
Design of graphical interfaces for biomedical applications

Abstract

The visualization in biomedical applications in-
cludes diverse objects in a wide rank of scale, from
molecules and cells to physiological, biomechani-
cal and biophysical parts of the body, their anatomy
and properties. The design of intuitive graphical in-
terfaces that allow users to fastly select parameters
is a key factor for the usability of visualization ap-
plications. Nevertheless, this task is often relegated
to a secondary plane in software development. This
largely contributes to the fast lapsing of these appli-
cations. In this article, we described the design of
the library BioMedIGU, a tool conceived to make
easier the development of biomedical applications
interfaces and reinforces their reusability. An exam-
ple of its use for the visualization platform HipoVis
it is also shown.

1 Introduction

The technological advances in biomedical 3D ac-
quisition equipment like scanners (CT), magnetic
resonances (MR, fMR, MRA) and nuclear devices
(PET, SPECT) have opened an alternative approach
to traditional biomedical exploration based on dis-
sections and observation of 2D images. From the
images produced by these equipment in parallel
planes, the acquired volume is reconstructed and
then rendered with three main techniques:

• 2D image visualization: the original image
slices or optimal sections and multiplanar cuts
[13]

• Indirect Volume Rendering (IVR): Projection
of surfaces extracted from the volume with the
Marching Cubes algorithm.

• Direct Volume Rendering (DVR): projection
of the whole volume using emission and volu-
metric absorption models, as well as local su-

perficial reflection to emphasize regions of in-
terest [7].

These techniques have extended to the multi-
modal (by opposite to unimodal) visualization that
integrate volumes coming from different acqui-
sition devices [3] and the visualization of time-
varying datasets [10].

The exploration of unimodals, multimodals and
time-varying biomedical models is an iterative pro-
cess where the user experiments with the visualiza-
tion parameters. The correct selection of parame-
ters is fundamental to show semantically significant
information of the data. The difficulty of the pro-
cess takes roots in the specification of these parame-
ters because they are very numerous and diverse. In
general, the greater complexity of the input data, the
more sophisticated the visualization methods and
consequently, the larger the number and diversity
of parameters. Hence, to produce an image, users
must specify the characteristics of the camera, plus
the transfer functions and the attributes of the vi-
sualization algorithms such as activation an early
termination criterion, distance between samples and
number of rays per pixel.

The design of graphical user interfaces that ease
the interactive selection of parameters is key to take
profit of the last improvements of acquisition and
visualization techniques [13]. For that reason, in
the last years, research in graphical interfaces for
scientific visualization in general and biomedical in
particular has intensified [9]. The classical WIMP
(Windows, Icons, Menus and Picking Device) has
evolved incorporating other modalities of interac-
tion, sensorial-based, using sound and tact [6]. In
addition, new exploration widgets have been pro-
posed such as image graphs [9] and spreadsheet
[5] that show the evolution of the iterative process
of visualization, allowing users to compare images
and the parameters with which they have been gen-
erated. Moreover, new techniques for the semi-
automatic computation of transfer functions have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


been proposed, based on interfaces that allow users
to interactively move clipping planes onto 3D visu-
alizations and to sketch the appearance of the final
render onto cross sections [16].

The professional visualization applications like
AVS, and Analyze [15] incorporate these new in-
teraction paradigms since they dedicate an impor-
tant part of their development to the interface design
(more than 40% according to some authors). Nev-
ertheless, in the biomedical research context, it is
often necessary to develop specific visualization ap-
plications with a more experimental focus in order
to test and compare new techniques. In these appli-
cations, the interface design is often relegated to a
secondary plane; less effort than necessary is dedi-
cated to it because it does not constitute a research
target by itself. For that reason, these interfaces are
poor, with a low usability, they quickly become ob-
solete and they are difficult to reuse.

This work is framed in an investigation project
aimed at developing tools for the creation of graph-
ical interfaces for biomedical applications. The re-
quirements of these tools are to be easy to use,
reusable, adaptable to the concrete needs of each
application and easily extensible. In this paper, we
discuss the problems found in the design of these
tools, we describe our solution to these problems
and we show an example of interface designed us-
ing these tools, the interface of the visualization
plataform HipoVis.

2 Background

There are various libraries and toolkits for creating
interfaces. The structure of an application based on
their use is represented in Figure 1. The manage-
ment of the application interaction automaton, that
relates interactions to procedures, is centralized in
the so-called intermediate layer. This layer com-
municates on one hand with the toolkit to make the
interaction tasks, and on the other with the specific
procedures of the application, which are completely
independent of the interface.

The design of the intermediate layer depends on
the features that the toolkits offer. These can be di-
vided in two main groups: the ones bound to the
development platform, like the Microsoft Founda-
tion Classes [1] and those of more general character
like Tcl/Tk [11], Qt [2], Gtk [4] and Java Swing [8].

Figure 1: Structure of an application

Table 1 compares the benefits of these systems
according to the following criteria:

• if they can be developed in different types of
platform (Windows, Linux, UNIX,..)

• an example of an application developed using
it

• support of threads for parallel programming
that allows processes’ interruptibility

• existence of visual programming tools

• ease of use

• restrictions on the programming language of
the application

• cost

• type of license: proprietary or free (BSD,
QPL, GPL and LGPL)

All the libraries provide basic widgets such as file
selectors and advanced ones like 2D visualization
areas (canvas), but none of them offer specific wid-
gets for biomedical applications. Except the MFC,
all are multiplatform and free, except Qt for com-
mercial applications development. Gtk and Tcl/tk
have LGPL and BSD licences, that give freedom to
developers to decide on the type of license of their
programs. As far as the ease of use, it is always dif-
ficult to evaluate. The MFC offers numerous wid-
gets and a predefined style that makes them easier
to use, although they are much less flexible. The
syntax of Tcl/Tk is complex, it generates long and
difficult to debug codes, a disadvantage solved by



MFC Tcl/Tk Qt Java
Swing

Gtk

Multiplatform No Yes Yes Yes Yes
Free of
charge

No Yes Yes for
com-
ercial
use,
No for
non
com-
ercial
use

Yes Yes

Developed
software

Ms
Of-
fice

VTK Kde ArgoUML Gnome

Threads Yes Yes Yes Yes Yes
Visual tools Yes Yes Yes Yes Yes
Difficulty of
use

Low Middle-
High

Middle Middle Middle

Programming
languages

Basic,
C,
C++,
C#

Tcl C++,
Ruby,
Java,
Perl,
C#

Java C,
C++,
C#,
Tcl,
Python,
Perl,
Ruby,
. . .

License
type

Prop. Free
(BSD)

Free
(QPL,
GPL)
and
Propi-
etary

Propietary Free
(LGPL)

Table 1: Comparative of interface creation libraries

the classes of Qt and Gtk. In all cases, the program-
ming of the intermediate layer with any of these li-
braries requires a deep knowledge and an important
time investment.

The objective of the system described in this pa-
per is to overcome this drawback by offering an ad-
ditional layer over the toolkit that provides the ele-
ments of interaction common in all biomedical ap-
plications, avoiding programmer users to enter in
the particularities of the toolkit.

Other toolkits, like VTK, have not been included
in this comparative since their primary aim is not
the graphical user interfaces but the rendering pro-
cedures. VTK, for example, delegates the interface
to Tk and Java classes, for which it offers plug-ins.

3 Design

3.1 Structure

The developed system BioMedIGU consists of an
extension of Gtk that offers the basic functional-

ities to create the interface of a biomedical visu-
alization application. It has been developed on
Gtkmm, a wrapping of Gtk in C++. We have cho-
sen Gtk according to the previous analysis because
it embodies the advantages of portability, freeness,
good structuring, possibility of threads and free-
dom when choosing the development license. In
addition, the object orienting of Gtkmm provides
the advantages of extensibility, easy adaptation and
maintenance. Qt is also object oriented, but it does
not provide classes to represent signals and slots
which constitute important communication mecha-
nisms between widgets.

The structure in three layers described in the pre-
vious section has thus been modified as indicated
in Figure 2. The different modules are represented
with boxes, and the uses between modules with ar-
rows.

Figure 2: Layers of an application based on BioMedIGU

The module BioMedIGU library offers the basic
functionalities to create the interface: widgets of vi-
sualization and selection of parameters as well as
window management and control. It communicates
with the intermediate layer and Gtk. The interme-
diate layer is the one in charge of the communica-
tion of the interface with the logic of the Applica-
tion. It realizes the conversions necessary to make
the calls to the methods of the Application and it
modifies the interface according to the results. It
also accesses directly to Gtk to instantiate advanced
widgets like messages dialogues or file selectors, al-
ready provided by Gtk. The fact that Gtk is not to-
tally wrapped allows advanced users to create their
own widgets directly.

3.2 BioMedIGU classes

The common elements to biomedical applications
have been characterized, in order to design the main
classes that compose the library BioMedIGU, that



are expandable to future necessities. The main iden-
tified elements are windows, that have been typified
in four groups: (i) the menu windows, that usually
constitute the main window of the application, (ii)
the options windows, through which users specify
numerical and alphanumerical parameters of sim-
ulations and visualizations, (iii) the graphical op-
tions windows through which users specify graph-
ical parameters, like curves or color scales for the
transfer functions and, finally, (iv) the visualization
windows in which the graphical models, biomedical
images or volumes are drawn.

Based on this characterization, the BioMedIGU
library defines three types of classes,

• the abstract Window class from which the con-
crete types of window are derived

• the Window Manager class that allows the
management and communication between
windows

• the External Creator class that provides ad-
vanced window creation mechanisms, as de-
scribed in section 3.3.

Figure 3 shows a simplified diagram of the main
classes of the library.

Figure 3: Simplified Class Diagram

The WindowManager is responsible for keeping
the dependencies between windows. The dependen-
cies have a tree structure when they are created by
means of a hierarchical process, but since indepen-
dent windows can also exist, the structure is actually

a forest of trees. When the user of the application or
some event closes a given window, it is the Window-
Manager who is in charge of warning the dependent
windows in order to close them. In addition, the
WindowManager provides a communication mech-
anism for sending messages from a window to its
dependent windows and for receiving answers.

Figure 4: Graphical visualization window

As it can be observed in Figure 3, the library pro-
vides the following window types:

• a window with a menu bar and a tool
bar(MenuWindow, see Figure 4). This window
allows us to insert options in the menus and
the tool bar, simply calling a method of the
class. The options can be associated to states
that represent the contexts in which the win-
dow can be (for example visualization or edi-
tion). These states activate, or deactivate auto-
matically the options according to the context
in which the window is at a given moment. In
Section 4 an example of this functionality can
be seen.

• a window with graphical visualization areas
(WindowGL, see Figure 4). It is a MenuWin-
dow for the visualization of graphical images
by means of GL in the different areas. Some
events of interaction with the user are captured
(movement of the mouse, pressure of a button



of the mouse, etc.). A function or method of a
class can be associated to each of these events.
Different functions for a same event can coex-
ist because each one is associated to a different
state, that, similarly to MenuWindow, defines
the context of the area. The function called
when an event takes place is determined by the
context or state that the area has at that precise
moment.

• a window to introduce or to modify options
(OptionWindow, see Figure 8). Given a list of
options, the window is able to show them and
to let users interact with them. Once the user
has validated or cancelled the window the op-
tions are returned back with modified values,
or with the original values if there has been
a cancellation. Mechanisms are provided to
activate/deactivate options and to modify the
value of an option during the interaction with
the user.

• Sometimes, the amount of parameters that
users must introduce is large, and showing all
of them simultaneously can be confusing, even
separating them in tabs. Moreover, these pa-
rameters must often be introduced following
a specific order and there can be dependen-
cies between them. For these cases a spe-
cial type of option window has been created
(WizardWindow, see Figure 5) that allows pro-
grammers to show groups of options either se-
quentially or sorted according to a criterion
computed during the interaction depending on
users input. This way, it is possible to show
some options or other ones according to the
user’s input.

• a window for visualizing and editing 2D func-
tions such as transfer functions (WindowFunc-
tion2D, see Figure 6). These transfer functions
can be used, for example, to design scales of
colors, to classify the existing materials in a
volume of data and to specify the combination
of visible properties in a multimodal study.
The values of the functions can be real or inte-
ger in any axis. It is the programmer who maps
the values of its own functions to the (Window-
Function2D function values and to map back
the window values to its function values. This

provides flexibility for the programmer to de-
sign any type of 2D function. An example of
this flexibility is discussed in Section 5.
The same window can show different func-
tions and the user can edit them graphically
inserting, deleting and modifying values. The
actions of the user are controlled automatically
allowing him to undo and to remake the mod-
ifications. By means of a signal activated by
a button, the changes made by the user can be
applied with no need to close the window.

Figure 5: WizardWindow

Figure 6: Window for the edition of 2D functions

3.3 Window creation mechanism

Two different methods exist to create windows:



• Reading a configuration file

• Instantiating or deriving a predefined window.

Using the first method, a window of the library
can be created, or even one that inherits from one
of those, by simply indicating in a configuration file
the characteristics of the window. For instance, in
order to create a MenuWindow it is necessary to in-
dicate its menus, the options that each menu has,
what function is called when the option is pressed,
etc. The file is ASCII, with a very simple syntax
XML style.

This method simplifies very much the window
creation because it neither requires a deep knowl-
edge of the library nor programming skills. How-
ever, it offers less reusability and security than the
second method. The possibility of use the inheri-
tance mechanism to create a window from another
is not supported by this method. On the other hand,
since all the information on the interface is in a text
file, if a user modifies the file, it can invalidate the
interface.

The second method offers more versatility to the
programmer. By means of this method, it is possi-
ble to inherit from a class provided by the library
and to apply the modifications needed by the appli-
cation. This class is available for its reuse in other
applications, and, since all the interface description
is contained in the code, users cannot modify the
interface.

The first method, based on configuration files, is
convenient for inexpert users and to make proto-
types of applications, whereas the instantiating and
inheritance mechanism is more convenient for ex-
pert users who want flexibility and in order to ex-
tend and to adapt the library to specific require-
ments.

4 Implementation and results

A couple of examples will illustrate the facility with
which an interface can be created with BioMedGUI.

We first show how to create an options window
by means of the two available methods. In order to
create it from a configuration file, the characteris-
tics of the window must be provided in a suitable
format. In this case, the minimum necessary infor-
mation is the title of the window, the number of op-
tions that it has, and, for each option, the name, the

group, the text that will be in the label of the option
and the type of option.

With this information in a file, to instantiate the
window it is necessary to create an object of the
class ConstructorGUI, indicating the location of the
file, and next, to create the window calling a method
of this object with the name of the window as a pa-
rameter.

ConstructorGUI cons("bd.cfg");
SmartPtr<OptionWindow> refVen =

cons.createOptionWindow("winName");

In order to create this same window by means
of the second method described in Section 3.3, we
must do a list with all the desired options and instan-
tiate the window giving to it this list as a parameter.

InputOptionList lops;
lops.addOption(InputString ("Object",

"object","cylinder1"),"Main View");
lops.addOption(InputNInteger("Color",

"color",3,0.75),"Main View");
lops.addOption(InputBool("Centered",

"centered",true),"Main View");
FramedOptionWindow ven(lops,"Options");

Figure 7 shows the length of the code that must
be written to create a simple option window by
means of these two method, and the code required
to create a simplified version of that same window
using directly Gtk. The length of the code is not
only much shorter using BioMedIGU, it is also sim-
pler. Figure 8 shows the resulting window, created
with the three codes.

The second example shows how to add options
to one MenuWindow and how these options are ac-
tivated/deactivated automatically based on the con-
text in which the window is.

Different methods exist for adding menus and op-
tions to a window. They can be classified into two
groups, (i) those that use the objects as parameters
(Menus or Options) and (ii) those that receive the
information needed to create these objects. All the
elements (options, menus and submenus) can have
associated states. To indicate the states in which
the elements are active, the first method (parameter
based) must be used. In this example, we used the
first method for the options and the second for the
menus, since no state is added to the menus.



Figure 7: Comparison of sizes of the different codes

First, it is necessary to define the possible con-
texts of the window by means of an enumeration.

enum VISUALIZATION3D, VISUALIZATION2D;

Once the window is instantiated, the changeState
method is called to establish the initial context.

MenuWindow ven;
//Initial context
ven.changeState(VISUALIZATION2D);

In order to add the menus, the method addMenu
of menuWindow is used. Only the text of the menu
must be provided.

ven.addMenu("Visualization 3D");
ven.addMenu("Visualization 2D");

Next, the options are created with the suitable pa-
rameters, the states in which the options will be ac-
tive are added with the addState method. Finally,
the options are added to the window’s menu call-
ing the method addOption and indicating the option
and the menu to which this has to be added.

Option op("Option1",
sigc::ptr_fun(onOption1),
"icon1.png",true,"<ctrl>p");

Figure 8: Option Window

op.addState(VISUALIZATION3D);
ven.addOption("Visualization 3D",op);

Option op2("Option2",
sigc::ptr_fun(onOption2),
"icon2.png",true,"<ctrl>s");

op2.addState(VISUALIZATION2D);
ven.addOpyion("Visualization 2D",op2);

We already have the window created and ready to
display. In order to change the window context, it is
simply necessary to call the changeState method of
MenuWindow. Automatically, the options will acti-
vate and deactivate according their list of associated
contexts.

ven.changeState(VISUALIZATION3D);

In Figure 9 two images of a menu in different
contexts are shown.

5 Use of BioMedIGU in the visualization
platform HipoVis

Our research group has been developing for ten
years [?] a data visualization platform that consti-
tutes a test bed to implement and to compare rep-
resentation models and visualization algorithms. It
incorporates surface, volume and hybrid models,
such as the voxel model extended to multimodal
data [12] and the model of extreme vertices [14]. At



Figure 9: A menu in different contexts

the moment, it is being adapted to support the tem-
porary dimension. The rhythm of research at the
university, that requires results in very short terms,
as well as the lack of human resources had led us
to develop a minimum interface with Tcl/Tk that al-
lowed us to visualize in a graphical window using
OpenGL but that did not offer any mechanism of
interaction. The multiple parameters of the visual-
ization were specified by means of files in a notation
similar to XML. This operative was very little effec-
tive and, actually, it limited the use of the platform
to its own developers. For that reason, we decided
to design a new interface using BioMedIGU. Figure
10 shows an example of this interface.

Figure 10: Screenshot of the application HipoVis

The structure of the application follows the three
layers model described in Figure ??. The automa-
ton of the application is implemented in the in-
termediate layer that receives the interface events,
manages the state of the application, processes
the data and provides the communications between

windows. In order to make these tasks, the inter-
mediate layer is based mainly on two own classes:
the descriptor window class (infovis) and the scene
manager (catalogue). The descriptor of graphical
windows infovis maintains information of the enti-
ties that take part in the process of visualization in a
window (models, cameras, lights and materials), as
well as selection lists and visualization preferences.
It also keeps the last rendered image, which allows
us to redraw very fast, simulating the mechanism of
backingstore.

One of the greatest advantages of WindowGL is
that the mouse events can be associated to differ-
ent procedures depending on the state of the ap-
plication. Thus, for example, the movement of the
mouse with the left button pressed is interpreted as a
camera movement or a geometric transformation of
the selected objects depending on the current con-
text.

Different graphical windows can share informa-
tion, for example, different views of an object. In
order to avoid destroying a window entity being
used by another window, and to facilitate the man-
agement of the life cycle of the entities, control is
centralized in the catalogue class. The catalogue
is based on the design pattern <abstract factory>,
but, by opposite to the factory, it does not create the
entities, these are created first and then registered
in the catalogue, who is in charge of maintaining
and destroying them when they are no longer nec-
essary. The catalogue also maintains the relations
<referenced-by> and <reference-to> between enti-
ties and it offers various methods to make queries
on the entities or to access to them. All the windows
have access to this catalogue and access to the enti-
ties through it. When a window uses an entity, it sets
a reference in the catalogue that prevents the entity
from being destroyed. The unreferenced orphaned
entities are destroyed and, recursively, the entities
only referenced by these ones, freeing memory.

On the other hand, the intermediate layer, us-
ing BioMedIGU, constructs the windows, adds the
menus and connects each event with the function
that must treat it, using the mechanism of signals
and slots. All the classes of BioMedIGU are used,
specially the class MenuWindow for the manage-
ment of the parameters and the class WindowGL
for the visualization. For the visualization of voxel
models, different types of transfer functions are



used: the selection function, that allows users to
select the ranks of visible property, the function of
volumetric illumination, that allows users to assign
an emission and opacity to the different values from
voxels and the function of surface illumination that
allows users to assign coefficients of reflection and
color to the isosurfaces depending on voxel values.

For the edition of these functions, the class Win-
dowFunction2D of BioMedIGU is used. This one is
a clear example of how the use of the user interface
library simplifies the development of the applica-
tion. The programmer must only worry to update
the automaton, to generate and to recover the trans-
fer functions and to construct the edition window.
The pseudo code for the generation of the 2D func-
tions is shown: it consists simply of mapping the
information of the axes of the transfer function onto
values that the WindowFunction2D widget can pro-
cess. The recovery of the values once modified is
done similarly. The visualization of the widget and
its edition are totally automated by the library, the
intermediate layer only has to provide and recover
the data.

EditFuncTransWindow::CreateFunction(...)
{

SmartPtr<Function2D> func =
Function2D::create(name,tipX,

tipX,name);
func->setRangeY(minY,maxY);
func->setRangeX(minX,maxX);
FillFunction(func);
addFunction2D(func);

}
EditFuncTransWindow::FillFunction

(SmartPtr<Function2D> func)
{

for i = 0 to i = N-1 do
valX =

GetValueAxeFuncTrans(axeX,i)
valY =

GetValueAxeFuncTrans(axeY,i)
ValorXY v =

CalcCoordinate2D(valX,valY)
func->addValueXY(v);
endfor

}

The platform HipoVis is not in any case restricted
by the classes provided by BioMedIGU, and it has
different mechanisms to obtain specific functionali-

ties:

• It can access directly to the underlying Gtkmm
toolkit, in order to invoke a file selector or to
modify the size or aspect of a widgets, for in-
stance.

• It can extend BioMedIGU library classes with
specialized classes adapted to specific needs.
As an example, EditFuncTransWindow de-
rives from WindowFunction2D provided by
the library, and also new types of input options
have been created.

6 Conclusions

The design of the library BioMedIGU, described in
this paper, is framed in a project whose objective
is to facilitate the development of graphical inter-
faces in biomedical applications. BioMedIGU has
already been applied to the development of the in-
terfaces of diverse applications. In this paper, we
have described, as an example, the development of
the interface of the visualization platform HipoVis,
that has allowed us to validate the scope and the ef-
fectiveness of the features of BioMedIGU. The re-
sult is very satisfactory. The time of development of
the interface has been relatively short and the plat-
form has improved a lot in usability.

The investigation that starts from this project is
centered in the study of advanced methods of inter-
action and data selection allowing users to manip-
ulate large volumes of multimodal and multisenso-
rial information. We wish to extend the features of
BioMedIGU to support this type of interactive ma-
nipulation.

References

[1] K. Bugg. Building Better Interfaces With Mi-
crosoft Foundation Classes. John Wiley &
Sons, 1999.

[2] M. Dalheimer. Programming with Qt, 2nd
Edition. O’Reilly & Associates Co„ Inc.,
2002.

[3] M. Ferré, A. Puig, and D. Tost. Rendering
techniques for multimodal data. Proc. SIACG
2002 1st Ibero-American Symposium on Com-
puter Graphics, pages 305–313, 2002.



[4] T. Gale. GTK+ 2.0 Tutorial.
http://www.gtk.org, 2004.

[5] T. J. Jankun-Kelly and K.L. Ma. A spread-
sheet interface for visualization exploration.
In Proceedings of the 11th IEEE Visualization
2000 Conference (VIS 2000). IEEE Computer
Society, 2000.

[6] E. Jovanov, K. Wegner, V. Radivojevic,
D. Starcevic, MS. Quinn, and DB. Kar-
ron. Tactical audio and acoustic rendering in
biomedical applications. IEEE Transactions
of Information technology in Biomedicine,
3(2):109–118, 1999.

[7] M. Levoy. Display of surfaces from volume
data. IEEE Computer Graphics & Applica-
tions, 8:29–37, May 1988.

[8] M. Loy, R. Eckstein, D. Wood, J. Elliott, and
B. Cole. Java Swing, 2nd Edition. O. Reilly
& Associates Co„ Inc, 2002.

[9] K.L. Ma. Image graphs: a novel approach to
visual data exploration. In Visualization ’99,
pages 81–88. IEEE, IEEE CS Press, 1999.

[10] N. Neophytou and K. Mueller. Space-time
points: 4D splatting on efficient grids. In
Proceedings of the 2002 IEEE symposium on
Volume visualization and graphics, pages 97–
106. IEEE Press, 2002.

[11] J.K. Ousterhout. Tcl and the Tk toolkit.
Addison-Wesley Longman Publishing Co.,
Inc., 1994.

[12] A. Puig, D. Tost, and M. Ferré. Design of a
multimodal rendering system. Proc. 7th In-
ternational Fall Workshop Vision, Modeling
and Visualization 2002, Greiner G,. Niemann,
H., Ertl, T., Girod, B. and Seidel, HP. Editors,
pages 488–496, 2002.

[13] R.A. Robb. Three-Dimensional Visualization
in Medicine and Biology, chapter 42, pages
685–712. Academic Press, 2000.

[14] Rodriguez, D. Ayala, and A. Aguilera. Com-
plete solid model for surface rendering. Ge-
ometric Modeling for Scientific Visualiza-
tion,Springer Verlag, pages 259–274, 2004.

[15] W. Schroeder, K. Martin, and B. Lorensen.
The Visualization Toolkit: An Object-Oriented
Approach to 3-D Graphics (2nd Edition).
Prentice Hall, 1998.

[16] F.Y. Tzeng, E. Lum, and K.L. Ma. A novel
interface for higher dimensional classification
of volume data. In Visualization 2003, pages
16–23. IEEE Computer Society, 2003.


