
A new sphere-tree generation method to

speed up the collision detection pipeline

Omar Rodŕıguez González Marta Franquesa Niubó
Facultad de Ingenieŕıa Departament de Llenguatges
Universidad Autónoma i Sistemes Informàtics

de San Luis Potośı Universitat Politècnica de Catalunya
San Luis Potośı, México Barcelona, España

omarg@uaslp.mx marta@lsi.upc.edu

10th May 2005

Abstract
In this paper, a novel sphere-tree generation method used for collision
detection is proposed. Using existing consumer-level graphics cards
and its programmable graphics processing units (GPU) a sphere-tree
is constructed in real-time inside an animation. This guarantees that
no construction or loading of a precomputated hierarchy is required.

With our method, core memory is managed in an efficient manner, al-
locating and releasing memory space as necessary. By this, out-of-core
techniques can perform better in real-time situations. The animation
tests maintain an above the average performance and the collision de-
tection is fast and efficient.

Keywords: sphere-tree construction, collision detection, viewing volume,
graphics hardware

1 Introduction

Collision detection is a key problem in areas like computer graphics, virtual
reality, games, animation, CAD, robotics and manufacturing [LG98, JTT01].
Considered as a bottleneck within real-time environments, several authors
have studied the detection of a collision and multiple solutions have been
proposed.

The problem to identify interfering objects in complex systems (huge en-
vironments with a large number of objects) has been approached applying
different hierarchical space subdivisions methods over the scene. The prob-
lem to determine which object parts are candidate to collide with other ob-
ject parts has been addressed modelling bounding volume hierarchies over

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the objects, usually called Bounding Volume trees, or BVtrees. Bounding
volume trees allow discarding collision faster than using the geometry of
the original models. One of the most commonly bounding volume hierarchy
model used is the sphere-tree.

The hybrid collision detection, introduced by Kitamura et al. [KTAK94],
refers to any collision detection method that first performs one or more
iterations of approximate test to study whether objects interfere in the
workspace and then, performs more accurate tests to identify the object
parts causing the interference. Hubbard [Hub95] reports two phases: the
broad phase, where approximate interferences are detected, and the narrow
phase where exact collision detection is performed. O’Sullivan and Dingliana
[O’S99, OD99] extended the classification pointing out that the narrow phase
consists of several levels of intersection testing between two objects at in-
creasing level of accuracy (narrow phase: progressive refinement levels) and,
in the last level of accuracy, the tests may be exact (narrow phase: exact
level). Franquesa and Brunet [FNB03, FNB04] extended the broad phase in
two more subphases. In the first one, tests are performed to find subsets
of objects from the entire workspace where collisions can occur, rejecting at
the same time, all the space regions where interference is not possible (broad
phase: progressive delimitation levels). In the second subphase, tests deter-
mine the candidate objects that can cause a collision (broad phase: accurate
broad level). Figure 1 summarizes the complete hybrid collision detection
pipeline including all its phases.

In recent times, the availability of high performance 3D graphics cards are
common in personal computers. The power and fastness of the built-in
GPUs and its own dedicated memory is being applied to a wider variety of
applications, even those that the creators not originally intended to manage.

In this paper, a new method called on-collide sphere-tree, OCST for short, is
introduced. This new approach works by detecting collisions among models
with arbitrary geometry using the video card’s GPU. Candidate parts of
colliding objects are detected as the OCST is constructed in real-time.

Main contribution: The structures involved in the hybrid collision de-
tection phases, space subdivision hierarchies and bounding volume (BV)
hierarchies, have been approached as a precomputation to the simulation
environment. Before entering the simulation, the structures must be loaded
in core memory. In simulation run-time, updates to the BV hierarchies take
place according to the position and orientation of the moving objects.

We present an algorithm that doesn’t use precomputed BV hierarchical
structures, instead uses an octree-based sphere-tree created in real-time.
The detection of surface overlapping over the sphere-tree nodes is performed
using occlusion queries. These queries exist in modern graphics hardware.
The algorithm is addressed for rigid objects moving in large environments.

2



• Broad Phase:

– Delimitation levels

∗ Input: N-bodies

∗ Use of hierarchical structures

∗ Output: n-bodies (subset of N-bodies)

– Accurate broad level

∗ Input: n-bodies

∗ Use of simple bounding representations

∗ Output: 2-candidate bodies list

• Narrow Phase:

– Refinement levels

∗ Input: 2-bodies

∗ Use of hierarchical structures

∗ Output: Candidate parts of 2-bodies

– Exact level

∗ Input: 2-bodies or candidate parts of 2-bodies

∗ Use the geometry of objects

∗ Output: Colliding features

Figure 1: Hybrid collision detection phases

With this algorithm, the narrow phase of the hybrid collision detection prob-
lem is accelerated. When many objects interact, core memory is managed
more efficiently. The access to secondary storage is improved when out-of-
core techniques are used.

Organization: The rest of the paper is organized as follows. In section 2
we discuss the state of the art in related areas. The representation model to
be used is detailed in section 3. Description of the sphere-tree construction
algorithm is in section 4. OCST construction and collision detection in real-
time are discussed in section 5. Experimental results are given in section 6
and conclusions are presented in section 7.

2 Previous Related Work

A bounding volume hierarchy approximates a representation of an object
as a hierarchical structure, known as bounding volume tree (BVtree). One
of the most used BVtrees in the literature is the sphere-tree [Hub93]. A
sphere-tree represents an object by sets of spheres in a hierarchical way.
Three methods are commonly used for the construction of a sphere-tree.
The first one, consists of fitting spheres to a polyhedron and shrinking them
until they just fit [RB79]. The second one is based on an octree [Sam90].
Thus, the octree-based sphere-trees [PG95, Hub96, OD99] performs a re-

3



cursive subdivision in 3D, creating spheres on child nodes that overlap the
surface of the object. And the third and last, the medial-axis surface method
[Qui94, Hub95, Hub96, BO03], uses Voronoi diagrams to calculate the object
skeleton placing maximal sized spheres on it so the spheres fill the object.

The graphics-hardware-assisted collision detection algorithms started with
Shinya and Forgue [MM91], and Rossignac et al. [RMS92]. After them, a
more efficient algorithm was proposed by Myszkowski et al. [MOK95] using
the stencil buffer. Baciu and Wonk [BW98] were the first to use common
available graphics cards to compute image-based collision detection. Vas-
silev et al. [VSC01] use a technique for collision detection in deformable
objects like clothes. Kim et al. [KOLM03] use graphics hardware to cal-
culate Minkowski sums to find the minimum translational vector needed to
separate two interfering objects. All those algorithms involve no precompu-
tation, but perform image-space computations that require the reading back
of the depth or stencil buffer, which can be expensive on standard graphics
hardware.

Govindaraju et al. [GRLM03] use occlusion queries to compute a potentially
colliding set (PCS) in the broad phase, followed by exact collision in the
narrow phase. Fan et al. [FWG04] use occlusion queries to fast detect
collision between a convex object and an arbitrarily shaped object. The
advantage of using GPU based occlusion queries is that no read back of the
depth or stencil buffer is necessary to obtain results. This kind of tests are
faster than image-space computations.

3 Representation Model

As mentioned before, the BVtree selected in this work is the sphere-tree.
To bound each candidate object to collision, octree-based representation for
sphere-trees construction is used. As is well known, an octree is a hierar-
chical structure obtained subdividing recursively in 3D to form eight child
nodes. Each one can be represented with three colors. Black color for child
nodes completely inside the subdividing object. White for child nodes com-
pletely outside. Grey for child nodes in which the frontier of the object
overlaps. Grey nodes will be subdivided until an user-defined depth for the
octree is reached. When the octree depth is reached, the grey nodes be-
come leaf nodes. An octree-based sphere-tree is an octree where each node
is bounded by one sphere instead of a cube. Figure 2 shows an octree-based
sphere-tree representation.

A sphere-tree based on octrees, with a certain depth level, gives enough
proximity to the object’s surface so conservative collision detection can be
performed.

4



Figure 2: Original object and octree-based sphere-tree levels 2, 4 and 6

The cost to create sphere-trees can be high in terms of computing resources.
Space subdivisions require floating-point operations, which are generally
slow on CPU. The octree construction requires having the geometry object
loaded in core memory aside the sphere-tree structure. Trying to create a
sphere-tree on simulation run-time cannot be achieved using only the CPU.
Therefore the construction of a sphere-tree has been treated as a precom-
putation step to the simulation. Having and maintaining all the sphere-tree
structures in core memory when many objects are present, can be expensive
during the life cycle of a simulation.

From the BVtrees methods, the simplicity of octree-based sphere-trees makes
it good enough to implement them using graphics hardware (see section 4).
The construction of sphere-trees in real-time is performed using occlusion
queries. Thus, no precomputation is necessary, core memory is free of hi-
erarchical structures at the beginning of the simulation because the sphere-
trees are created only on-collision when required. To preserve memory, only
branches of the sphere-tree for the parts of the objects that potentially can
collide are computed. Newly created branches are maintained in core mem-
ory for future use during the simulation (see section 5).

4 Sphere-tree Construction

In this section, the algorithm to construct the octree-based sphere-tree model
using the GPU is presented.

Different hardware designers have made various occlusion test implemen-
tations with differences in performance and functionality. In this way, the
first occlusion query that we can find1, returns a boolean answer if any
incoming fragment passes the depth test. The second one2, returns the
number of fragments that pass the depth test but requires that the first
query be supported by the graphic card. The third and most standard,
GL ARB occlusion query3, is similar to the last named query, but does not

1http://oss.sgi.com/projects/ogl-sample/registry/HP/occlusion test.txt
2http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusion query.txt
3http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion query.txt

5



require the first query to be available.

The GL ARB occlusion query is used in our method to avoid stalls in the
graphics pipeline. This query can manage multiple queries before asking for
the result of any one, increasing the overall performance.

Let A be an arbitrarily shaped object. A sphere-tree root node for A is con-
structed creating an axis-aligned bounding box (AABB) for A. A bounding
sphere for A is created bounding the AABB from A, with its center as the
center of the AABB and its radius as half the distance of the AABB extreme
vertices. Taking the AABB from the root node of A, we construct a new
level for the sphere-tree subdividing it in 3D. For each new child node, a
resulting octree subdividing AABB box is assigned and an overlap test is
performed to verify if it can be a grey node.

To accelerate the overlap test for the detection of grey nodes, occlusion
computations are performed. Based in the observation that, if the surface
of A can be viewed in at least some part from inside the AABB of an octree
node, then A is overlapping the octree node.

The overlap test performs one, two or up to three occlusion queries for each
of the main axis. Three requirements are needed for each occlusion query:

• a viewing volume

• a camera position

• the occlusion test elements

The viewing volume is created using an orthographic frustum view limited
by the AABB box of the octree node tested. The camera position is placed
outside the viewing volume, centered at a box face, looking toward the box
in parallel to a main axis, and with a distance equal to the length of the box
in the looking direction. Figure 3 illustrates one of the three viewing volumes
and its camera position. The first occlusion test element (the occluder), is
the AABB box of the octree node. The second occlusion test element (the
possibly occluded objects), is the surface of A.

An occlusion query reports if one or more occluders allow the possibility
that occluded objects can be seen from inside a viewing volume. That is, if
the surface of A can be seen from inside the AABB box (viewing volume)
of the tested octree node, in at least one of the three main axis, then the
surface of A is overlapping that octree node.

Algorithm 1 illustrates the overlap test. If the number of samples that passed
the occlusion query is greater than zero in at least one of the three queries,
the surface of A overlaps the tested octree node and it’s a grey node. If it’s

6



Figure 3: Viewing volume construction

a grey node, a sphere is created bounding the AABB box of the node and
is inserted on the sphere-tree.

set occlusion query buffer;
render AABB box of the tested octree node;
clear depth buffer;
disable color and depth buffer;
disable cull face;
while not overlap found do

select one of the three frustum views;
set occlusion query;
render surface of A;
end occlusion query;
get occlusion query results;
if samples passed the test > 0 then

overlap with surface of A is found;
else

if all queries finished then
no overlap found;

else
select next frustum view;

end if
end if

end while
enable cull face;
enable depth and color buffer;

Algorithm 1: GPU based overlap test

5 OCST and Real-time Collision Detection

To achieve collision detection in real-time, OCST branches are constructed
for objects only when it is needed. Thus, is necessary to load the geometry of

7



the objects into graphics card’s memory, and construct a root OSCT for each
of them at the beginning of the simulation. The OCST root is initialized
with an AABB and a bounding sphere with the center as the center of the
AABB, and its radius as half the distance of the AABB extreme vertices.

Let A and B be arbitrarily shaped objects in movement. The two objects
collide each other only if the distance between their root sphere centers
is equal or less than the sum of their respective radius. When a collision
occurs, one level is constructed for the OCST (see algorithm 1) for objects
A and B. If child nodes of object A collide with child nodes of object B,
an additional level is constructed only for the colliding child nodes. This
process continues up to an user-defined depth for the OCST. When the
depth value is reached, and two leaf nodes collide, a collision between object
A and B is reported. Using a bigger depth value, the approximation to the
object surface is tighter, and the collision detection is better.

Algorithm 2 illustrates this process. Notice that all hierarchies sphere cen-
ters must be updated with the objects movement. When a new level for the
OCST is created the number of updates increases. With a big user-defined
depth value the maintaining cost to update all the animation OCSTs is
higher.

while animation do
for each object in the scene do

found PCS for all OCST;
end for
if any collision occurs then

for each pair-colliding do
if depth level is reached for objects A and B then

collision detected between A and B;
else

if don’t exist a lower level for A then
create new branch for colliding nodes;

end if
if don’t exist a deeper level for B then

create new branch for colliding nodes;
end if

end if
end for

end if
update all OCST time-stamps;
update all OCST spheres;
update animation;

end while

Algorithm 2: Real-time collision detection

8



Figure 4: Example of input models: left to right, a bunny with 5110 triangles,
a dragon with 5104 triangles, a lamp with 600 triangles and, a cow with 5144
triangles

To found the potentially colliding set, PCS, the sphere interference test de-
scribed below is used. A list with pair-colliding spheres is computed and used
to identify interfering object parts. In large environments [FN04, RF05], the
PCS can be obtained using algorithms designed for the broad phase of the
hybrid collision detection problem.

To increase the algorithm performance, the branches of the OCST created
by older collisions are kept in core memory. These can be re-used on forth-
coming collision tests.

To avoid the problem of a high computing resource cost caused for hier-
archies updates, a time-stamp is assigned to the deeper OCST nodes. If
a complete OCST level doesn’t participate in a collision during a certain
amount of time, it is deleted from core memory and the parent initialized
with its own time-stamp. This will cause that an object gets back to its
initial state (only the OCST root node), if it’s not involved in any more
collisions during a certain amount of time.

6 Experimental Results

In this section some relevant results of applying our method are exposed.
To compare the actual results with existing others, the input data tested in
other existing algorithms has been selected.

The algorithms have been implemented on a Dell Inspiron notebook with
ATI Mobility Radeon 9600 graphics card with 128 MB VRAM and a Pen-
tium M processor at 1.80 GHz. The algorithms were tested with commonly
used complex models4. Figure 4 shows some of the models used.

4http://isg.cs.tcd.ie/spheretree/

9



6.1 Sphere-tree Construction Timings

Table 1 shows the time to construct one level of an OCST. The results
are obtained with the objects already loaded in graphics card’s memory as
triangle-soup. No optimizations such as triangle-strips or triangles-fans have
been made. The table shows the number of triangles for each model, the
time used to construct the level (in seconds) and the number of occlusion
tests performed.

Model Triangles Time Occlusion
Dragon 1496 0.0099 13
Bunny 1500 0.0099 9
Cow 1500 0.0099 9
Lamp 600 0.0199 13
Dragon 5104 0.0199 13
Bunny 5110 0.0099 9
Cow 5144 0.0099 9

Table 1: OCST construction time

For each occlusion test, the complete model has to be render. Note that
the object’s geometry doesn’t affect the time to construct one level for the
OCST. The algorithm performance is affected only for the number of occlu-
sion tests and the time each one lasts. That is, the worst case only occurs
when all occlusion tests have to be considered. In these case, with eight pos-
sible child nodes and three tests per child node, for a total of 24 occlusion
tests, the maximum time takes 0.03 seconds.

Construction of an OCST level using only the CPU can takes from 0.03 sec-
onds for the simplest model, 0.1 to 0.5 seconds for the intermediate models,
and 1 second and up for the largest models. Without the use of the GPU
for the construction, the object’s geometry indeed does affect the algorithm
performance.

6.2 Real-time Collision Detection Performance

The algorithms were tested with a scenario where one object (with 5000
triangles approx.) follows a fixed trajectory in a 3D space. Collision occurs
with other three objects (two of them with 5000 triangles approx. and
one with 600 triangles approx.). Table 2 shows the performance with a 14
seconds animation and an user-defined depth level for the OCST as 5. The
results are measured in frames-per-second (FPS). The number of occlusion
queries performed in each time step is also showed.

Note that the FPS slowed down, only, when new levels for the OCSTs are
generated. For example, at the second 5.00, when the occlusion queries are

10



Time FPS Occlusion queries
1.00 179.82 0
2.00 324.35 0
3.00 324.68 0
4.00 309.38 142
5.00 216.78 1056
6.00 252.75 742
7.00 256.49 610
8.00 255.74 690
9.00 230.54 1056
10.00 180.82 1596
11.00 215.57 1192
12.00 320.68 20
13.00 265.73 708
14.00 262.48 700

Table 2: Animation performance

1056 the FPS are 216.78. And, in the worst case, at the second 10.00, when
the occlusion queries are 1596, the FPS slows down to 180.82. Although the
speed of the FPS gets lower, the rate keeps on being good enough. Therefore,
the animation can be maintained over 60 FPS and allows a smooth transition
between frames.

The worst case occurs when objects are moving very fast and a collision
occurs. This situation can cause that several levels of the OCST tree have
to be constructed at once for each colliding object. In this case, the per-
formance could slows down. Even so, stalls in the animation can occur,
only, if the user-defined depth value is too high. Even thought, these stalls
are due to the high number of occlusion tests that have to be performed
to construct all the OCST branches, the running time is not affected when
real-time simulations are computed.

Figures 5 and 7 shows the sequence of a collision between two objects. Fig-
ures 6 and 8 represents the same sequence showing the OCSTs created in
real-time up to level 5.

7 Conclusions

In this paper, a new method that has been conceived to speed up the collision
detection pipeline has been introduced. An algorithm, on-collide sphere-tree
(OCTS), for fast construction of sphere-trees using the GPU from graphic
cards has been presented. Its application in real-time environments has

11



Figure 5: Original models animation

Figure 6: On-collision sphere-trees

been implemented using OCST (see section 4 for details). This method is
fast enough to manage collision detection in real-time, as it can be seen in
the section 6 where the experimental results are exposed. The speed and
efficiency obtained with our method allow us to manage many concurrent
objects in a scene.

The method’s limitations are related to hardware constrictions. The overall
performance is affected by several parameters. The amount and speed of
the video memory built-in the graphic cards, the bus transfer speed, and
the clock frequency of the GPU. The use of out-of-core methods in real-time
could be degraded at reading time from secondary storage, and at sending
time of the object’s geometry to the graphic card memory.

Using of OCST reduces the amount of the model representation to be gener-
ated while decreasing considerably the collision detection time without loss

12



Figure 7: Original models animation

Figure 8: On-collision sphere-trees

of accuracy.

In the future, we would like to analyse different sphere-tree algorithms to
achieve better object tightness. Testing optimized models, via triangle-
strips or triangle-fans, could give us more efficiency. On the other hand,
exact collision detection and collision response that are not considered in
this paper, could be studied.

We detailed an algorithm related to the narrow phase of the collision de-
tection pipeline problem. However, work related to the broad phase can be
found in [FN04, RF05]. We are working on bringing together both methods,
so a fully functional fast collision detection system for large environments
could give us better results on our application environments.

13



Acknowledgements

This research has been partially supported by the Ministerio de Ciencia
y Tecnoloǵıa under the project MAT2002-0497-C03-02 and the Facultad
de Ingenieŕıa of the Universidad Autónoma de San Luis Potośı under the
PROMEP program.

References

[BO03] G. Bradshaw and C. O’Sullivan. Adaptative Medial–Axis Ap-
proximation for Sphere–Tree Construction. ACM Transactions
on Graphics, 22(4), 2003.

[BW98] G. Baciu and S.G. Wonk. Recode: An image–based collision
detection algorithm. In Proc. of Pacific Graphics, pages 497–
512, 1998.

[FN04] M. Franquesa-Niubò. Collision Detection in Large Environ-
ments using Multiresolution KdTrees. PhD thesis, Universitat
Politècnica de Catalunya, March 2004.

[FNB03] M. Franquesa-Niubo and P. Brunet. Collision detection using
MKtrees. In Proc. CEIG 2003, pages 217–232, July 2003.

[FNB04] M. Franquesa-Niubo and P. Brunet. Collision Prediction using
MKtrees. In R. Scopigno and V. Skala, editors, WSCG 2004,
The 12–th International Conf. in Central Europe on Comp.
Graphics, Visualization and Comp. Vision 2004, volume 1,
pages 63–70, February 2004. Plzen. ISSN 1213–6972.

[FWG04] Z. Fan, H. Wan, and S. Gao. Simple and rapid collision detection
using multiple viewing volumes. In VRCAI ’04: Proceedings of
the 2004 ACM SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry, pages 95–99.
ACM Press, 2004.

[GRLM03] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and
Dinesh Manocha. Cullide: interactive collision detection be-
tween complex models in large environments using graphics
hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 25–32. Eurographics Association, 2003.

[Hub93] P. M. Hubbard. Interactive collision detection. In Proc. IEEE
Symp. on Research Frontiers in Virtual Reality, volume 1, pages
24–31, October 1993.

14



[Hub95] Philip M. Hubbard. Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Computer
Graphics, 1(3):218–230, September 1995.

[Hub96] Philip M. Hubbard. Aproximating polyhedra with spheres for
time–critical collision detection. ACM Transactions on Graph-
ics, 15(3):179–210, July 1996.

[JTT01] P. Jimenez, F. Thomas, and C. Torras. (3d) collision detection:
A survey. Computers and Graphics, 25(2):269–285, August 2001.

[KOLM03] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh
Manocha. Fast penetration depth estimation using rasterization
hardware and hierarchical refinement. In SCG ’03: Proceedings
of the nineteenth annual symposium on Computational geome-
try, pages 386–387. ACM Press, 2003.

[KTAK94] Y. Kitamura, H. Takemura, N. Ahuja, and F. Kishino. Effi-
cient collision detection among objects in arbitrary motion us-
ing multiple shape representation. In Proceedings 12th IARP
Inter. Conference on Pattern Recognition, pages 390–396, Octo-
ber 1994.

[LG98] M.C. Lin and S. Gottschalk. Collision detection between geo-
metric models: a survey. In Proc. of IMA Conference on Math-
ematics of Surfaces, 1998.

[MM91] Shinya M. and Forgue M. Interference detection through ras-
terization. Journal of Visualization and Computer Animations,
2:131–134, 1991.

[MOK95] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast colli-
sion detection between computer solids using rasterizing graph-
ics hardware. The Visual Computer, 11, 1995.

[OD99] C. O’Sullivan and J. Dingliana. Real–time collision detection
and response using sphere–trees. In 15th Spring Conference on
Computer Graphics, April 1999. ISBN: 80–223–1357–2.

[O’S99] C. O’Sullivan. Perceptually–Adaptive Collision Detection for
Real–time Computer Animation. PhD thesis, University of
Dublin, Trinity College Department of Computer Science, June
1999.

[PG95] I.J. Palmer and R.L. Grimsdale. Collision detection for anima-
tion using sphere-trees. Computer Graphics Forum, 1995.

15



[Qui94] S. Quinlan. Efficient distance computation between non–convex
objects. In Proceedings of the IEEE Int. Conf. on Robotics and
Automation, pages 3324–3329, 1994. San Diego, CA.

[RB79] J.O. Rourke and N. Badler. Decomposition of three–dimensional
objects into spheres. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI–1(3):295–305, July 1979.

[RF05] O. Rodŕıguez and M. Franquesa. Hierarchical structur-
ing of scenes with MKTrees. Technical report, Soft-
ware Dept. LSI. U.P.C., 2005. Ref: LSI–05–4–R. http:

//www.lsi.upc.edu/dept/techreps/techreps.html.

[RMS92] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. In-
teractive inspection of solids: cross-sections and interferences. In
SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 353–360.
ACM Press, 1992.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990. ISBN 0-201-50255-0.

[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth anima-
tion on walking avatars. In Computer Graphics Forum, volume
20(3), pages 260–267, 2001.

16


