees. These
equivalences lead to a new polynomial-time algorithm for testing ancestral com-
patibility of semi-labeled trees, which we have implemented and is freely avail-
able for download from the BioPerl collection of Perl modules for computational
biology [13].

The rest of the paper is organized as follows. Basic notions and notation are re-
called in Section 2. A notion of local compatibility as the absence of incompatible
pairs and triples of labels is introduced in Section 3, together with some basic re-
sults about a relaxed notion of semi-labeled trees. Weak topological embeddings,
and the notion of ancestral compatibility that derives from them, are studied in
Section 4. In Section 5, the equivalence between local compatibility in the sense
of Section 3 and ancestral compatibility in the sense of Section 4 is established,
as well as a characterization in terms of cluster representations. The BioPerl im-
plementation of the algorithm for testing compatibility of two semi-labeled trees
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is described in Section 6. Finally, some conclusions and further work are outlined
in Section 7.

2 Preliminaries

Throughout this paper, by a tree we mean a rooted tree, that is, a directed finite
graph T = (V,E) with V either empty or containing a distinguished node r ∈ V ,
called the root, such that for every other node v∈V there exists one, and only one,
path from the root r to v. Recall that every node in a tree has in-degree 1, except
the root, which has in-degree 0.

Henceforth, and unless otherwise stated, given a tree T we shall denote its set
of nodes by V (T ) and its set of arcs by E(T ). The children of a node v in a tree
T are those nodes w such that (v,w) ∈ E(T ). The nodes without children are the
leaves of the tree, and we shall call elementary the nodes with only one child.

Given a path (v0,v1, . . . ,vk) in a tree T , its origin is v0, its end is vk, and its
intermediate nodes are v1, . . . ,vk−1. Such a path is non-trivial when k > 1. We
shall represent a path from v to w, that is, a path with origin v and end w, by
v w. When there exists a path v w, we say that w is a descendant of v and
also that v is an ancestor of w. Every node is both an ancestor and a descendant of
itself, through a trivial path.

Two non-trivial paths (a,v1, . . . ,vk) and (a,w1, . . . ,w`) in a tree T are said to
diverge when the only node they have in common is their origin a. Notice that,
by the uniqueness of paths in trees, it is equivalent to the condition v1 6= w1. For
every two nodes v,w of a tree that are not connected by a path, there exists one,
and only one, common ancestor a of v and w such that there exist divergent paths
from a to v and to w. We shall call it the most recent common ancestor of v and w.
When there is a path v w, we say that v is the most recent common ancestor of
v and w.

3 A -trees

Let A be throughout this paper a fixed set of labels. In practice, we shall use the
first capital letters, A,B,C . . ., as labels.

Definition 1 A semi-labeled tree over A is a tree with some of its nodes, includ-
ing all its leaves and all its elementary nodes, injectively labeled in the set A .

To simplify several proofs, we shall usually allow the existence of unlabeled
elementary nodes. This motivates the following definition.

Definition 2 An A -tree is a tree with some of its nodes, including all its leaves,
injectively labeled in the set A .

We shall always use the same name to denote an A -tree and the (unlabeled)
tree that supports it. Furthermore, for every A -tree T , we shall use henceforth the
following notations:

– L (T ) and A (T ) will denote, respectively, the set of the labels of its leaves
and the set of the labels of all its nodes.
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– For every v ∈ V (T ), we shall denote by AT (v) the set of the labels of all its
descendants, including itself, and we shall call it, following [11], the cluster of
v in T ; if T is irrelevant or clearly determined by the context, we shall usually
write A (v) instead of AT (v). Notice that if there exists a path w v, then
A (v)⊆A (w).

– We shall set
CA (T ) = {AT (v) | v ∈V (T )}.

Notice that /0 /∈ CA (T ) unless T is empty. If T is a semi-labeled tree over
A , then CA (T ) coincides with the cluster representation [11] of T , up to the
trivial cluster for the root of T . Consequently, even for A -trees, we shall call
CA (T ) the cluster representation of T .

– For every X ⊆ A (T ), we shall denote by vT,X the most recent common an-
cestor of the nodes of T with labels in X ; when T is irrelevant or clearly de-
termined by the context, we shall usually write vX instead of vT,X . Moreover,
when X is given by the list of its members between brackets, we shall usually
omit these brackets in the subscript. So, in particular, for every A ∈A (T ), we
shall denote the node of T labeled A by vT,A or simply vA.
Notice that A (vT,X ) = X if and only if X ∈ CA (T ).

We shall often use the following easy results, usually without any further men-
tion.

Lemma 1 Let T be an A -tree, and let x,y ∈V (T ). If A (x)∩A (y) 6= /0, then x is
a descendant of y or y is a descendant of x.

Proof Let A ∈ A (x)∩A (y), so that there exist paths x vA and y vA, and let
r be the root of T . Then, both x and y appear in the path r vA. This entails that
either x appears in the path y vA or y appears in the path x vA, meaning that
there is either a path from y to x or from x to y. ut

Corollary 1 Let T be an A -tree, and let x,y ∈V (T ). If A (x) ( A (y), then there
is a non-trivial path y x.

Proof By the previous lemma, if A (x) ( A (y), then either x is a descendant of y
or y is a descendant of x. But, being the inclusion strict, y cannot be a descendant
of x. ut

Corollary 2 Let T be an A -tree, and let x,y ∈ V (T ) be two different nodes. If
A (x) = A (y), then there is a path x y or a path y x, such that its origin and
all its intermediate nodes are unlabeled and elementary.

Proof By Lemma 1, if A (x) = A (y), there is either a path x y or a path y x. If
the origin or some intermediate node in this path is labeled or if any one of these
nodes has more children that those appearing in this path, then the set of labels
will decrease from this node to its child in the path, and a fortiori from the origin
to the end of the path. ut

In particular, in a semi-labeled tree over A , which does not contain any un-
labeled elementary node, A (x) = A (y) if and only if x = y, and A (x) ( A (y)
if and only if there exists a non-trivial path y x. This entails that the cluster
representation CA (T ) of a semi-labeled tree T over A determines T up to iso-
morphism [11, Theorem 3.5.2].
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Definition 3 The restriction T |X of an A -tree T to a set X ⊆A of labels is the
subtree of T supported on the set of nodes

V (T |X ) = {v ∈V (T ) | there exists a path v vA for some A ∈X }
= {v ∈V (T ) |A (v)∩X 6= /0},

and where a node is labeled when it is labeled in T and this label belongs to X ,
in which case its label in T |X is the same as in T .

If X ∩A (T ) = /0, then T |X is the empty A -tree, while if X ∩A (T ) 6= /0,
then T |X has the same root as T and leaves the nodes of T with labels in X that
do not have any descendant with label in X .

Now we introduce the notion of locally compatible A -trees as the absence of
incompatible pairs and triples of labels.

Definition 4 Two A -trees T1 and T2 are locally compatible when they satisfy the
following two conditions:

(C1) For every two labels A,B ∈A (T1)∩A (T2), there is a path vA vB in T1 if
and only if there is a path vA vB in T2.

(C2) For every three labels A,B,C ∈A (T1)∩A (T2), if there exists a non-trivial
path vB,C vA,B in T1, then there does not exist any non-trivial path vA,B vB,C
in T2.

Any pair of labels A,B violating condition (C1) and any triple of labels A,B,C
violating condition (C2) in a pair of trees T1 and T2 are said to be incompatible.

Two A -trees T1 and T2 are locally incompatible when they are not locally
compatible, that is, when they contain an incompatible pair or triple of labels.

So, if T1 and T2 represent phylogenetic trees with nested taxa, an incompatible
pair of labels in T1 and T2 corresponds to a pair of taxa whose evolutive prece-
dence is different in both trees, while an incompatible triple of labels in T1 and T2
corresponds to three taxa whose evolutive divergence is different in both trees.

Example 1 Let T1,T2 be two locally compatible A -trees, and let A,B,C ∈A (T1)
∩A (T2). If T1 contains a structure above vA,vB,vC as the one shown in the left-
hand side of Fig. 1,1 then T2 contains either the same structure above vA,vB,vC as
T1 or the one shown in the right-hand side of the same figure.
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Fig. 1 T1 and T2 are locally compatible

1 In this figure, as well as in Figs. 2 to 4, edges may represent actually non-trivial paths.
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Fig. 2 T ′
2 and T ′′

2 are locally incompatible with T1 in Fig. 1

Indeed, since no two among vA,vB,vC are connected in T1 by a path, condition
(C1) implies that no two among the nodes in T2 labeled A,B,C are connected
by a path, either. Beside the structures shown in Fig. 1, only the structures T ′

2
and T ′′

2 shown in Fig. 2 satisfy this property. Now, T1 contains a non-trivial path
vA,C vA,B, while T ′

2 contains a non-trivial path vA,B vA,C; and T1 contains a
non-trivial path vB,C vA,B, while T ′′

2 contains a non-trivial path vA,B vB,C. So,
in both cases we find incompatible triples of labels. On the other hand, in the
A -tree T2 shown in Fig. 1, vA,B = vA,C = vB,C, and therefore this A -tree clearly
satisfies condition (C2) with T1 as far as the labels A,B,C go.

Example 2 Let T1,T2 be two locally compatible A -trees, and let A,B,C ∈A (T1)
∩A (T2). If T1 contains a structure above vA,vB,vC as the one shown in the left-
hand side of Fig. 3, then T2 contains either the same structure above vA,vB,vC as
T1 or the one shown in the right-hand side of the same figure.

�
�

@
@r rrr

A B

C

T2

�
�

@
@r rr

A B

C T1

Fig. 3 T1 and T2 are locally compatible

Indeed, in order to satisfy condition (C1), the existence in T1 of paths vC vA,
vC vB and the fact that vA and vB are not connected by a path in this A -tree,
entail that T2 also contains paths vC vA, vC vB and that vA and vB are not
connected by a path either. Therefore, T2 must either contain the same structure
above vA,vB,vC as T1, or non-trivial paths vC vA,B, vA,B vA, vA,B vB. And
since, in T1, vA,B = vA,C = vB,C, it is clear that in the last case the labels A,B,C do
not form an incompatible triple in T1 and T2.

Example 3 Let T1,T2 be two locally compatible A -trees, and let A,B,C ∈A (T1)
∩A (T2). If T1 contains above vA,vB,vC one of the structures shown in Fig. 4, then
T2 must contain the same structure above vA,vB,vC.

Indeed, it is a simple consequence of the application of condition (C1). In
the left-hand side structure, T1 contains a path vB vA, and vB and vC are not
connected by a path in it, and therefore the same must happen in T2 and this leads
to the same structure. And in the right-hand side structure, T1 contains paths vC 
vB vA, and then the same must happen in T2, entailing again the same structure
in this tree.
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Fig. 4 These two A -trees are only locally compatible with themselves

The following construction will be used henceforth several times.

Definition 5 For every pair of A -trees T1 and T2, let

T̄1 = T1|A (T1)∩A (T2), and T̄2 = T2|A (T1)∩A (T2).

Notice that, by construction, every leaf of each T̄i is labeled, and therefore T̄1
and T̄2 are A -trees. Notice also that if A (T1) = A (T2), then T̄1 = T1 and T̄2 = T2.
In general,

A (T̄1) = A (T̄2) = A (T1)∩A (T2).

Since local compatibility of two A -trees refers to labels appearing in both
A -trees, we clearly have the following result.

Lemma 2 Two A -trees T1 and T2 are locally compatible if and only if T̄1 and T̄2
are so. ut

4 Weak topological embeddings

Compatibility of phylogenetic trees is usually stated in terms of the existence of
simultaneous embeddings of some kind into a common supertree. In this section
we introduce the embeddings that will correspond to local compatibility.

First, recall from [10] the definition of ancestral displaying, which we already
present translated into our notations.

Definition 6 An A -tree T ancestrally displays an A -tree S if the following prop-
erties hold:

– A (S)⊆A (T ).
– For every A,B∈A (S), there is a path vA vB in S if and only if there is a path

vA vB in T .
– S is refined by T |A (S), that is, CA (S)⊆ CA (T |A (S)).

We introduce now the following, more algebraic in flavour, definition of em-
bedding that will turn out to be equivalent to ancestral displaying, up to the re-
moval of elementary unlabeled nodes: cf. Proposition 1 below.

Definition 7 A weak topological embedding of trees f : S → T is a mapping f :
V (S)→V (T ) satisfying the following conditions:

– It is injective.
– It preserves labels: for every A ∈A (S), f (vA) = vA.
– It preserves and reflects paths: for every a,b ∈V (S), there is a path from a to

b in S if and only if there is a path from f (a) to f (b) in T .
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When a weak topological embedding of A -trees f : S → T exists, we say that
S is a weak A -subtree of T and that T is a weak A -supertree of S.

Example 4 Let S and T be the A -trees described in Fig. 5, and let f : V (S) →
V (T ) be the mapping defined by f (r) = r′, f (vS,A) = vT,A and f (vS,B) = vT,B.
This mapping is injective, preserves labels and preserves paths, but it does not
reflect paths: there is a path vT,A vT,B is T , but no path from vS,A to vS,B in S.
Therefore, it does not define a weak topological embedding f : S → T .
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Fig. 5 The A -trees in Example 4

Example 5 Let S and T the A -trees described in Fig. 6. Let f : V (S) → V (T )
be the mapping that sends the root r of S to the root r′ of T , and every leaf of S
to the leaf of T with the same label. This mapping is injective, preserves labels,
and preserves and reflects paths. Therefore, it is a weak topological embedding
f : S → T .
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Fig. 6 The A -trees in Example 5

Example 6 For every A -tree T and for every X ⊆ A (T ), the inclusion of the
restriction T |X into T is a weak topological embedding.

Remark 1 It is straightforward to prove that a mapping f : V (S)→V (T ) preserves
paths if and only if it transforms arcs into paths, that is, for every a,b ∈ V (S), if
(a,b) ∈ E(S), then there exists a path f (a) f (b) in T . We shall sometimes use
this alternative formulation without any further mention.

The following lemmas will be used several times in the sequel.

Lemma 3 Let f : S → T be a weak topological embedding. Then, for every v ∈
V (S), A (v) = A ( f (v))∩A (S).
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Proof The inclusion A (v)⊆A ( f (v))∩A (S) is a direct consequence of the fact
that f preserves labels and paths, while the converse inclusion is a direct conse-
quence of the fact that f preserves labels and reflects paths. ut

Lemma 4 Let f : S → T be a weak topological embedding of A -trees. Then:

(i) L (S) = L (T |A (S)).
(ii) f induces a weak topological embedding f : S → T |A (S).

Proof Notice first of all that A (S)⊆A (T ), because f preserves labels, and there-
fore it makes sense to define the restriction T |A (S); actually, the nodes of T with
labels in A (S) are exactly the images of the labeled nodes of S. To simplify the
notations, we shall denote in the rest of this proof T |A (S) by T ′.

To prove (i), it is enough to check that the leaves of T ′ are exactly the images
of leaves of S under f . And recall that w ∈ V (T ′) is a leaf of T ′ if and only if
w = f (vS,A) for some A∈A (S) and AT (w)∩A (S) = {A}. Since, by the previous
lemma, A ( f (vS,A))∩A (S) = A (vS,A), we deduce that w ∈V (T ′) is a leaf of T ′

if and only if w = f (vS,A) for some A ∈A (S) such that A (vS,A) = {A}, that is, if
and only if w = f (vS,A) for some leaf vS,A of S, as we wanted to prove.

As far as (ii) goes, let us prove first that f (V (S)) ⊆ V (T ′). Let v ∈ V (S). If it
is a leaf of S, then, as we have just seen, f (v) ∈V (T ′). If v is not a leaf of S, then
there is a path in S from v to some leaf v′. Since f preserves paths, there is a path
in T from f (v) to f (v′), and f (v′) is labeled in A (S). Therefore, by the definition
of restriction of an A -tree, f (v) ∈V (T ′), too.

This proves that f (V (S)) ⊆ V (T ′). And then it is straightforward to deduce
that f : S → T ′ is injective, preserves labels, and that it preserves and reflects
paths, from the corresponding properties for f : S → T . ut

Now we can prove that, as we announced, weak topological embeddings cap-
ture ancestral displaying.

Proposition 1 Let S and T be two A -trees, and let S′ be the semi-labeled tree
obtained from S by removing the elementary unlabeled nodes in it and replac-
ing by arcs the maximal paths with all their intermediate nodes elementary and
unlabeled.

Then, T ancestrally displays S if and only if there exists a weak topological
embedding f : S′→ T .

Proof Assume that T ancestrally displays S, and in particular that A (S)⊆A (T )
and CA (S) ⊆ CA (T |A (S)); to simplify the notations, we shall denote T |A (S)
by T ′′. Since elementary unlabeled nodes do not contribute any new member to
the cluster representation, CA (S) = CA (S′). Therefore, CA (S′)⊆ CA (T ′′).

We define the mapping

f : V (S′) → V (T ′′)
v 7→ vT ′′,A (v)

Let us check that this mapping defines a weak topological embedding f : S′→ T ′′.
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– It is injective. Let v,w be two different nodes of S′. Since every node in S′
is the most recent common ancestor of its labeled descendants, that is, x =
vS′,A (x) for every x ∈ V (S′), we have that A (v) 6= A (w). And then, since
CA (S′) ⊆ CA (T ′′), it turns out that A (v),A (w) are two different members
of CA (T ′′), and hence A (vT ′′,A (v)) = A (v) 6= A (w) = A (vT ′′,A (w)), which
clearly implies that vT ′′,A (v) 6= vT ′′,A (w).

– It preserves labels. Let A ∈ A (S′) and v = vS′,A. Then, f (v) = vT ′′,A (vS′,A) is
labeled A because, by the second property of ancestral displaying, the labeled
nodes in S′ that are descendants of v are exactly the labeled nodes in T ′′ that
are descendants of vT ′′,A, and therefore vT ′′,A is the least common ancestor of
the nodes with labels in A (vS′,A), that is, vT ′′,A = vT ′′,A (vS′,A) = f (v), as we
claimed.

– It preserves and reflects paths. Since A (v) = A ( f (v)) for every v∈V (S′), we
have the following sequence of equivalences: for every v,w ∈V (S′),

there exists a non-trivial path v w
⇐⇒A (w) ( A (v)
⇐⇒A ( f (w)) ( A ( f (v))
⇐⇒ there exists a non-trivial path f (v) f (w).

The implications ⇐ in the first equivalence and ⇒ in the last equivalence are
given by Corollary 1, while the converse implication in both cases is entailed
by the fact that v,w, f (v), f (w) are most recent common ancestors of sets of
labeled nodes, and then non-trivial paths between them imply strict inclusions
of sets of labels of descendants.

So, we have a weak topological embedding f : S′ → T ′′, and since T ′′ is a
weak A -subtree of T , it induces a weak topological embedding f : S′→ T , as we
wanted to prove.

Conversely, assume that we have a weak topological embedding f : S′ → T .
Then:

– A (S) = A (S′)⊆A (T ) because f preserves labels.
– For every A,B ∈A (S), by construction, vS,A = vS′,A and vS,B = vS′,B, and there

exists a path vS,A vS,B in S if and only if there exists a path vS′,A vS′,B in
S′. Moreover, since f preserves labels and preserves and reflects paths, there
exists a path vS′,A vS′,B in S′ if and only if there exists a path vT,A = f (vS′,A) 
f (vS′,B) = vT,B in T . Combining these equivalences, we obtain that, for every
A,B ∈ A (S), there exists a path vS,A vS,B in S if and only if there exists a
path vT,A vT,B in T .

– Let X ∈ CA (S) and let v = vS,X = vS′,X . It turns out that AT |A (S)( f (v)) = X .
Indeed, by Lemma 4, f : S′ → T induces a weak topological embedding f :
S′ → T |A (S′) = T |A (S) and then, by Lemma 3, AT |A (S)( f (v)) = AS′(v) =
AS(v) = X .
Therefore, X ∈C (T |A (S)), and, being X arbitrary, we conclude that CA (S)⊆
C (T |A (S)).

This proves that T ancestrally displays S. ut

Now, recall from [10] the notion of ancestral compatibility.
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Definition 8 Two A -trees T1,T2 are ancestrally compatible when there exists an
A -tree that ancestrally displays both of them. If two A -trees are not ancestrally
compatible, we say that they are ancestrally incompatible.

Weak topological embeddings have been defined as they have so ancestral
compatibility turns out to be exactly the same as ‘compatibility for weak topolog-
ical embeddings.’

Proposition 2 Two A -trees T1,T2 are ancestrally compatible if and only if they
have a common weak A -supertree, that is, if and only if they admit a weak topo-
logical embedding into a same A -tree.

Proof For every ` = 1,2, let T ′
` be the semi-labeled tree obtained by removing the

elementary unlabeled nodes in T` and replacing by arcs the maximal paths with all
their intermediate nodes elementary and unlabeled.

Assume that there exist weak topological embeddings f1 : T1 → T and f2 :
T2 → T of T1 and T2 into a same A -tree T . Since each T ′

` is a weak A -subtree of
the corresponding T`, each one of these weak topological embeddings induces a
weak topological embedding f ′` : T ′

` → T , showing that T ancestrally displays T1
and T2.

Conversely, assume that there exist weak topological embeddings g1 : T ′
1 → T

and g2 : T ′
2 → T of T ′

1 and T ′
2 into a same A -tree T . Let T̃ be the A -tree obtained

from T in the following way. For every arc (v,w) ∈ E(T ), if there exists an arc
(v`,w`) in one T` such that g`(v`) = v and g`(w`) = w, we split the arc (v,w) in
T into a path v w, with all its intermediate nodes elementary and unlabeled, of
length equal to the length of the path v` w`; if there are arcs (v1,w1) ∈ E(T1)
and (v2,w2) ∈ E(T2) such that g1(v1) = g2(v2) = v and g1(w1) = g2(w2) = w,
then we split the arc (v,w) in T into a path v w as before, but now of length the
maximum of the lengths of the paths v1 w1 and v2 w2. It is clear then that each
gT : T → T0 can be extended to a weak topological embedding g̃T : T → T̃ . ut

From now on, we shall use this characterization of ancestral compatibility as
the working definition of it.

The main result of this paper will establish that ancestral compatibility is
equivalent to local compatibility. To prove it, we shall need a preliminary result,
Proposition 3, which establishes that ancestral compatibility of two A -trees can
be checked at the level of T̄1 and T̄2, as it was also the case for local compatibility.

Lemma 5 Let T1 and T2 be two A -trees and let T̄1 and T̄2 be their A -subtrees
described in Definition 5. If T1 and T2 are ancestrally compatible, then L (T̄1) =
L (T̄2).

Proof Assume that T1 and T2 are ancestrally compatible. Then, since T̄1 and T̄2 are
weak A -subtrees of T1 and T2, respectively, it is clear that they are also ancestrally
compatible; let f1 : T̄1 → T and f2 : T̄2 → T be weak topological embeddings.
Recall that A (T̄1) = A (T̄2).

If A ∈L (T̄1), then AT̄1
(vT̄1,A) = {A} and hence

AT̄2
(vT̄2,A) = AT ( f2(vT̄2,A))∩A (T̄2) = AT (vT,A)∩A (T̄2)

= AT ( f1(vT̄1,A))∩A (T̄1) = AT̄1
(vT̄1,A) = {A},
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which says that vT̄2,A is a leaf of T̄2 and thus A ∈L (T̄2).
This proves that L (T̄1) ⊆ L (T̄2) and, by symmetry, the equality between

these two sets. ut

Proposition 3 Let T1 and T2 be A -trees and let T̄1 and T̄2 be their A -subtrees
described in Definition 5. Then, T1 and T2 are ancestrally compatible if and only
if T̄1 and T̄2 are ancestrally compatible.

Proof As we have seen in the proof of the last lemma, if T1 and T2 are ancestrally
compatible, then T̄1 and T̄2 are also so. Conversely, let f1 : T̄1 → T and f2 : T̄2 → T
be two weak topological embeddings. By the last lemma, we know that L (T̄1) =
L (T̄2). Recall, moreover, that A (T̄1) = A (T̄2) = A (T1)∩A (T2).

By Lemma 4, f1 and f2 induce weak topological embeddings into the restric-
tion of T to A (T̄1) = A (T̄2). Therefore, by replacing T by this A -subtree if
necessary, we shall assume without any loss of generality that L (T ) = L (T̄1) =
L (T̄2). We shall also assume, again without any loss of generality, that A (T ) =
A (T̄1) = A (T̄2): we simply remove from T the labels that do not belong to this
set.

Finally, we shall assume that there does not exist any pair of different labels
A1,A2 such that vT1,A1 ∈ V (T̄1) and vT2,A2 ∈ V (T̄2) and f1(vT1,A1) = f2(vT2,A2).
Indeed, assume that such a pair of labels exists. Then, to begin with, A1,A2 /∈
A (T1)∩A (T2): if, say, A2 ∈A (T1)∩A (T2) then, since f1 and f2 preserve labels,
it happens that f2(vT2,A2) = f1(vT1,A2) and then vT1,A2 = vT1,A1 , that is, A2 = A1.
Therefore, vT1,A1 and vT2,A2 do not keep their labels in T̄1 and T̄2. Now, given the
node w = f1(vT1,A1) = f2(vT2,A2) (which, by what we have just discussed, will be
unlabeled, either), we ‘blow out’ it by adding a new node w′, splitting the arc go-
ing from w’s parent w0 to w into two arcs (w0,w′),(w′,w) —if w was the root of
T , we simply add a new arc (w′,w)— and redefining f1 by sending vT1,A1 to w′

while we do not change f2 (alternatively, we could have redefined f2, by sending
vT2,A2 to w′, and left f1 unchanged). It is straightforward to check that the new
mapping f1 obtained in this way and the ‘old’ f2 are still weak topological em-
beddings from T1 and T2 to the new A -tree. After repeating this process as many
times as necessary, and still calling T the target A -tree obtained at the end, we
obtain weak topological embeddings f1 : T̄1 → T and f2 : T̄2 → T as we assumed
at the beginning of this paragraph.

We shall expand this common weak A -supertree T of T̄1 and T̄2 to a common
weak A -supertree of T1 and T2. To begin with, we expand T to an A -labeled
graph T ′ by “adding T1 − T̄1” to it. More specifically, to obtain T ′, we add to T
all nodes in V (T1)−V (T̄1), and arcs of two types: on the one hand, those between
these nodes in T1, and on the other hand, for every arc (a,b) ∈ E(T1) with a ∈
V (T̄1) and b ∈ V (T1)−V (T̄1), an arc between f1(a) and b in T ′. As far as the
labels go, on the one hand the nodes of T ′ belonging to V (T1)−V (T̄1) inherit
their labels, and on the other hand the nodes in T ′ that are images of nodes in T̄1
labeled in A (T1)−A (T̄1), are labeled with this label. None of the labels we add
in this way could be present in T , because otherwise they would have belonged to
A (T̄1), which is impossible, and no already labeled node in T receives a second
label, because the nodes labeled in T received their labels from T̄1.

This T ′ is clearly an A -tree, and has T as a weak A -subtree: actually, T =
T ′|L (T ). Therefore, it is a weak A -supertree of T̄2. And it is also a weak A -
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supertree of T1. Indeed, consider the mapping f ′1 : V (T1)→ V (T ′) that is defined
on V (T̄1) as the original embedding f1 : V (T̄1) → V (T ) and on V (T1)−V (T̄1)
as the identity. It is clearly injective and preserves labels. Moreover, it preserves
paths, because f1 sends arcs in T̄1 to paths in T , and arcs outside T̄1 become arcs in
T ′; and it reflects paths, because it reflects paths in T and the arcs that have been
added come from arcs in T1.

So, T ′ is a common weak A -supertree of T1 and T̄2. Now, we expand T ′ to a
new A -tree T ′′ by means of a similar process, but now “adding T2− T̄2” to it. We
add to T ′ all nodes in V (T2)−V (T̄2), all arcs between these nodes in T2, an arc
( f2(a),b) for every arc (a,b) ∈ E(T2) with a ∈V (T̄2) and b ∈V (T2)−V (T̄2). The
new nodes, coming from V (T2)−V (T̄2), are labeled as they were in T2, while the
old ones receive their labels from T2, if any and necessary. No new label added in
this way could be already present in T ′. And no already labeled node receives a
second label, because the images of f ′1 : T1 → T ′ and f2 : T̄2 → T ′ are still disjoint
except for the nodes with labels in A (T1)∩A (T2).

The A -labeled graph T ′′ obtained in this way is again an A -tree, and now it
is a weak A -supertree of T1 and of T2: the proof is similar to the previous one in
the case of T ′. Therefore, T1 and T2 are ancestrally compatible, as we wanted to
prove. ut

Example 7 Consider the semi-labeled trees T1 and T2 described in Fig. 7. The
corresponding A -trees T̄1 and T̄2, which are no longer semi-labeled trees, are
described in Fig. 8; notice that the nodes c, h and i are no longer labeled in these
trees.

The A -trees T̄1 and T̄2 are ancestrally compatible. A weak common A -super-
tree of them is given by the A -tree T described in Fig. 9, together with the weak
topological embeddings f1 : T̄1 → T and f2 : T̄2 → T that are indicated by assigning
in the picture to each non-labeled node in T its preimages under f1 and f2. Notice
that A (T ) = A (T̄1) = A (T̄2), but f1(vT1,C) = f2(vT2,H). To avoid it, we blow
up this node into an arc and we separate these two images: the corresponding
new weak A -supertree T is described in Fig. 10. Now, the new weak topological
embeddings f1 and f2 satisfy the assumptions in the proof of the last proposition.

The A -trees T ′ and T ′′ that are successively obtained by first ‘adding T1− T̄1
to T ’ and then ‘adding T2− T̄2 to T ′’ are described in Figs. 11 and 12, respectively.
At the end, T ′′ is a weak common A -supertree of T1 and T2 under the embeddings
indicated as before.
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5 Main results

In this section we establish that local compatibility is the same as ancestral com-
patibility. We also provide a characterization of the ancestral, or local, compatibil-
ity of a family of A -trees in terms of joint properties of their cluster representa-
tions.

Definition 9 Let T1 and T2 be two A -trees.
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(a) Assume that A (T1) = A (T2). In this case, the join of T1 and T2 is the A -
labeled graph T1,2 defined as follows.
For every ` = 1,2 and for every Y ∈ CA (T`), let

m`,Y = #{v ∈V (T`) |AT`
(v) = Y}.

Set C = CA (T1)∪CA (T2). Then:
– Its nodes are

wY, j with Y ∈ C and j = 1, . . . ,nY ,
where nY = max{m1,Y ,m2,Y}.

– Its arcs are:
(wY, j,wY, j−1) j = 2, . . . ,nY
(wY,1,wZ,nZ ) if Z ( Y and there is no Z′ ∈ C such that Z ( Z′ ( Y .

– If there exists some Y ∈ C such that

Y = (
⋃
{Z ∈ C | Z ( Y})t{A}

for some label A ∈ A , then the node wY,1 is labeled with this A. In par-
ticular, the nodes wA,1, with {A} any singleton in C , are labeled with the
corresponding label A.

Now, for every ` = 1,2, we define a mapping f` : V (T`)→V (T1,2) as follows.
For every Y ∈ CA (T`), let {x(`)

Y,1, . . . ,x
(`)
Y,m`,Y

} ∈V (T`) be the set of nodes of T`

with cluster Y , ordered as follows: x(`)
Y,1 = vT`,Y , and (x(`)

Y,i+1,x
(`)
Y,i ) ∈ E(T`) for

every i = 1, . . . ,m`,Y −1.
With these notations, f` : V (T`)→V (T ) is defined by

f`(x
(`)
Y,i ) = wY,i for every Y ∈ CA (T`) and i = 1, . . . ,mY .

Since CA (T`)⊆ C and, for every Y ∈ CA (T`), m`,Y 6 nY , it is clear that f` is
well defined and injective.

(b) If A (T1) 6= A (T2), let T̄1 and T̄2 be the A -subtrees of T1 and T2 described
in Definition 5. Then, the join T1,2 of T1 and T2 is the result of applying the
construction in the proof of Proposition 3 to the join T̄1,2 of T̄1 and T̄2 (that is,
first blowing out into arcs the nodes that are images of pairs of nodes labeled
with different labels, next ‘adding T1− T̄1’ to this A -tree, and finally ‘adding
T2 − T̄2’ to the result), and the mappings f` : V (T`) → V (T1,2), ` = 1,2, are
obtained by extending the mappings f` : V (T̄`)→ V (T̄1,2) also in the way de-
scribed in that proof.



16 Mercè Llabrés et al.

Notice that, by construction, the mappings fl : V (Tl) → V (T1,2), l = 1,2, are
jointly surjective, that is, every node of T1,2 belongs to the image of one or the
other.

Theorem 1 Let T1 and T2 be two A -trees with A (T1) = A (T2). Then, the fol-
lowing assertions are equivalent:

(i) T1 and T2 are ancestrally compatible.
(ii) T1 and T2 are locally compatible.

(iii) CA (T1) and CA (T2) satisfy jointly the following two conditions:
– For every A∈A (T1) = A (T2), the smallest member of CA (T1) containing

A is equal to the smallest member of CA (T2) containing this label.
– For every X ∈CA (T1) and Y ∈CA (T2), if X∩Y 6= /0, then X ⊆Y or Y ⊆ X.

(iv) The join T1,2 of T1 and T2 is an A -tree and the mappings f1 : V (T1)→V (T1,2)
and f2 : V (T2)→V (T1,2) are weak topological embeddings.

Proof (i)=⇒(ii) Assume that T1 and T2 are ancestrally compatible, and let f1 :
T1 → T and f2 : T2 → T be two weak topological embeddings. To prove that they
are locally compatible, we shall show that they satisfy conditions (C1) and (C2).

(C1) Assume that T1 contains a path vA vB. Since f1 preserves this path, there
exists a path vA vB in T , and then this path must be reflected by f2, yielding a
path vA vB in T2.

(C2) Let A,B,C ∈A (T1) = A (T2). Let

y = vT1,A,B and z = vT1,B,C,

and assume that there is a non-trivial path z y; see Fig. 13. In particular, y cannot
be an ancestor of vC: otherwise, it would be a common ancestor of vB and vC,
which would entail a path from y to z that cannot exist.

Moreover,
z = vT1,A,C.

Indeed, there are paths z vA, through y, and z vC, and therefore z is a common
ancestor of vA and vC. Then, vT1,A,C must be a node in the path z vA. Assume
that it is an intermediate node of this path. If it is an intermediate node of the path
z y, then it will be a common ancestor of vB, through y, and vC, and therefore z
cannot be the most recent common ancestor of these two nodes. And if vT1,A,C is
a node of the path y vA, then y will be an ancestor of vC, something that, as we
have seen above, cannot happen.

�
�

�
�

@
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@
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@
@r r rr r z = vB,C = vA,C

A B C

y = vA,B

Fig. 13 The structure of T1 above vA,vB,vC. The edges represent paths; any one of them can be
trivial, except the path z y, which is non-trivial by assumption
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Let us move now to T . Since f1 preserves paths, f1(y) is a common ancestor of
vA and vB and f1(z) is a common ancestor of vB and vC, and there is a non-trivial
path from f1(z) to f1(y). Let

y′ = vT,A,B and z′ = vT,B,C.

Then, T contains paths f1(y) y′ and f1(z) z′, and it turns out that there is a
non-trivial path z′ f1(y). Indeed, there are paths from z′ and from f1(y) to vB, and
therefore there must exist either a non-trivial path z′ f1(y) or a path f1(y) z′;
but the latter cannot exist, because if it existed, then composing it with z′ vC
we would obtain a path f1(y) vC that, when reflected by f1, would entail a path
y vC in T1 that does not exist.

In particular, there is a non-trivial path z′ y′ in T . Arguing as in T1, this
implies that z′ is also the most recent common ancestor of vA and vC in T . See
Fig. 14 for a representation of the structure of T between f1(z) and vA,vB,vC.
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y′ = vA,B

f1(y)

z′ = vB,C = vA,C

f1(z)

Fig. 14 The structure of T above vA,vB,vC. The edges represent paths; any one of them can be
trivial, except the path z′ f1(y), which is non-trivial

Consider finally the A -tree T2, and set x = vT2,B,C. Then, f2(x) will be a com-
mon ancestor of vB and vC in T and therefore there will be a path f2(x) z′.
Composing this path with z′ vA we obtain a path f2(x) vA which entails, since
f2 reflects paths, the existence of a path x vA. Therefore, x is also an ancestor of
vA, and thus there exists a path x vT2,A,B. But then, there cannot exist a non-trivial
path vT2,A,B x.

This finishes the proof that T1 and T2 satisfy condition (C2).

(ii)=⇒(iii) Assume that T1 and T2 satisfy conditions (C1) and (C2).
Let A ∈A (T1) = A (T2). The smallest members of CA (T1) and CA (T2) con-

taining A are, of course, A (vT1,A) and A (vT2,A), respectively. Now, the inequal-
ity A (vT1,A) 6= A (vT2,A) violates property (C1): if, say, there exists a label B ∈
A (vT1,A)−A (vT2,A), then T1 contains a path vA vB but T2 does not contain the
corresponding path vA vB. This proves the first condition in point (iii).

Let now X = AT1(x) ∈ CA (T1) and Y = AT2(y) ∈ CA (T2) be such that X ∩
Y 6= /0, say B ∈ X ∩Y . If none of them is included into the other one, then there
exist labels A ∈ X −Y and C ∈ Y −X . Then, C /∈ A (vT1,A,B), because, since x
is a common ancestor of vA and vB, there is a path x vT1,A,B that entails the
inclusion A (vT1,A,B)⊆A (x), and by assumption C /∈A (x). Therefore, vT1,B,C is
“above” vT1,A,B, that is, there exists a non-trivial path from vB,C to vT1,A,B: since
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B ∈A (vT1,A,B)∩A (vT1,B,C, if this path does not exist, then there must exist a path
vT1,A,B vT1,B,C that will entail that C ∈A (vT1,A,B).

In a similar way, we have that A /∈A (vT2,B,C) and this entails a path vT2,A,B 
vT2,B,C in T2.

In all, if there exist X ∈CA (T1) and Y ∈CA (T2) such that X∩Y 6= /0, but X 6⊆Y
and Y 6⊆ X , then there exist three labels A,B,C ∈A (T1)∩A (T2) and non-trivial
paths vT1,B,C vT1,A,B in T1 and vT2,A,B vT2,B,C in T2, which would contradict the
assumption that T1 and T2 satisfy condition (C2).

(iii)=⇒(iv) Assume that T1 and T2 satisfy the conditions stated in point (iii).
Notice that the first condition in (iii) entails that L (T1) = L (T2), because labels
of leaves in an A -tree are characterized by the fact that the smallest member of
the cluster representation containing the label is a singleton.

To simplify the notations, we shall denote the join of T1 and T2 by simply T .
In this case, since A (T1) = A (T2), this join T is obtained using the construction
given in Definition 9.(a). Let us check that it is an A -tree:

• It is clear that its leaves are the nodes of the form wA,1, and they are labeled.
– The nodes of T are injectively labeled: it is impossible the existence of two

different sets of labels Y1,Y2 ∈ C such that

Y1 = (
⋃
{Z ∈ C | Z ( Y1})t{A}, Y2 = (

⋃
{Z ∈ C | Z ( Y2})t{A},

because in this case Y1∩Y2 6= /0 and therefore Y1 ( Y2 or Y2 ( Y1, which would
entail that one of them contains a member of C that already contains A.
As we shall see below, A (T ) = A (T1) = A (T2).

• It is a tree. To prove it, assume first that a node wZ, j has two parents. Then, by
construction, it must happen that j = nZ and then the parents are nodes wY1,1
and wY2,1 with Y1,Y2 ∈ C , Y1 6= Y2, such that Z ( Y1, Z ( Y2 and in both cases
such that no other member of C lies strictly between Z and the corresponding
Yi. But then Y1∩Y2 6= /0 and therefore Y1 ⊆Y2 or Y2 ⊆Y1: if Y1,Y2 ∈ CA (T1) or
Y1,Y2 ∈ CA (T2), by Lemma 1, and if each one of them belongs to a different
cluster representation, by assumption. This forbids that both Y1 and Y2 are
minimal over Z. Therefore, each wZ, j can have only one parent.
Now, if X ,Y ∈ C and Y ⊆ X , there is a unique path wX ,i wY, j for every
i = 1, . . . ,nX and j = 1, . . . ,nY (if X = Y , then this happens for every 16 j 6
i6 nX ). If X = Y , it is obvious by construction, and when Y ( X , if

Y ( Z1 ( Z2 ( · · ·( Zk ( X

is a maximal chain of sets of labels between Y and X with Z1, . . . ,Zk ∈C , then
this path is obtained as the composition of paths

wX ,i wX ,1 wZk,nZk
 wZk,1 wZk−1,nZk−1

 · · · wZ1,1 wY,nY wY, j.

And this path is unique because every node has at most one parent.
Then, since A (T1) = A (T2) ∈ C , because it is the cluster of the roots of both
trees, every node wY, j is a descendant of wA (T1),1, that is, wA (T1),1 is the root
of T .

This A -tree T satisfies the following properties that we shall use below:
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• A (wY, j) = Y , for every node wY, j.
This is easily proved by algebraic induction over the structure of T . If Y = {A}
and j = 1, then wY,1 is a leaf of T labeled A, while if Y = {A} and j > 1, then
the only labeled descendant of wY, j in T is the leaf wY,1. Thus, A (wA, j) = {A}
for every A ∈L (A1) = L (A2) and j = 1, . . . ,nA.
Now assume that A (wZ, j) = Z for every Z ( Y and j = 1, . . . ,nZ , and let us
prove it for Y and every j = 1, . . . ,nY . If j = 1, then the children of wY,1 are
the nodes wZ,nZ with Z ( Y and maximal with this property. And then, if wY,1
is not labeled,

A (wY,1) =
⋃
{A (wZ,nZ ) | Z ( Y and maximal with this property}

=
⋃
{A (wZ,nZ ) | Z ( Y}=

⋃
{Z | Z ( Y}= Y

(in the second equality we use that if Z ( Y , then there exists some maximal
Z0 ( Y such that Z ⊆ Z0, and then there exists a path wZ0,1 wZ,1 that entails
that A (wZ,1)⊆A (wZ0,1)), while, if wY,1 is labeled, say with label A, then

A (wY,1)= (
⋃
{A (wZ,nZ ) | Z ( Y and maximal with this property})t{A}

= ({A (wZ,nZ ) | Z ( Y})t{A}= (
⋃
{Z | Z ( Y})t{A}= Y.

Finally, if j > 1, then there is a path wY, j wY,1 with the origin and all its inter-
mediate nodes elementary and unlabeled, and therefore A (wY, j) = A (wY,1) =
Y .

• In particular, wY,1 = vT,Y , for every Y ∈ C , because, as we have just proved,
A (wY,1) = Y , and all children wZ,nZ of wY,1 are such that A (wZ,nZ ) = Z ( Y .

Let us prove now that f1 : V (T1) → V (T ) is a weak topological embedding
f1 : T1 → T ; by symmetry, it will be true also for T2.

Let us check that f1 preserves labels. Let A ∈A (T1) and Y = A (vT1,A). Then,
in particular, and using the notations of Definition 9, vT1,A = vT1,Y = x(1)

Y,1, and hence
f1(vT1,A) = wY,1. We must check that this node has label A, that is, that

Y = (
⋃
{Z ∈ C | Z ( Y})t{A},

because in this case, and only in this case, wY,1 is labeled A.
So, assume that there exists some Z ∈ C such that Z ( Y and A ∈ Z. Such

a Z cannot belong to CA (T1), and therefore there exists some z ∈ V (T2) such
that A (z) = Z. Since A ∈ A (z), there exists a path z vT2,A in T2 and therefore
A (vT2,A)⊆A (z). But, by the first condition in (iii), A (vA) =Y and therefore this
inequality says Y ⊆ Z, which is impossible. Therefore, A /∈ Z for every Z ( Y , as
we wanted to have.

Finally, let us prove that f1 preserves and reflects paths. Let u v be a non-
trivial path in T1, so that A (v) ⊆ A (u). If A (v) = A (u), then u = x(1)

A (v),i and

v = x(1)
A (v), j with i > j, and then by construction T contains a path from f1(u) =

wA (v),i to f1(v) = wA (v), j. If, on the contrary, A (v) ( A (u), then f1(u) = wA (u),i
and f1(v) = wA (v), j for some i, j, and, as we saw when we proved that T is an
A -tree, T contains a path wA (u),i wA (v), j.
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Conversely, let f1(u) f1(v) be a path in T , and assume that f1(u) = wA (u),i
and f1(v) = wA (v), j. Then, the existence of this path entails that

A (v) = A (wA (v), j)⊆A (wA (u),i) = A (u).

If this inclusion is strict, then Corollary 1 implies the existence of a path u v in
T1. On the other hand, if A (v) = A (u), then u = x(1)

A (u),i and v = x(1)
A (u), j for some

1 6 i, j 6 m1,A (u), and then the definition of f1 implies that if T contains a path
f1(u) f1(v), then i > j and therefore there is a path u v in T1.

This finishes the proof that f1 : T1 → T is a weak topological embedding.
(iv)=⇒(i) This implication is obvious. ut

Corollary 3 Let T1 and T2 be A -trees. Then, the following assertions are equiv-
alent:

(i) T1 and T2 are ancestrally compatible.
(ii) T1 and T2 are locally compatible.

(iii) Their A -subtrees T̄1 and T̄2 described in Definition 5 satisfy condition (iii) in
Theorem 1.

(iv) The join T1,2 of T1 and T2 is an A -tree and the mappings f1 : V (T1)→V (T1,2)
and f2 : V (T2)→V (T1,2) are weak topological embeddings.

Proof By Lemma 2, T1 and T2 are locally compatible if and only if T̄1 and T̄2 are
so, and by Proposition 3, T1 and T2 are ancestrally compatible if and only if T̄1
and T̄2 are so. These facts, together with the last theorem, prove the implications
(i)⇒(ii) and (ii)⇒(iii). As far as (iii)⇒(iv) goes, it is a direct consequence of the
corresponding implication in the last theorem together with the proof of Proposi-
tion 3. ut

Corollary 4 Let T1 and T2 be semi-labeled trees over A . Then, the following
assertions are equivalent:

(i) T1 and T2 admit simultaneous weak topological embeddings into a same semi-
labeled tree over A .

(ii) T1 and T2 are ancestrally compatible.
(iii) T1 and T2 are locally compatible.
(iv) Their A -subtrees T̄1 and T̄2 described in Definition 5 satisfy condition (iii) in

Theorem 1.
(v) The join T1,2 of T1 and T2 is a semi-labeled tree and the mappings f1 : V (T1)→

V (T1,2) and f2 : V (T2)→V (T1,2) are weak topological embeddings.

Proof It only remains to prove (iv)=⇒(v). And to do that, it is enough to notice
that if T1 and T2 are semi-labeled trees over A such that T̄1 and T̄2 satisfy condition
(iii) in Theorem 1, then their join T1,2 is not only an A -tree, but a semi-labeled
tree, because, since f1 : T1 → T1,2 and f2 : T2 → T1,2 are jointly surjective, no
elementary node in it remains unlabeled. ut
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6 Algorithmic Details

The equivalence between ancestral compatibility and the properties of the clus-
ter representations of the trees established in Theorem 1, leads to a very simple
polynomial-time algorithm for testing ancestral compatibility of two semi-labeled
trees. The detailed pseudo-code of the algorithm is shown in Fig. 15.

compatible(T1,T2)
A := A (T1)∩A (T2)
T̄1 := T1|A
T̄2 := T2|A
foreach label A ∈A do

let X1 be the smallest member of CA (T̄1) containing A
let X2 be the smallest member of CA (T̄2) containing A
if X1 6= X2 then

return X1 and X2 are incompatible

foreach cluster X1 ∈ CA (T̄1) do
foreach cluster X2 ∈ CA (T̄2) do

if X1∩X2 6= /0 and X1 6⊆ X2 and X2 6⊆ X1 then
return X1 and X2 are incompatible

return T1 and T2 are compatible

Fig. 15 Algorithm for testing ancestral compatibility of two semi-labeled trees T1 and T2

We have implemented in Perl this compatibility test, and the implementation
is freely available for download from the BioPerl collection of Perl modules for
computational biology [13]. Given two semi-labeled trees T1 and T2 with com-
mon labels A = A (T1)∩A (T2), if the trees are incompatible, the actual imple-
mentation collects and returns all labels A ∈ A such that be the smallest mem-
ber of CA (T1|A ) containing A does not coincide with be the smallest member
of CA (T2|A ) containing A, as well as all pairs of clusters X1 ∈ CA (T1|A ) and
X2 ∈ CA (T2|A ) such that X1 ∩X2 6= /0, X1 6⊆ X2, and X2 6⊆ X1. This additional
information constitutes a certificate of incompatibility, which can be useful for
checking the underlying phylogenetic studies that have lead to incompatible clus-
ters.

The following Perl code illustrates the use of the Bio::Tree::Compatible
module for testing compatibility of two semi-labeled trees and listing all pairs of
incompatible clusters in the trees.

use Bio::Tree:: Compatible;
use Bio:: TreeIO;

my $filename = $ARGV [0];
my $input = new Bio:: TreeIO(’-format ’ => ’newick ’,

’-file’ => $filename );
my $t1 = $input ->next_tree;
my $t2 = $input ->next_tree;

my ($incompat , $ilabels , $inodes) =
$t1 ->Bio::Tree:: Compatible :: is_compatible($t2);
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if ($incompat) {
print "the trees are incompatible\n";

my %cluster1 = %{
$t1 ->Bio::Tree:: Compatible :: cluster_representation };

my %cluster2 = %{
$t2 ->Bio::Tree:: Compatible :: cluster_representation };

if (scalar(@$ilabels )) {
foreach my $label (@$ilabels) {

my $node1 = $t1 ->find_node(-id => $label );
my $node2 = $t2 ->find_node(-id => $label );
my @c1 = sort @{ $cluster1{$node1} };
my @c2 = sort @{ $cluster2{$node2} };
print "label $label";
print " cluster"; map { print " ",$_ } @c1;
print " cluster"; map { print " ",$_ } @c2;
print "\n";

}
}

if (scalar(@$inodes )) {
while (@$inodes) {

my $node1 = shift @$inodes;
my $node2 = shift @$inodes;
my @c1 = sort @{ $cluster1{$node1} };
my @c2 = sort @{ $cluster2{$node2} };
print "cluster"; map { print " ",$_ } @c1;
print " properly intersects cluster";
map { print " ",$_ } @c2; print "\n";

}
}

} else {
print "the trees are compatible\n";

}

An application of Bio::Tree::Compatible is shown in Fig. 16. The input
consists of two phylogenetic trees describing the evolution of angiosperms (plants
that flower and form fruits with seeds), obtained from study S11x5x95c19c35c30
in the TreeBASE [4] phylogenetic database.

Poaceae
Apiaceae
Asteraceae
Brassicaceae
Fabaceae
Solanaceae
Caprifoliaceae
Chenopodiaceae
Polygonaceae

Poaceae
Apiaceae
Asteraceae
Brassicaceae
Fabaceae
Solanaceae
Caprifoliaceae
Chenopodiaceae
Polygonaceae

Fig. 16 Two incompatible phylogenetic trees, obtained from study S11x5x95c19c35c30 in Tree-
BASE. The clusters shown with thick lines are incompatible.
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Another application of Bio::Tree::Compatible is shown in Fig. 17. The
input consists of two semi-labeled trees describing the evolution of Skinnera (a
group of four Fuchsia species that grows spontaneously out of the American con-
tinent, in New Zealand and on Tahiti), obtained from study S11x4x95c21c16c44
in TreeBASE.

outgroup to Skinnera
Fuchsia cyrtandroides
Fuchsia procumbens
Fuchsia perscandens
Fuchsia excorticata

Skinnera

outgroup to Skinnera
Fuchsia cyrtandroides
Fuchsia perscandens
Fuchsia excorticata
Fuchsia procumbens

Skinnera

Fig. 17 Two incompatible semi-labeled trees, obtained from study S11x4x95c21c16c44 in Tree-
BASE. The clusters shown with thick lines are incompatible.

A third application of Bio::Tree::Compatible is shown in Fig. 18. The
input consists of two semi-labeled trees describing the evolution of net-veined
Lilliaflorae, obtained from study S2x4x96c17c14c22 in TreeBASE.

Convallaria
Peliosanthes
Geitonoplesium
Phormium
Herreria
Asparagus
Ruscus
Uvularia
Tricyrtis
Trillium
Alstroemeria
Luzuriaga
Philesia
Dioscoreaceae
Smilax
Stemonaceae
Ripogonum
Petermannia
Taccaceae

Asparagales

Liliales

Trillium
Alstroemeria
Tricyrtis
Philesia
Petermannia
Taccaceae
Dioscoreaceae
Smilax
Stemonaceae
Ripogonum
Uvularia
Peliosanthes
Convallaria
Luzuriaga
Geitonoplesium
Herreria
Phormium
Asparagus
Ruscus

Liliales

Dioscoreales

Asparagales

Fig. 18 Two incompatible semi-labeled trees, obtained from study S2x4x96c17c14c22 in Tree-
BASE. The clusters shown with thick lines are incompatible.

Using the Bio::Tree::Compatible module, we have performed a systematic
study of tree compatibility on TreeBASE, which currently contains 2,592 phylo-
genies with over 36,000 taxa among them. In this study, we have found 2,527 pairs
of incompatible trees (like those shown in Figs. 16 to 18) from a total of 3,357,936
pairs of trees. The resulting ratio of 0.075% shows the high internal consistency
among the phylogenies, and it complements previous large-scale analyses of Tree-
BASE [7].
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7 Conclusions

Phylogenetic tree compatibility is the most important concept underlying widely-
used methods for assessing the agreement of different phylogenetic trees with
overlapping taxa and combining them into common supertrees to reveal the tree
of life. The study of the compatibility of phylogenetic trees with nested taxa, also
known as semi-labeled trees, was asked for in [6], and the notion of ancestral
compatibility was introduced in [3,10].

We have analyzed in detail the meaning of the ancestral compatibility of semi-
labeled trees from the points of view of the local structure of the trees, of the
existence of embeddings into a common supertree, and of the joint properties of
their cluster representations. We have established the equivalence between ances-
tral compatibility and the absence of certain incompatible pairs and triples of la-
bels in the trees under comparison, and have also proved the equivalence between
ancestral compatibility and a certain property of the cluster representations of the
trees.

Our analysis has lead to a very simple polynomial-time algorithm for testing
ancestral compatibility, which we have implemented and is freely available for
download from the BioPerl collection of Perl modules for computational biology.
Future work includes extending the Bio::Tree::Compatible implementation
into a Bio::Tree::Supertree module for building a common supertree of two
compatible semi-labeled trees.
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