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Abstract

One of the basic operations in communication networks consists in establishing routes
for connection requests between physically separated network nodes. In many situations,
either due to technical constraints or to quality-of-service and survivability requirements, it is
required that no two routes interfere with each other. These requirements apply in particular
to routing and admission control in large-scale, high-speed and optical networks. The same
requirements also arise in a multitude of other applications such as real-time communications,
vlsi design, scheduling, bin packing, and load balancing. This problem can be modeled as
a combinatorial optimization problem as follows. Given a graph G representing a network
topology, and a collection T = {(s1, t1) . . . (sk, tk)} of pairs of vertices in G representing
connection request, the maximum edge-disjoint paths problem is an NP-hard problem that
consists in determining the maximum number of pairs in T that can be routed in G by
mutually edge-disjoint si − ti paths.

We propose an ant colony optimization (aco) algorithm to solve this problem. aco algo-
rithms are approximate algorithms that are inspired by the foraging behavior of real ants. The
decentralized nature of these algorithms makes them suitable for the application to problems
arising in large-scale environments. First, we propose a basic version of our algorithm in order
to outline its main features. In a subsequent step we propose several extensions of the basic
algorithm and we conduct an extensive parameter tuning in order to show the usefulness of
those extensions. In comparison to a multi-start greedy approach, our algorithm generates
in general solutions of higher quality in a shorter amount of time. In particular the run-time
behaviour of our algorithm is one of its important advantages.
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1 Introduction

One of the basic operations in communication networks consists in establishing routes for connec-

tion requests between physically separated network endpoints that wish to establish a connection
for information exchange. Many connection requests occur simultaneously in a network, and it
is desirable to establish routes for as many requests as possible. In many situations, either due
to technical constraints or just to improve the communication, it is required that no two routes
interfere with each other, which implies not to share network resources such as links or switches.
This scenario can be modeled as follows. Let G = (V, E) be an edge-weighted undirected graph
representing a network in which the nodes represent the hosts and switches, and the edges rep-
resent the links. The weight w(e) ∈ R+ of an edge e ∈ E corresponds to the distance between
its endpoints. Let T = {(sj , tj) | j = 1, . . . , |T |; sj 6= tj ∈ V } be a list of commodities, i.e., pairs
of nodes in G, representing endpoints demanding to be connected by a path in G. T is said to
be realizable in G if there exist mutually edge-disjoint (respectively vertex-disjoint) paths from sj

to tj in G, for every j = 1, . . . , |T |. Deciding whether a given set of pairs is realizable in a given
graph is one of Karp’s original NP-complete problems [25] (other references on the computational
complexity of the problem are [34, 43]). The problem remains NP-complete for various graph
types such as, for example, two-dimensional meshes.

The combinatorial optimization version of this problem consists in satisfying as many of the
requests as possible, which is equivalent to finding a realizable subset of T of maximum cardinality.
An EDP solution S to the combinatorial optimization problem is a set of disjoint paths, in which
each path satisfies the connection request for a different commodity. The objective function value
f(S) of a solution S is defined as

f(S) = |S| . (1)

In general, the “disjointness” of paths may refer to nodes or to edges. We decided to consider
the latter case, because it seems of higher importance in practical applications. We henceforth
refer to our problem as the maximum edge-disjoint paths (EDP) problem. In the extreme case
in which the list of commodities is composed by repetitions of the same pair (s, t), the problem
is known as edge-disjoint Menger problem. The EDP problem is a simpler version of the more
general unsplittable flow problem, in which demands, profits, and capacities are considered to be
one.

The EDP problem is interesting for different research fields such as combinatorial optimization,
algorithmic graph theory and operations research. It has a multitude of applications in areas such
as real-time communications, vlsi-design, scheduling, bin packing, load balancing, and it has re-
cently been brought into focus in works discussing applications to routing and admission control
in modern networks, namely large-scale, high-speed and optical networks [5, 37, 1, 3]. Concerning
real-time communications, the EDP problem is very much related to survivability and information
dissemination. Concerning survivability, having several disjoint paths available may avoid the
negative effects of possible failures occurring in the base network. Furthermore, to communicate
via multiple disjoint paths can increase the effective bandwidth between pairs of nodes, reduce
congestion in the network and increase the velocity and the probability of receiving the informa-
tion [24, 39]. This becomes especially important nowadays due to the type of information that
circulates over networks (e.g., media files), which requires fast, qualified and reliable connections.

To the best of our knowledge, there is a lack of efficient algorithms for tackling the EDP problem.
Except for greedy approaches (which we will mention in Section 3), our preliminary ant colony
optimization (ACO) approach presented in [8] is the only existing method1. aco [16, 18] is a recent
metaheuristic for solving hard combinatorial optimization problems. Except for the application
to combinatorial optimization problems (see [19] for an extensive overview) the method has also
gained recognition for the applications to adaptive routing in static and dynamic communication

1In [36], a multi-colony ACO approach for the EDP problem was presented. However, the aim of this paper was
not to solve the EDP problem but rather to explore the feasibility of multi-colony systems. Therefore, only toy
examples of graphs of up to 20 nodes with 2 or 3 commodities were considered.
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networks [14, 15]. aco algorithms are composed by independently operating computational units
that generate a global perspective without the necessity of direct interaction. They provide several
advantageous features—such as, for example, the usage of only local information—that are useful
when applications in large-scale environments are concerned in which the computation of global
information is often too costly.

Organization. The paper is organized as follows. In Section 2 we deal with the complexity of
the EDP problem, including an overview on approximability results. Existing results show that the
EDP problem is not only NP-complete, but it is also hard to obtain good approximation schemes
for it. In Section 3, we outline a (multi-start) greedy approach for the purpose of benchmarking
our aco algorithm. Section 4 is devoted to the detailed introduction of our aco approach. The
algorithm is developed incrementally; starting from a basic aco approach, we introduce features
that, as we show in the experimental part, help greatly on solving the EDP problem. The experi-
mental evaluation of our approach is presented in Section 5. Besides the creation of a benchmark
set of instances, we conducted an extensive tuning of the considerable number of algorithm param-
eters. The details on the parameter tuning process are reported on in Appendix A. In Section 6,
we conclude and point out possible lines for future research.

2 Understanding the complexity of the problem

The decisional version of the EDP problem was early known to be NP-complete [25] in arbitrary
graphs. The problem remains NP-complete for specific types of graphs such as planar graphs [34,
43], series-parallel graphs (a.k.a. partial 2-trees) [35], and grid graphs [30, 32]. A more detailed
classification of the complexity of the optimization version of the problem can be obtained with
the help of approximation algorithms. Approximation algorithms tackle optimization problems in
polynomial time (w.r.t. the length of the input) and output a solution that is guaranteed to be
at some bounded quality difference to the optimal solution. “Close” has some well-defined sense
called the approximation ratio (or performance guarantee).

Definition 1 (ρ-approximation algorithm for a problem P ) Given an approximation ratio

ρ > 1 and any problem instance x of P , a ρ-approximation algorithm for an optimization problem

P outputs, in polynomial time, a solution to x of cost at most ρ times the optimum.

NP-hard problems vary greatly in their approximability; some can be approximated to arbi-
trary factors while some can essentially not be approximated at all. The problems which are
approximable within a ρ > 1 belong to the complexity class APX. The class PTAS is a particular
subclass of APX 2 which includes problems that admit a polynomial-time approximation scheme.

Definition 2 (Polynomial-time approximation scheme –PTAS– for a problem P ) Given

any fixed 1 > ε > 0, a polynomial-time approximation scheme for an optimization problem P is a

(1 + ε)-approximation algorithm for P .

These algorithms are desirable because one can get arbitrarily close to an optimal solution.
A problem is said to be APX-hard (w.r.t. the PTAS-reducibility) if there exists some constant
ε > 0 such that it is NP-hard to obtain a (1 + ε)-approximation algorithm, i.e., it is NP-hard to
obtain a PTAS. This means that those problems are even hard to approximate, since no PTAS can
be obtained efficiently unless P = NP [2]. For several types of graphs, the EDP problem belongs
to the class of APX-hard problems [22, 31, 20, 23]. This fact explains the notorious hardness
of the EDP problem in terms of approximation, despite the attention and effort that researchers
have put on it. Interestingly, for the specific case of complete graphs, we are not aware of any
inapproximability results. In particular, it is not even known whether the problem in complete
graphs is APX-hard.

2Unless P = NP, the approximability class PTAS is strictly contained in the class APX.
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Algorithm 1 Simple greedy algorithm (sga) for the EDP problem

input: a problem instance (G, T ), consisting of a graph G and a commodity list T

S ← ∅, Ê ← E

for j = 1, . . . , |T | do
if sj and tj can be connected by a path in G = (V, Ê) then

Pj ← shortest path from sj to tj in G = (V, Ê)

S ← S ∪ Pj , Ê ← Ê \ {e | e ∈ Pj}
end if

end for
output: the solution S

The approximability of the EDP problem has been tackled by greedy algorithms, LP relax-
ations, and rounding. In directed arbitrary graphs, the approximability was seemingly settled
for some time by the Ω(|E|1/2−ε)-hardness results in [23] and the O(

√

|E|) approximation results
in [26, 40, 7, 29, 27]. Those approximation bounds were recently applied in [12] to arbitrary dense
graphs and improved down to sub-linear. The recent work in [42] trims slightly these bounds via
LP rounding and a deeper analysis of a greedy algorithm. However, better approximation ratios
have been achieved for some specific types of graphs, such as (sub-)classes of planar graphs (e.g.,
grid graphs, trees, rings, densely-embedded, plane switch, etc.), complete graphs, random graphs,
and expander graphs. Also better performance guarantees are obtained for commodity-restricted
versions of the problem, for example for the edge-disjoint Menger problem [45, 38, 11]. We ad-
dress the reader to [27, 13] for recent summaries of the successive achievements concerning the
approximation ratios.

3 The simple greedy algorithm and its multi-start version

A greedy heuristic is a constructive algorithm that builds a solution step-by-step starting from an
empty solution. At each construction step, an element from a finite set of solution components is
added to the current partial solution. The element to be added is chosen at each step according
to some greedy function, which lends the name to the algorithm. Advantages of greedy heuristics
are that they are usually easy to implement and that they are fast in execution. The disadvantage
is that the quality of the solutions provided by greedy algorithms can be quite far from optimal.
Due to the fact that the EDP problem usually has to be solved in rather large graphs, research
has focused on the development of greedy algorithms. Many of the approximation ratios cited
in Section 2 have been calculated when analyzing greedy algorithms. Examples are the simple

greedy algorithm (sga) [26] (see Section 3), its constrained variant the bounded-length greedy

algorithm [26, 28], and the greedy path algorithm [27, 12]. Due to its lower time complexity when
compared to the other greedy approaches we decided to implement the simple greedy algorithm
(henceforth denoted by sga) and a multi-start version, which we both outline in the following.

The sga algorithm (see Algorithm 1) is a natural way of approximating the EDP problem that
works as follows. It starts with an empty solution S. Then, it proceeds through the commodities
in the order that is given as input. For routing each commodity Tj ∈ T , it considers the graph G

without the edges that are already in the paths of the solution S under construction. The shortest
path between sj and tj (with respect to the edge-weights) is assigned as path for the commodity
Tj = (sj , tj). Note that the algorithm is deterministic and that the quality of the solutions it
provides depends heavily on the order in which the commodities are treated.

In addition to its simplicity, the sga algorithm can be naturally considered an on-line algorithm
and then, the lower bounds of [4] would imply that it does not achieve a good performance ratio
on graphs such as trees and two-dimensional meshes. However, it works well for some other types
of graphs.

A simple way of obtaining a multi-start version of the sga is to permute—for each restart—the
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Algorithm 2 Multi-start simple greedy algorithm (msga) for the EDP problem

input: a problem instance (G, T, Nperm), where Nperm is the number of restarts
Sbest ← ∅
T1 ← T

for i = 1 to Nperm do
Si ← Simple Greedy Algorithm SGA(G,Ti) {See Algorithm 1}
if f(Si) > f(Sbest) then

Sbest ← Si

end if
if i < Nperm then

π ← random permutation of |T |
Ti+1 ← (π(1), π(2), . . . , π(|T | − 1), π(|T |))

end if
end for
output: Sbest

order of the commodities. This approach is pseudo-coded in Algorithm 2, in which Nperm denotes
the number of restarts, Si denotes the solution under construction in the embedded sga, and Sbest

denotes the best solution found so far. In the following, we refer to this algorithm as multi-start

greedy algorithm (msga).

4 An ant colony optimization approach

Ant colony optimization (aco) [19] is inspired by the foraging behavior of real ants. This behavior
enables an ant colony to find shortest paths between food sources and their nest. While walking
from food sources to the nest and vice versa, ants deposit a chemical substance called pheromone on
the ground. When they decide about a direction to go, they choose probabilistically paths marked
by strong pheromone concentrations. This behavior is the basis for a cooperative interaction which
leads to the emergence of shortest paths.

In aco algorithms, artificial ants incrementally construct a solution by adding appropriately
defined solution components to the current partial solution. Each of the construction steps is a
probabilistic decision based on local information, which is represented by the pheromone infor-
mation. The exclusive use of local information is certainly a desirable property for algorithms
that are aimed for the application to problems for which the computation of global information
is costly. This property makes aco algorithms a natural choice for the application to the EDP
problem.

4.1 The basic ACO algorithm

In the following we outline our aco approach, which is based on a decomposition of the EDP
problem. Each problem instance P = (G, T ) of the EDP problem can be naturally decomposed
into |T | subproblems Pj = (G, Tj), with j ∈ {1, . . . , |T |}, by regarding the task of finding a path
for a commodity Tj ∈ T as a problem itself. With respect to this problem decomposition, we
use a number of |T | ants each of which is assigned to exactly one of the subproblems. Therefore,
the construction of a solution consists of each ant building a path Pj between the two endpoints
of her commodity Tj . Obviously, the subproblems are not independent as the set of |T | paths
constructed by the ants should be mutually edge-disjoint.

4.1.1 Ant solutions

A solution S constructed by the |T | ants is a set of not necessarily edge-disjoint paths that contains
a path for each commodity. We henceforth refer to them as ant solutions. From each ant solution

6



a valid EDP solution can be produced by iteratively removing the path which has most edges in
common with other paths, until all remaining paths are mutually edge-disjoint.

The objective function f(·) of the problem (see Equation 1) is characterized by having many
plateaus when it is applied to ant solutions. This is because many ant solutions will have the same
number of disjoint paths. Thus, a consequence of decomposing the EDP problem is the need to
define a more fine-grained objective function fa(·) for ant solutions. Therefore, referring to f(S)
as a first criterion, we introduce a second criterion C(S), which is defined as follows:

C(S) =
�
e∈E

��
max �� �

0,

�� �
Pj∈S

δ
j(S, e) �� − 1 � 	
 �� , where δ

j(S, e) = � 1 : e ∈ Pj ∈ S

0 : otherwise.

This second criterion quantifies the degree of non-disjointness of an ant solution. If all the
paths in a solution S are edge-disjoint, C(S) is zero. In general, C(S) increases when increasing
the usage of common edges in S. Therefore, based on the idea that “the fewer edges are shared in
a solution, the closer the solution is to disjointness”, a function f a(·) that differentiates between
ant solutions can be defined as follows. For two ant solutions S and S ′, it holds that

fa(S) > fa(S′)⇔ (f(S) > f(S′))
︸ ︷︷ ︸

1st criterion

or ((f(S) = f(S′) and (C(S) < C(S′))
︸ ︷︷ ︸

2nd criterion

. (2)

4.1.2 Pheromone models

The problem decomposition as described above implies that we use a pheromone model τ j for
each subproblem Pj . Each pheromone model τ j consists of a pheromone value τ j

e for each edge
e ∈ E. The set of |T | pheromone models is henceforth denoted by τ = {τ 1, . . . , τ |T |}. Our aco
algorithm is implemented in the hyper-cube framework (HCF) [9], which is a way of implementing
aco algorithms such that the pheromone values are bounded between 0 and 1. Furthermore, we
borrow an idea from so-calledMAX -MIN Ant Systems (MMASs) [41] and introduce pheromone
value limits τmin = 0.001 and τmax = 0.999 in order to prevent that the algorithm converges to a
solution.

4.1.3 Algorithm framework and components

Algorithm 3 is a high level description of our aco algorithm. Two different ant solutions are kept
in the algorithm: Sibest is the iteration-best solution, i.e., the best ant solution generated in the
current iteration, and Sgbest is the best-so-far solution, i.e., the best ant solution found since the
start of the algorithm.

In the following, we give a high-level description of the algorithm. The main procedures used
by the algorithm are explained in detail in the following of the section. First, all the variables
are initialized. In particular, the pheromone values are set to their initial value τmin by the
procedure InitializePheromoneValues(τ). Second, Nsols ant solutions are constructed per iteration.
To construct a solution, each ant applies the function ConstructFullPath(sπ(j), tπ(j)), where π is
a permutation of T . At each iteration, the first of those Nsols ant solutions is constructed by
sending the ants in the order in which the commodities are given in T . For each further ant
solution construction in the same iteration, the order π in which the ants construct a path for
their commodity is randomly generated by the function GenerateRandomPermutation(|T |). Third,
the value of the variables Sibest and Sgbest is updated. Finally, the pheromone values are updated
depending on the edges included in Sgbest. The algorithm is iterated until some opportunely
defined termination conditions are satisfied, and it returns the EDP solution generated from the
ant solution Sgbest.

The main procedures of our algorithm are outlined more in detail in the following.

· InitializePheromoneValues(τ) initializes all the pheromone values τ j
e ∈ τ j ∈ τ to the value τmin.

(see Section 4.1.2.)
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Algorithm 3 Basic ACO algorithm for the EDP problem

input: a problem instance (G, T )
Sgbest ← ∅
InitializePheromoneValues(τ)
while termination conditions not met do

π ← (1, 2, . . . , |T | − 1, |T |)
for i = 1 to Nsols do

Si ← ∅
for j = 1 to |T | do

Pπ(j) ← ConstructFullPath(sπ(j), tπ(j))
Si ← Si ∪ {Pπ(j)}

end for
if i < Nsols then π ← GenerateRandomPermutation(|T |)

end for
Choose Sibest ∈ {Si | i = 1, . . . , Nsols} s.t. fa(Sibest) ≥ fa(S), ∀S ∈ {Si | i = 1, . . . , Nsols}
if f(Sibest) > f(Sgbest) then Sgbest ← Sibest

UpdatePheromoneValues(τ ,Spbest)
end while
output: the EDP solution generated from the best solution Sgbest

· ConstructFullPath(sπ(j), tπ(j)). For constructing a path between the endpoints of the commodity
(sπ(j), tπ(j)), an ant first chooses randomly to start either from the source sπ(j) or the target
tπ(j). Then, the ant iteratively moves from node to node using available edges that are
not already in the path Pπ(j) under construction, and that are not labelled forbidden by a
backtracking move. Backtracking is done in case the ant finds itself in a node in which all
the incident edges have been used, or if all the incident edges are labelled forbidden. Note,
that with this strategy the ant will find a path between source and target, if there exists
one. Otherwise, the ant returns an empty path and the iterative process is also stopped. In
the following the current node is denoted by vc, the goal node is denoted by vg , and the set
of allowed edges in G (i.e., those incident to vc which were not used yet in the path and not
labelled as forbidden) is denoted by I?

vc
.

At each construction step, the choice of where to move to has a certain probability to be
done deterministically. This is a feature we adopt from a particularly effective aco variant
called Ant Colony System (acs) which was proposed by Dorigo and Gambardella in [17].
We draw a random number drate between 0 and 1. If drate ≤ 0.75 (where 0.75 was chosen
by parameter tuning as outlined in Section 4 and Appendix A), the next edge to join path
Pπ(j) under construction is chosen deterministically:

e∗ = {vc, u} ← argmax {τ j
e · p(De)

β · p(Ue)
γ | e ∈ I?

vc
} , (3)

where p(De) is a value that determines the influence of the distance from vc via u to the
goal vertex vg , and p(Ue) is a value that determines the influence of the overall usage of
edge e, which is the information whether e is already used in the path of another ant for the
same solution. The parameters β > 0 and γ > 0 weight the influence of these two terms.
The length of the shortest path between two vertices u and v in G is henceforth denoted by
σ(u, v). The terms p(De) and p(Ue) are defined as follows:

p(De={vc,u})←
(σ(u,vg)+w(e))−1

�

e′={vc,u′}∈I?
vc

(σ(u′ ,vg)+w(e′))−1

p(Ue)←
U(e)−1

�

e′∈I?
vc

U(e′)−1 , in which U(e) =

{
2 : e already used in Si

1 : otherwise
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If drate > 0.75, the next edge e∗ is chosen according to the following transition probabilities:

p(e | I?
vc

) =
τj

e · p(De)
β · p(Ue)

γ

�

e′∈I?
vc

τj

e′
· p(De′)β · p(Ue′)γ , ∀ e ∈ I?

vc
(4)

If the probability of doing a deterministic construction step is too high, there is the danger
that the algorithm gets stuck in low quality regions of the search space. On the other
side, doing deterministic construction steps bears the potential of leading the algorithm
quite quickly to good areas of the search space. In our experiments (see Section 4 and
Appendix A) we found 0.75 to be a good trade-off. Concerning the composition of the
transition probabilities, the use of the pheromone information τ j

e ensures the flexibility of
the algorithm, whereas the use of p(De)

β ensures a bias towards short paths, and p(Ue)
γ

ensures a bias towards disjointness of the |T | paths constituting a solution.

After every ant has constructed its path and the solution S is completed, we apply another
feature of acs, namely the evaporation of some amount of pheromone from the edges that
were used by the ants. Given a solution S, the evaporation is done as follows:

τ j
e ←

{
(1− erate) · τ j

e : e ∈ Pπ(j) ∈ S, j = 1, . . . , |T |
τ j
e : otherwise .

(5)

The reason for this pheromone evaporation is the desire to diversify the search in each
iteration. After parameter tuning we chose a setting of erate = 0.10.

· UpdatePheromoneValues(τ ,Supdate). As it is usual in acs algorithms, in our basic aco algorithm
only the ant solution Sgbest is used for updating the pheromone values for all j ∈ {1, . . . , |T |}
as follows:

τ j
e ← max

{
τ j
e + ρ ·

(
1− τ j

e

)
, τmax

}
∀ e ∈ Pj , (6)

where ρ ∈ (0, 1] is a constant value which is called learning rate in algorithms that are
implemented in the hyper-cube framework. For all our experiments we have set ρ to 0.1.

4.2 Motivation for additional algorithmic features

The direct application of a basic aco scheme to a problem achieves sometimes quite good results.
However, the algorithms’ performance can often be improved by applying some additional features
to the search process, especially when a rather unusual problem such as the EDP is tackled. In this
section, we describe how the basic aco approach introduced in Section 4.1 may be enriched with
different strategies that modify the way the algorithm explores the solution space. In the following
we propose four additional features, explaining why these features might lead to an improvement,
before we outline the implementation of these features more in detail in the subsequent section.

Sequential versus parallel solution construction. For constructing a solution, method
ConstructFullPath(sπ(j), tπ(j)) as applied in the basic aco algorithm (see Algorithm 3) considers
one commodity after the other, and constructs for each commodity a path between its endpoints
before the next commodity is considered. In the following we refer to this way of constructing
solutions as the sequential way. As an alternative we propose to construct paths for all the com-
modities in parallel. Hereby, at each constructing step each ant changes its partial path by either
adding exactly one edge, or by doing a backtracking move. Note that there is a considerable differ-
ence in the influence of the edge-usage information between sequential and parallel construction.
This changes the dynamics of the search process and might lead to different results.
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The use of a candidate list strategy. A candidate list strategy is a mechanism to restrict the
number of available choices to be considered at each construction step. Usually this restriction
applies to a number of the best choices with respect to their transition probabilities (see Equa-
tion 4). For example, in the case of the application of acs to the travelling salesman problem the
restriction to the closest cities at each construction step improved the final solution quality as well
as it led to a significant speedup of the algorithm (see [21]). The reasons for that are as follows:
First, in aco algorithms each choice has a positive probability to to selected. However, in order
to construct high quality solutions it is often enough to consider only the “good” choices at each
construction step, and, therefore, to consider choices with a low probability is often a waste of
time. Second, to consider less choices at each step speeds up the solution construction.

Different search phases characterized by the pheromone update. In general, the phero-
mone update procedure is an important component of every aco algorithm. In fact, it determines
to a large degree the failure or the success of the algorithm. Most of the existing generic variants of
ACO only differ in the pheromone update. In the case of the EDP application, we propose a phe-
romone updating scheme that is based on the following idea. In our basic algorithm, all the paths
of the ant solution Sgbest are used for updating the pheromone values (including the non-disjoint
paths). However, at the beginning of the search it might be better not to use these non-disjoint
paths for updating in order to maintain a higher degree of freedom for finding also edge-disjoint
paths for the commodities that initially prove to be problematic. Therefore, we propose a first
phase of the algorithm in which only disjoint paths are used for updating the pheromone values,
followed by a second phase which is initiated when no improvements can be found over a certain
time. In this second phase, all the paths are used for updating the pheromone values. In a way,
in the first phase of the algorithm we try to improve the first criterion of the objective function
(while disregarding the second one), and in the second phase we try to improve also the second
criterion. Once the second phase leads to an improvement also in terms of the first criterion, the
algorithm changes back to the first phase.

Partial destruction of solutions (escape mechanism). One of the main problems of meta-
heuristic search procedures is to detect situations in which the search process gets stuck, i.e., when
some local minimum is reached. Most of the successful applications incorporate algorithm features
to escape from these situation once detected. In case of our algorithm for the EDP problem we
propose a partial destruction of the disjoint part of the solution which is used for updating the
pheromone values. This mechanism is initiated once the algorithm was unable to improve the
currently best solution for a number of subsequent applications of first and second phase. Similar
ideas are applied in backtracking procedures, or in the perturbation mechanism of local search
based methods, such as iterated local search or variable neighborhood search (see [10]).

4.3 The result: An extended ACO algorithm

In the following we outline in more detail our extended aco algorithm including the additional
features motivated in the previous section. The extended algorithm (for the pseudo-code see
Algorithm 4) is based on the basic aco algorithm as described in Section 4.1 (see Algorithm 3).
Three different solutions are kept in the algorithm. In addition to the ant solutions Sibest and
Sgbest, we keep an ant solution Spbest, which is the currently best solution, i.e., the best ant solution
generated since the last escape action (see below). Note that the solution Spbest takes over the
role of solution Sgbest when compared to the basic aco algorithm. Sgbest is only used to keep
the best solution found. Additionally, two parameters ccrit1 and ccrit2 are introduced. When the
algorithm is in the first phase (i.e., the phase in which only the disjoint paths of solution Spbest

are used for updating), ccrit1 counts the number of successive iterations without improvement of
the first criterion of the objective function. Similarly, when the algorithm is in the second phase
(i.e., all paths of Spbest are used for updating) ccrit2 counts the number of successive iterations
without improvement of the second criterion. Limits c1max (for ccrit1) and c2max (for ccrit2) are
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Algorithm 4 Extended ACO algorithm for the EDP problem

input: a problem instance (G, T )
Sgbest ← ∅, Spbest ← ∅, ccrit1 ← 0, ccrit2 ← 0
all update ← false
InitializePheromoneValues(τ)
while termination conditions not met do

π ← (1, 2, . . . , |T | − 1, |T |)
for i = 1 to Nsols do

Si ← ConstructSolution(G,π) {See Algorithm 5}
if i < Nsols then π ← GenerateRandomPermutation(|T |)

end for
Choose Sibest ∈ {Si | i = 1, . . . , Nsols} s.t. fa(Sibest) ≥ fa(S), ∀S ∈ {Si | i = 1, . . . , Nsols}
if f(Sibest) > f(Sgbest) then Sgbest ← Sibest

if fa(Sibest) > fa(Spbest) then
ccrit2 ← 0
Spsave ← Spbest

Spbest ← Sibest

if f(Sibest) > f(Spsave) then
Supdate ← ExtractDisjointPaths(Spbest) {First phase}
ccrit1 ← 0
all update ← false

else
ccrit1 ← ccrit1 + 1

end if
if all update then Supdate ← Spbest {Second phase}

else
ccrit2 ← ccrit2 + 1

end if
if all update then

if ccrit2 > c2max then
Spbest ← DestroyPartially(Spbest) {Escape mechanism}
Supdate ← ExtractDisjointPaths(Spbest)
ccrit2 ← 0, ccrit1 ← 0

end if
else

all update ← (ccrit1 > c1max)
end if
UpdatePheromoneValues(τ ,Supdate)

end while
output: the EDP solution generated from the best solution Sgbest

used to determine when the algorithm should change phases. In the following we explain in more
detail the features of the extended algorithm.

Solution construction (including the candidate list strategy). The solution construction
of our extended aco algorithm is performed in method ConstructSolution(G,π), which includes the
possibility of a sequential as well as the one of a parallel solution construction. Algorithm 5 shows
a high-level description of the extended solution construction mechanism. Two (setup) parameters
are needed: the parameter constructiontype, which determines whether the construction is done
sequentially or in parallel (i.e., constructiontype ∈ {sequential, parallel}), and the parameter
candidatesListsize, which configures the candidate list strategy. This strategy restricts the set
of candidate edges I?

vc
that can be considered at every construction step in one of the three
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Algorithm 5 Method ConstructSolution(G,π) of Algorithm 4.

input: a graph G from a problem instance (G, T ), and a permutation π of T .
S ← ∅
if constructiontype=sequential then

for j = 1 to |T | do
Pπ(j) ← ConstructFullPath(sπ(j), tπ(j))
S ← S ∪ {Pπ(j)}

end for
else if constructiontype=parallel then

for j = 1 to |T | do
Pπ(j) ← ∅

end for
nb paths finished← 0
j ← 0
repeat

if not isFinishedPath(Pπ(j+1)) then

Pπ(j+1) ← ExtendOneStepPath(Pπ(j+1),τ
π(j+1))

if isFinishedPath(Pπ(j+1)) then
nb paths finished← nb paths finished + 1
S ← S ∪ {Pπ(j+1)}

end if
end if
j ← (j + 1) mod |T |

until nb paths finished = |T |
end if
output: an ant solution S

following ways: Either (1) the two best choices are considered (i.e., the two choices that have
a higher transition probability p(· | I?

vc
) than the others), or (2) the 50% best choices, or (3)

all the choices (which is, in fact, the setting of the basic aco algorithm). This means that
candidatesListsize ∈ {2, 50%, all}. The procedures of Algorithm 5 work as follows:

· ConstructFullPath(sπ(j), tπ(j)). This method is the same as in the basic aco algorithm just that
candidate list strategies might be applied.

· isFinishedPath(Pπ(k)). This method returns a boolean value indicating whether the path Pπ(k) is
finished, i.e., whether a path could be established from sπ(k) to tπ(k), or if it was determined
that no path exists.

· ExtendOneStepPath(Pπ(j+1),τ
π(j+1)). This method tries to extend the path Pπ(j+1), i.e., the path

under construction by the (j +1)-th ant, by adding exactly one edge. Otherwise, it performs
a backtracking step. Note that also in this method the use of the candidate list strategies
applies.

Implementation of two algorithm phases and an escape mechanism. In the following
we outline the implementation of the two phases of our algorithm (as motivated in the previous
section). The pheromone update performed in function UpdatePheromoneValues(τ ,Supdate) of Al-
gorithm 4 works in the same way as explained in Section 4.1.3, except for the following difference:
The solution Supdate that is used for updating is obtained in different ways, depending on the
search phase in which our algorithm is at the moment of the update.

As mentioned above, our algorithm works in two phases based on the two criteria of function
fa(·) (see Equation 2). First, it tries to improve only the first criterion. For this purpose, so-
lution Supdate that is used for updating the pheromone values is obtained by applying function
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Algorithm 6 Method DestroyPartially(Spbest) of Algorithm 4. ExtractDisjointPaths(Spbest) im-
plements the process of returning a valid EDP solution from an ant solution as explained in
Section 4.1.1. The method Cost(Stemp) returns the number of disjoint paths in Stemp. The
methods ChoosePathAtRandom(Stemp) and ChooseLongestPath(Stemp) return, respectively, a ran-
domly chosen disjoint path of Stemp and the longest disjoint path of Stemp. The method
ResetPheromoneModel(τ i) resets to τmin all the pheromone values of the pheromone model τ i,
i.e., τ i

e ← τmin, ∀e ∈ E.

input: an ant solution Spbest

if destructionrate > 0 then
Spbest ← ExtractDisjointPaths(Spbest)
nbpaths ← ddestructionrate· Cost(Spbest)e
nbremoved ← 0
repeat

if destructiontype=random then
Pi ← ChoosePathAtRandom(Spbest)

else if destructiontype=longest then
Pi ← ChooseLongestPath(Spbest)

end if
Spbest ← Spbest \ {Pi}
ResetPheromoneModel(τ i)
nbremoved ← nbremoved + 1

until nbremoved = nbpaths

end if
output: the solution Spbest partially destroyed

ExtractDisjointPaths(Spbest), which implements the process of returning a valid EDP solution from
the ant solution Spbest as explained in Section 4.1.1. If for a number of c1max iterations the first
criterion could not be improved, then the algorithm tries to improve the second criterion. For this
purpose, solution Supdate that is used for updating the pheromone values is a copy of the current
solution Spbest, including possibly non-disjoint paths. In case of success, the algorithm jumps back
to the first phase trying to improve again the first criterion. Otherwise, if for a number of c2max

iterations the second criterion could not be improved, some of the paths from the EDP solution
that can be produced from Spbest are deleted from Spbest. This action, which is performed by
function DestroyPartially(Spbest) of Algorithm 4, can be seen as a mechanism to escape from the
current area of the search space.

Function DestroyPartially(Spbest), whose pseudo-code is outlined in Algorithm 6, has two differ-
ent setup parameters: (1) Parameter destructionrate determines how many of the disjoint paths
are destroyed, and (2) parameter destructiontype indicates which paths to destroy. We chose the
following three settings for destructionrate: 0, 0.25, and 0.5, where 0 means that none of the paths
is destroyed (i.e., the escape mechanism is not applied), 0.25 means that 25% of the paths are
destroyed, and similarly for 0.5. Concerning parameter destructiontype, we propose two differ-
ent schemes: (1) Setting destructiontype = random causes the destruction of randomly selected
paths, whereas (2) setting destructiontype = longest initiates the destruction of the longest
paths, i.e., those paths with the highest number of edges. The second setting assumes that the
longer a path is, the more restrictions it introduces to assure disjointness of the paths that still
conflict with others. Thus, by removing the longest disjoint paths, the number of total edges
available is maximized.
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bl-wr2-wht2.10-50 AS-BA.R-Wax.v100e190 AS-BA.R-Wax.v100e217

Figure 1: Graphs generated with BRITE. These graphs consist of a two-level top-down hierarchical
topology (Autonomous System level plus router level), which are typical for Internet topologies.

5 Experimental evaluation

In the following we first outline the characteristics of our problem instances (see Section 5.1), before
we describe in Section 5.2 the parameter setting for our aco algorithms. The tuning process is
documented in detail in Appendix A. Finally, in Section 5.3 we present the experimental evaluation
of our aco approaches in comparison to the results obtained by the greedy approaches that we
outlined in Section 3. All the algorithms in this paper were implemented in C++ and compiled
using GCC 2.95.2 with the -o3 option. The experiments have been run on a PC with Intel(R)
Pentium(R) 4 processor at 3.06GHz and 900 Mb of memory running a Linux operating system.
Moreover, our algorithms were all implemented on the same data structures. Information about
the shortest paths in the respective graphs is provided to all of them as input. Notice however
that, while the greedy approaches need to partially recompute this information after the routing
of each commodity, this is not necessary for our aco algorithm.

5.1 Problem instances

In [8] we proposed a first set of benchmark instances for the EDP problem in order to experimentally
evaluate our preliminary aco approach. This set of instances includes three graphs representing
different communication networks. Two of them, namely graph3 and graph4, were created by
researchers of the Computational Optimization & Graph Algorithms group of the Technische
Universität Berlin. Their structure resembles parts of the communication network of the Deutsche
Telekom AG in Germany. The third graph, namely bl-wr2-wht2.10-50, was created with the
network topology generator BRITE [33]. With the same network topology generator—but with
different topology properties—we now generated two more graphs, namely AS-BA.R-Wax.v100e190
and AS-BA.R-Wax.v100e217 (see Figure 1). These two graphs, together with the three graphs
used in [8], define the topologies of the instances to be used in our experiments. Table 1 and
Figure 2 show the main features and quantitative measures of these graphs. More information
about the options chosen to generate the network topologies of graphs bl-wr2-wht2.10-50, AS-
BA.R-Wax.v100e190, and AS-BA.R-Wax.v100e217 with BRITE is provided in Table 2.

An instance of the EDP problem consists of a graph and a set of commodities. For each of the
five graphs we have therefore randomly generated different sets of commodities. Hereby, we made
the size of the commodity sets dependent on the number of vertices of the graph3. For each graph
G = (V, E) we generated 20 different instances with 0.10|V |, 0.25|V | and 0.40|V | commodities.
This makes a sum of 60 instances for each graph, and 300 instances altogether.

3Note that this is different to what we did in [8], where we used fixed commodity set sizes independent of the
graph sizes. The drawback of fixed number of commodities is that instances composed by bigger graphs are easier
to solve than instances composed by smaller graphs.
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Table 1: Main quantitative measures of our graphs

Graph |V | |E| Degree Diameter Clustering
min. avg. max. coefficient

graph3 [8] 164 370 1 4.51 13 16 0.226161
graph4 [8] 434 981 1 4.52 20 22 0.155547
bl-wr2-wht2.10-50 [8] 500 1020 2 4.08 13 23 0.102385
AS-BA.R-Wax.v100e190 100 190 2 3.80 7 11 0.378524
AS-BA.R-Wax.v100e217 100 217 2 4.34 8 13 0.411119
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Figure 2: Distribution of the vertex degrees of our graphs

Table 2: Parameters used for the generation of network topologies with BRITE (see [33] for
details). In each value tuple (Xas, Xrou), Xas is the value of the parameter at the AS level, and
Xrou is the value of the parameter at the router level. Parameter m specifies the number of
links for each new node that is added while constructing the topology. For all the graphs, the
growth type (i.e., how nodes join the topology) is incremental. In graph bl-wr2-wht2.10-50, the
edge connections between the AS level and the router level are introduced using the Waxman
probability model [44] with parameters α = 0.15 and β = 0.20 (note: this β has no relation with
the ones of the same name in Equation 3 of our algorithm); in graphs AS-BA.R-Wax.v100e190 and
AS-BA.R-Wax.v100e217 both levels are interconnected by choosing edges at random.

Graph |V | model node placement m

bl-wr2-wht2.10-50 (10,50) (Waxman, Waxman) (random, heavy-tailed) (2, 2)
AS-BA.R-Wax.v100e190 (20, 5) (Barabási-Albert [6], Waxman) (random, random) (2, 2)
AS-BA.R-Wax.v100e217 (10,10) (Barabási-Albert [6], Waxman) (random, random) (2, 2)
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5.2 Tuning of the algorithm parameters

Due to the relatively high number of algorithm parameters it was not feasible to tune all the
parameter values together. In order to ease the task of parameter tuning we first divided the set
of parameters into two subsets. The first subset consists of parameters which are in our opinion not
critical, in the sense that appropriate values can easily be found. These parameters are τmin and
τmax for limiting the pheromone values, Nsols (the number of solution constructions per iteration),
the learning rate ρ, and the maximum number of non-improving iterations for the first and second
algorithm phase, namely c1max, and c2max respectively. For these parameters we chose values that
we found to be well-working after preliminary tests.

The remaining parameters, which define our extended aco approach in terms of its added
features, are the following ones: drate is the proportion of deterministic construction steps; β

and γ balance the influence of the distance to the goal vertex and the overall usage of edges,
respectively; erate determines how much pheromone is evaporated from the edges belonging to the
current best solution; constructiontype specifies the strategy followed for constructing the paths of
a solution; candidatesListsize specifies the size of the candidate lists; distinguishphase1 indicates
if to use the two search phases based on the improvement of the two criteria of the objective
function; destructionrate and destructiontype indicate how much of the current best solution must
be destroyed and how this destruction should be performed.

For the purpose of tuning the remaining parameters we used all the instances derived from
graph AS-BA.R-Wax.v100e190.4 First, we applied the extended aco approach with all possible
combinations of parameter value settings to all the 60 instances. Then, we progressively fixed
parameter values in the following way. At each step i, we chose the parameter pi (from the ones
that still needed a value) for which we could see a clearer result than for the rest. Note that
this process was rather based on personal judgment than on mathematical rigor. Hereby, the
i-th parameter pi is decided according to the experimental results obtained for those experiments
in which the previously treated parameters p1, . . . , pi−1 have their fixed value, and the rest of
parameters pi+1, pi+2, . . . , etc. can have any allowed value. In those cases in which the analysis
of only one parameter did not provide enough information to decide for a value, we studied the
combined influence of two or more parameters with respect to the rest.

The complete tuning process is documented in Appendix A. Here we only show some illustrat-
ing examples. The first parameter for which we chose a value was parameter distinguishphase1,
which has settings {yes,no}. Some results of our experiments are shown in Figure 3 in the form
of box-plots. When analyzing the box-plots it becomes clear that both in terms of solution quality
and computation time better results are obtained when setting distinguishphase1 to yes. We
use this setting for deciding a value for all the remaining parameters. Thus only the results of
experiments for which distinguishphase1 is set to yes are considered in the following.

Second, we decided for a value for parameter drate. This parameter has five possible settings:
{0,0.25,0.5,0.75,1}. Figure 4 depicts results of the experiments obtained for the tuning of this
parameter. The results show that determinism is needed, although not too much. There is no
difference between the quality of the solutions obtained for values 0.25, 0.5, and 0.75. However,
the setting of drate to 0.75 needs less computational time in order to reach the same solution
quality (see Sub-figure 4(b)).

After fixing parameter values for β and γ to 1, it still remained to fix a parameter value for
the candidate list size, the destruction rate, the destruction type and the solution construction
mechanism. An initial separate study of them was not conclusive, since these parameters seemed
to be strongly related. Furthermore, the experiments for the instances derived from graph AS-
BA.R-Wax.v100e190 did not provide much information. We used graph4 for continuing the tuning,
since this graph proved to be difficult for a preliminary version of our aco approach [8], which
lacked most of the additional features of the extended aco. Figure 5 shows results (under different
destruction rates) concerning the joined analysis of the candidate list size, the destruction type and
the solution construction strategies, for the 20 instances composed by graph4 and 173 commodities.
First, the results displayed in this figure show that parallel solution construction seems to have

4Note that the computation time limits are the same as described in Table 4.
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Figure 3: Results concerning the setting of parameter distinguishphase1 ∈ {yes,no}. The box-
plots show results of all experiments concerning the instances with 25 commodities derived from
graph AS-BA.R-Wax.v100e190 in terms of the best found solutions, respectively the times at which
these solutions were found, of the extended aco algorithm. In each graphic, the left box-plot
(labelled as yes) shows the case in which only the disjoint paths of the ant solution contribute to
the update of the pheromone (1st phase); the right box-plots (labelled as no) show the case in
which the whole ant solution is used for updating the pheromone.
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Figure 4: Results concerning the setting of parameter drate when having fixed distinguishphase1 to
yes. The box-plots show results of all experiments concerning the instances with 25 commodities
derived from graph AS-BA.R-Wax.v100e190 in terms of the best found solutions, respectively the
times at which these solutions were found, of the extended aco algorithm. In each graphic, the
five box-plots show the results when considering 0%, 25%, 50%, 75% and 100% determinism,
respectively.

advantages over the sequential construction, independently of the destruction rate. It can also be
observed that, the higher the number of considered candidates is, the lower is the quality of the
solutions obtained. Concerning the destruction type, to destroy the longest paths in the solution
generally provides slightly better results than destroying some paths chosen at random.

The final parameter setting is summarized in Table 3.
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Figure 5: Results concerning the joined analysis of the candidate list size, the destruction type
and the sequential/parallel solution construction strategies, under different destruction rates. The
box-plots show results of all experiments concerning the instances with 173 commodities derived
from graph graph4. The x-axis shows different sizes for the candidate lists (i.e., 2 candidates,
50% of the candidates, and all the candidates), together with the different solution construction
strategies and the destruction criteria. Hereby we use the abbreviations SR, SL, PR, and PL,
where S stands for sequential, P for parallel, L for longest path destruction, and R for random
path destruction.

Table 3: Final parameter setting for the extended aco algorithm. Note that for the simple aco
we chose the same values for parameters τmin, τmax, Nsols, ρ, c1max, c2max, drate, β, γ, and erate

as for the extended aco.

Parameter/property Tuning domain Chosen value

τmin – 0.001
τmax – 0.999
Nsols – 10

ρ – 0.1
c1max, c2max – 20 for both

drate {0, 0.25, 0.50, 0.75, 1} 0.75
β, γ {0.1, 1, 10} for both 1 for both
erate {0.01, 0.05, 0.10} 0.10

constructiontype {sequential, parallel} parallel
candidatesListsize {2, 50%, all} 2
distinguishphase1 {yes, no} yes
destructionrate {0, 0.25, 0.50} 0.25
destructiontype {random, longest} longest

5.3 Experiments and results

We applied the algorithms presented in this work (namely sga, msga, the simple aco, and the
extended aco) to all 300 instances exactly once. First, we applied msga with 50 restarts (i.e.,
Nperm = 50) to each of the 300 instances. The computation time of msga was used as a maximum
CPU time limit for both versions of the aco algorithm. We present the results as averages over
the 20 instances of each combination of graph and commodity number in Table 4. The layout of
this table is explained in its caption.

Concerning the comparison between sga and msga, we observe a clear advantage of msga.
This means that the order in which the commodities are treated is crucial in achieving a good
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Table 4: Comparison of the results obtained by the sga, the msga, and both versions of the aco algorithm. The table layout is as follows. The first
column gives the name of the graph and the second column the number of the commodities, which are obtained as the 10%, 25%, and 40% of the
number of nodes of the graphs. For each algorithm there are three columns reporting on the average results obtained for the 20 instances of each
combination of graph topology and number of commodities. The first of these three columns (headed by q) shows the average of the values of the
best solutions found for the 20 instances. Such an average is in boldface when the result is the best in the comparison. In case of ties the computation
time decides. The second column provides the standard deviation of the 20 values used to compute q, and the third column (headed by t reports on
the average time (in seconds) needed to find the best solution values for the 20 instances. Finally, the last column shows the computation time of
msga, which was used as computation time limit for both versions of the aco approach.

number of SGA MSGA Simple ACO Extended ACO

Graph commodities q σ t q σ t q σ t q σ t max CPU time

graph3 16 15.30 0.781 0.566 15.70 0.557 0.960 15.65 0.572 1.321 15.70 0.557 0.457 30.582

graph3 41 29.00 2.864 1.298 32.00 2.302 25.235 30.55 2.109 41.153 31.80 1.990 27.953 79.619

graph3 65 33.70 2.777 2.156 37.60 2.577 49.267 36.80 2.502 82.578 40.30 2.571 57.899 126.945

graph4 43 40.50 1.628 12.121 42.05 1.024 95.744 40.05 1.396 244.458 41.45 1.284 168.871 237.52

graph4 108 58.10 4.194 31.138 64.10 3.064 697.456 60.85 2.762 1231.099 68.15 2.725 730.436 1656.475

graph4 173 66.75 4.846 49.281 73.95 3.542 974.350 73.40 4.005 1940.110 85.10 3.534 1111.982 2603.872

bl-wr2-wht2.10-50 50 19.70 2.238 17.926 22.55 2.397 318.518 23.85 2.128 171.857 24.10 1.947 155.899 971.488

bl-wr2-wht2.10-50 125 34.15 4.464 46.387 38.10 4.369 1004.462 41.80 4.545 594.902 42.30 4.540 344.092 2425.090

bl-wr2-wht2.10-50 200 46.70 4.961 62.158 50.85 4.892 1151.197 54.50 4.955 1101.917 56.30 5.245 847.415 3124.550

AS-BA.R-Wax.v100e190 10 8.75 0.942 0.114 9.10 0.943 0.579 8.80 0.980 0.549 8.95 0.973 0.611 6.665

AS-BA.R-Wax.v100e190 25 12.30 1.900 0.280 14.25 1.374 4.809 14.05 1.117 4.921 14.85 1.195 3.718 16.740

AS-BA.R-Wax.v100e190 40 15.45 2.500 0.443 17.95 1.624 7.796 18.80 1.913 8.608 19.45 1.936 4.121 26.850

AS-BA.R-Wax.v100e217 10 7.00 1.225 0.103 8.05 0.921 0.427 7.70 1.005 0.480 7.88 0.927 0.164 6.892

AS-BA.R-Wax.v100e217 25 11.40 1.882 0.300 13.60 1.463 4.330 13.70 1.646 3.127 13.83 1.579 1.816 17.622

AS-BA.R-Wax.v100e217 40 14.60 1.685 0.497 17.00 1.949 9.833 17.35 1.711 6.433 17.80 1.646 2.212 28.318

1
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performance. However, as there is no obvious way of determining a good commodity order be-
forehand, the only way of exploiting this knowledge is by randomly permuting the commodity
list and running msga. The prize we have to pay for exploiting this knowledge is the increased
computation time. Concerning the comparison of the two aco approaches, we can observe that
the features that distinguish the extended aco from the simple aco approach are of great benefit.
The extended aco approach consistently obtains better solution qualities in less computational
time. When comparing the simple aco approach with the msga greedy algorithm, we can observe
that the former, although being more sophisticated, does not achieve a better performance. For
the graphs representing Internet topologies, both the msga and the simple aco approach perform
very similar. For the other graphs, the msga is often faster.

More in detail, we can observe that in 11 out of 15 cases the extended aco approach beats all
the other algorithms. The extended aco approach is on average 4.69% better than msga, and in
one case (e.g., for graph4, 173 commodities) it is even 15.07% better. Additionally, the extended
aco approach needs in general lesser computation time than the other approaches. The advantage
in computation time increases with increasing number of commodities. Exceptions are some of the
results for small number of commodities, namely for 10% of the number of nodes of the graphs. For
this combination msga has often slight advantages over the extended aco approach. Therefore,
we recommend to use a greedy approach when easy problem instances are concerned. However,
the average results for instances with a higher number of commodities show a clear advantage of
the extended aco in contrast to msga, both in quality and time.

An interesting observation concerns the results of the extended aco algorithm in comparison to
the results of our preliminary aco approach from [8], for which we noticed considerable difficulties
when applied to instances derived from graph4. In [8] we conjectured that these difficulties result
from the fact that graph4 has some nodes with a very high degree. This is because, first, these
nodes are important connectivity points and are often in the shortest paths between two vertices
of the graph, and second, because the higher the degree of a vertex, the lesser the probability
of choosing a particular outgoing edge in the construction mechanism. More precisely, when
constructing a path and being in one of these vertices, in order to choose a good outgoing edge
the algorithm has possibly to be lucky, especially in early stages of the search process when the
pheromone values are similar. We can observe that our extended aco algorithm does not show
this behaviour. The additional features added to the simple aco approach, in particular the usage
of candidate lists, have helped on overcoming these difficulties concerning graph4. In general, the
additional features of our extended aco approach proved to be useful for the problem resolution.
An example for the usefulness of the solution destruction mechanism is shown in Figure 6.

Finally, an additional analysis concerns the run-time behaviour of our algorithms. Figure 7
shows that both aco approaches find relatively good solutions already after a very short compu-
tation time. In general, already the first solutions produced by the aco are quite good, whereas
the greedy approaches reach a comparable solution quality only much later in time. This property
of our aco approach is a desirable feature in the context of communication networks since the
(already good) quality of the solutions that are found after a short execution time might be often
sufficient in practice.

6 Conclusions and further work

In this paper we have proposed an ant colony optimization (aco) approach to tackle the maximum
edge-disjoint paths problem. To the best of our knowledge this is—except for our own preliminary
approach from [8]—the first application of ant colony optimization, and more in general of any any
metaheuristic, to this problem. Our approach is based on a decomposition of the maximum edge-
disjoint paths problem into subproblems. We have compared our algorithm to a multi-start greedy
approach which is based on a greedy approach that was developed for approximation purposes.

First, we introduced a basic aco approach in order to be able to focus on important algorithmic
features such as the solution construction and the pheromone update. Then, we proposed several
extensions and additional features: concerning the solution construction process, we proposed (1)
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(a) Example of the evolution of the quality of the current best solution Spbest and the best-so-far solution

Sgbest during the search (left), and the number of shared edges (2nd criterion) of the solution Spbest

(right). The behavior shown here corresponds to the application to one of the 20 instances composed
by graph4 and a list of 173 commodities. All the curves are smoothed with gnuplots’ sbezier function.
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(b) Zoom on the 700 first (left) and the 700 last (right) iterations of Figure 6(a). On the left, the
best solution found is quickly improved. At about iteration 250, the algorithm destroys part of the
Spbest solution, which produces an instantaneous worsening in the quality (left); another solution de-
struction takes places around iteration 550, which helps in achieving an improvement soon afterwards
(left). Analogous effects can be observed around iteration 950 and 1250 (right). When contrasting with
Figure 6(a)(right), we can observe that there exists an (inverted) relation between the number of edges
shared and the quality of the solutions obtained. Thus validating our choice of the 2nd criterion as a
part of the objective function.

Figure 6: A representative example of the behavior of the extended aco algorithm. The effect of
the mechanism for the partial destruction of the current best solution can be clearly observed. It
is also interesting to observe the evolution of the second criterion as a measure for disjointness.

the parallel construction of all paths (in contrast to their sequential construction), and (2) the use
of candidate list strategies for the exploitation of the promising choices at each construction step.
Concerning the search dynamics, we proposed (1) the use of two search phases that aim at the
improvement of the two different criteria of the objective function, and (2) the partial destruction
of the currently best solution as an escape mechanism. We have shown that these features help
on improving the performance of the algorithm without spending more computation time. Rather
on the contrary, the extended aco approach needs less computation time than the simple version
in order to reach its best solutions. The results showed that our extended aco approach has in
general advantages over the multi-start greedy approach in terms of solution quality as well as in
terms of computation time. Furthermore, the results indicate that also in the run-time behavior

21



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400  1600

so
lu

tio
n 

si
ze

 |S
| (

nb
.d

is
jo

in
t p

at
hs

)

time (seconds)

Algorithms
SGA

MSGA
simple ACO

extended ACO

(a) Example of the evolution in time of the qual-
ity of the solution Sgbest. The behavior shown
here corresponds to the application to one of the
20 instances composed by graph4 and a list of 173
commodities.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5  10  15  20  25

so
lu

tio
n 

si
ze

 |S
| (

nb
.d

is
jo

in
t p

at
hs

)

time (seconds)

Algorithms
SGA

MSGA
simple ACO

extended ACO

(b) Zoom on the first 25 seconds of Figure 7(a).
The time needed to obtain good solutions is clearly
smaller for the aco approaches. Note that in the
first seconds the performance of the sga and the
msga are identical due to dealing with the same
permutation of the commodities.

Figure 7: A representative example of the run-time behavior of the algorithms presented in this
work. All the curves are smoothed with gnuplots’ sbezier function.

the aco approach is superior to the multi-start greedy approach. Already in early stages of a
run, the aco algorithm provides relatively good solutions. This might prove beneficial for an
online-version of our algorithm, in which speed is an issue. The fact that our algorithm only uses
local information for building paths, is another advantage, because the computation of shortest
path information is costly.

There are many possible directions for future work. From the algorithmic point of view,
it would be interesting to study other possible greedy approaches including, for example, length
restrictions on the routes. As observed in Kleinberg [26], length constraints can transform tractable
disjoint paths problems into NP-hard variants (e.g., even the source-single sink case is NP-hard.)
Furthermore, the relatively high degree of determinism used in our aco approach might suggest
ideas for new greedy approaches. Concerning nature-inspired metaheuristics, it would be of high
interest to explore the potential advantages of having multiple ant colonies or particle swarms. A
first attempt on using more than one ant colony was recently done in [36]. However, the aim in [36]
was not to solve the EDP problem but rather to explore the feasibility of multi-colony systems.
Therefore, only toy examples of graphs of up to 20 nodes with 2 or 3 commodities were considered
there. One of the drawbacks of having multiple colonies is the increase of the computational
requirements of the algorithm, which may not be affordable when time matters.

Further improvements should be tried also in order to tackle generalizations of the problem
based on real-life features of nowadays networks (e.g., congestion, free bandwidth, adversarial
traffic, etc.), which are specially interesting and challenging. To be tackled via ant colony opti-
mization, this will require some changes to the aco approach, since ants will require a whole range
of other types of locally available information. It will also be interesting to observe the behavior
of our aco approach when applied in dynamically changing networks in which the adaptation to
a changing environment is required. The nature of aco makes it a promising candidate for these
conditions.
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Appendix

A Tuning of parameters

In the following we document the way in which we tuned the parameters of our extended aco
approach. For this purpose we used all the instances derived from graph AS-BA.R-Wax.v100e190.5

First, we applied the aco approach with all possible combinations of parameter value settings to
all the 80 instances. Then, we progressively fixed parameter values in the following way. At each
step i, we chose the parameter pi (from the ones that still needed a value) for which we could see
a clearer result than for the rest. Note that this process was rather based on personal judgement
than on mathematical rigor. Hereby, the i-th parameter pi is decided according to the experimental
results obtained for those executions in which all the previous parameters p1, . . . , pi−1 are already
set but all the possible settings for the rest of parameters pi+1, pi+2, . . . , etc. are considered. In
those cases in which the analysis of only one parameter did not provide enough information to
decide for a value, we studied the relation between two or more parameters together with respect
to the rest.

The first parameter for which we chose a value was parameter distinguishphase1, which has
settings {yes,no}. The results of our experiments are shown in Figure 8 in the form of box-
plots. When analyzing the box-plots it becomes clear that both in terms of solution quality and
computation time better results are obtained when setting distinguishphase1 to yes. Remember
that for deciding a value for the next parameter, only experiments where distinguishphase1 is set
to yes are considered.

Second, we decided for a value for parameter drate
6. This parameter has four possible settings:

{0,0.25,0.5,0.75,1}. Figure 9 shows the results obtained for the tuning of this parameter. The
results show that determinism is needed, however, not too much. For example, there is no difference
between the quality of the solutions obtained for values 0.25, 0.5, and 0.75. However, the setting
of drate to 0.75 needs less computational time in order to reach the same solution quality (see
Subfigure 9(b)).

Third, we sought values for parameters β and γ that are involved in the computation of
the transition probabilities (see Equation 3). Three possible values were considered for both
parameters: 0.1, 1 and 10. First we looked at the β parameter. The results can be seen in
Figure 10, where it seems clear that a high value of this parameter achieves worse solutions,
although slightly faster. The decision between choosing β = 0.1 or β = 1 is not clear from the
information that one can extract from this way of looking at the results. In the same way, when
only looking at parameter γ (see Figure 11) the results suggest that a low value for this parameter
results in slightly worse solutions. However, again the decision between choosing γ = 1 and γ = 10
is not clear. Therefore, we decided to look at both parameters together at the same time. This
new way of looking at the results is shown in Figure 12. Now we can see that a high value for β

only makes sense if γ has also a high value. After additionally taking into account the computation
time, we decided for the values β = 1 and γ = 1.

Fourth, we tried to find a good setting for the evaporation rate (erate parameter), which
determines how much pheromone is evaporated from the edges belonging to the current best
solution (see Equation 5). Normally, this parameter has low values. We considered three values for
this parameter: 0.01, 0.05 and 0.10. Figure 13 shows the results obtained, in which it can be seen
that (slightly) better solutions are achieved with a value of 0.10, without sacrificing computation
time.

Finally, four parameters are still to be set, namely, the candidate list size, the destruction rate,
the destruction type and the solution construction mechanism. An initial separate study of the
parameters was not conclusive, i.e., these parameters seemed to be strongly related. Therefore,
we decided to look at them together. Figure 14 shows different ways of displaying the results of

5Note that the computation time limits are the same as described in Table 4.
6Recall that this determinism affects the selection of the next edge to add to a path under construction (see

method ConstructFullPath in Subsection 4.1.3).
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the experiments concerning the instances with 0.25|V | commodities. We can observe that to allow
some destruction represents a benefit w.r.t. to no destruction at all. The same observation can
be taken from Figure 15, in which the corresponding results are shown for instances with 0.4|V |
commodities. However, it is difficult to take any other conclusion concerning the setting of the
other parameters. This might be due to the characteristics of the graph AS-BA.R-Wax.v100e190
that we used for the tuning. In this graph, the degree of the vertices is relatively small and quite
homogeneous. A consequence of this is that, in most of the cases, the settings 2 and 50% for
the candidate list strategy are equivalent, and not much different to considering all the possible
candidates.

Therefore, we decided to use the instances of a graph with different characteristics for the
tuning of our remaining 4 parameters. We chose graph graph4 because in our preliminary version
of this work [8] we found that the high degree of some vertices in this graph, together with their
heterogeneous distribution, represented a difficulty for our preliminar aco approach. Moreover,
graph4 is interesting due to the fact that it resembles the structure of a real communications
network.

The same information as in Figures 14 and 15 for graph AS-BA.R-Wax.v100e190 is shown for
graph graph4 in Figure 16 (for 0.25|V | = 108 pairs) and Figure 17 (for 0.40|V | = 173 pairs). The
results displayed in these figures clearly show that the higher the number of considered candidates
is, the lower is the quality of the solutions obtained. We can also observe that it is beneficial to
have some destruction and, in fact, a destruction rate of 0.25 provides us with better solutions than
any other setting. Concerning the destruction type, to destroy the longest paths in the solution
provides better results than destroying some paths chosen at random. Moreover, parallel solution
construction seems to have advantages over the sequential construction. Summarizing, settings
destructionrate to 0.25, destructiontype to longest, candidatesListsize to 2, and constructiontype

to parallel seems to be the setting that provides us with better results. Figures 16 and 17 do
not include information concerning the computation times needed to find the best solutions. The
most remarkable fact to be extracted from the computation time information is that, when using
parallel solution constructions, the algorithm needs slightly longer time to reach a certain solution
quality than using sequential solution constructions. However, the solutions it can reach are of
higher quality.
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Figure 8: Results concerning the setting of parameter distinguishphase1 ∈ {yes,no}.. The
results are obtained for graph AS-BA.R-Wax.v100e190 when looking for 10 (leftmost graphic),
25 (middle) and 40 (rightmost graphic) disjoint paths (0.1|V |, 0.25|V | and 0.4|V |, respectively)
between randomly chosen nodes. In each graphic, the left boxplot (labelled as yes) shows the case
in which only the disjoint paths of the ant solution contribute to the update of the pheromone
(1st phase); the right boxplots (labelled as no) show the case in which the whole ant solution is
used for updating the pheromone. The subfigure (a) shows the cost of the best solutions found,
while subfigure (b) shows the time needed to reach those best solutions.
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Figure 9: Results concerning the setting of parameter drate when fixing distinguishphase1

to yes. The results are obtained for graph AS-BA.R-Wax.v100e190 when looking for 10 (leftmost
graphic), 25 (middle) and 40 (rightmost graphic) disjoint paths (0.1|V |, 0.25|V | and 0.4|V |, respec-
tively) between randomly chosen nodes. In each graphic, the five boxplots show the results when
considering 0%, 25%, 50%, 75% and 100% determinism, respectively. The subfigure (a) shows the
cost of the best solutions found, while subfigure (b) shows the time needed to reach those best
solutions.
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Figure 10: Analyzing parameter β (i.e., the exponent of the influence of the distance to des-
tination in Equation 3) when fixing distinguishphase1 to yes and the determinism rate (drate) to
0.75. The results are obtained for graph AS-BA.R-Wax.v100e190 when looking for 10 (leftmost
graphic), 25 (middle) and 40 (rightmost graphic) disjoint paths (0.1|V |, 0.25|V | and 0.4|V |, re-
spectively) between randomly chosen nodes. In each graphic, the x-axis considers the values for
the β parameter (β = 0.1, β = 1 and β = 10, from left to right, respectively). The subfigure (a)
shows the cost of the best solutions found, while subfigure (b) shows the time needed to reach
those best solutions.
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Figure 11: Analyzing parameter γ (i.e., the exponent of the influence of the global usage of an
edge in Equation 3) when fixing distinguishphase1 to yes, the determinism rate (drate) to 0.75,
and the β parameter to 1. The results are obtained for graph AS-BA.R-Wax.v100e190 when looking
for 10 (leftmost graphic), 25 (middle) and 40 (rightmost graphic) disjoint paths (0.1|V |, 0.25|V |
and 0.4|V |, respectively) between randomly chosen nodes. In each graphic, the x-axis considers
the values for the γ parameter (γ = 0.1, γ = 1 and γ = 10, from left to right, respectively). The
subfigure (a) shows the cost of the best solutions found, while subfigure (b) shows the time needed
to reach those best solutions.
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Figure 12: Analyzing parameters β and γ together when fixing distinguishphase1 to yes,
the determinism rate (drate) to 0.75. The results are obtained for graph AS-BA.R-Wax.v100e190
when looking for 10 (leftmost graphic), 25 (middle) and 40 (rightmost graphic) disjoint paths
(0.1|V |, 0.25|V | and 0.4|V |, respectively) between randomly chosen nodes. In each graphic, the
x-axis considers the different combinations of values for the pair (β,γ) of parameters, i.e., (0.1,0.1),
(0.1,1), (0.1,10), (1,0.1), (1,1), (1,10), (10,0.1), (10,1), and (10,10), from left to right, respectively).
The subfigure (a) shows the cost of the best solutions found, while subfigure (b) shows the time
needed to reach those best solutions.
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Figure 13: Analyzing the evaporation rate (erate) when fixing distinguishphase1 to yes, the
determinism rate (drate) to 0.75, β to 1, and γ to 1. The results are obtained for graph AS-BA.R-
Wax.v100e190 when looking for 10 (leftmost graphic), 25 (middle) and 40 (rightmost graphic)
disjoint paths (0.1|V |, 0.25|V | and 0.4|V |, respectively) between randomly chosen nodes. In each
graphic, the x-axis considers the values tested for the evaporation rate (erate =0.01, erate =0.05
and erate =0.10, from left to right, respectively). The subfigure (a) shows the cost of the best
solutions found, while subfigure (b) shows the time needed to reach those best solutions.
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(a) The cases of no destruction (leftmost graphic), 25% destruction (middle) and 50% destruction (rightmost

graphic) are considered. The x-axis of each graphic shows different sizes for the candidate lists (i.e., 2 candi-
dates, 50% candidates and all the candidates), together with the different solution construction strategies (i.e.,
sequential and parallel).
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(b) The cases of considering only 2 candidates (leftmost graphic), 50% of the candidates (middle) and all the

candidates (rightmost graphic) are shown. The x-axis of each graphic shows from left to right, respectively,
different combinations of values for the solution construction (i.e., sequential or parallel), and for the combina-
tion of destruction rate and destruction type (i.e., any destruction, 25% destruction of randomly chosen paths,
25% destruction of the longest paths, 50% destruction of randomly chosen paths, and 50% destruction of the
longest paths).

Figure 14: Two different ways of showing the information concerning the joined analysis of
the candidate lists size, the destruction rate, the destruction type and the sequen-
tial/parallel solution construction strategies. The results are obtained for graph AS-BA.R-
Wax.v100e190 when trying to establish disjoint paths between 25 randomly chosen endpoints
(i.e., 0.25|V |) of the graph, and fixing first phase to yes, the determinism rate (drate) to 0.75,
β and γ to 1, and erate to 0.10. Only the cost of the best obtained solutions are plotted. Sub-
figure 14(a) presents the information separated according to the destruction rate; then, the
information is separated according to the size of the candidate lists and, for each of these values,
according to the solution construction strategy. Subfigure 14(b) presents the information sep-
arated according to the candidate lists size; then, the information is discretized according to the
different solution construction strategies and, in each of the categories, a finer grain is obtained
according the destruction rate and type.
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(a) The cases of no destruction (leftmost graphic), 25% destruction (middle) and 50% destruction (rightmost

graphic) are considered. The x-axis of each graphic shows different sizes for the candidate lists (i.e., 2 candi-
dates, 50% candidates and all the candidates), together with the different solution construction strategies (i.e.,
sequential and parallel).
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(b) The cases of considering only 2 candidates (leftmost graphic), 50% of the candidates (middle) and all the

candidates (rightmost graphic) are shown. The x-axis of each graphic shows from left to right, respectively,
different combinations of values for the solution construction (i.e., sequential or parallel), and for the combina-
tion of destruction rate and destruction type (i.e., any destruction, 25% destruction of randomly chosen paths,
25% destruction of the longest paths, 50% destruction of randomly chosen paths, and 50% destruction of the
longest paths).

Figure 15: Two different ways of showing the information concerning the joined analysis of
the candidate list size, the destruction rate, the destruction type and the sequen-
tial/parallel solution construction strategies. The results are obtained for graph AS-BA.R-
Wax.v100e190 when trying to establish disjoint paths between 40 randomly chosen endpoints
(i.e., 0.40|V |) of the graph, and fixing first phase to yes, the determinism rate (drate) to 0.75, β and
γ to 1, and the eating away parameter (erate) to 0.10. Only the cost of the best obtained solutions
are plotted. Subfigure 15(a) presents the information separated according to the destruction
rate; then, the information is discretized according to the size of the candidate lists and, for each
of these values, according to the solution construction strategy. Subfigure 15(b) presents the
information separated according to the candidate list size; then, the information is discretized
according to the different solution construction strategies and, in each of the categories, a finer
grain is obtained according the destruction rate and type.
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(a) The cases of no destruction (leftmost graphic), 25% destruction (middle) and 50% destruction (rightmost

graphic) are considered. The x-axis of each graphic shows different sizes for the candidate lists (i.e., 2 candi-
dates, 50% candidates and all the candidates), together with the different solution construction strategies (i.e.,
sequential and parallel).
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(b) The cases of considering only 2 candidates (leftmost graphic), 50% of the candidates (middle) and all the

candidates (rightmost graphic) are shown. The x-axis of each graphic shows from left to right, respectively,
different combinations of values for the solution construction (i.e., sequential or parallel), and for the combina-
tion of destruction rate and destruction type (i.e., any destruction, 25% destruction of randomly chosen paths,
25% destruction of the longest paths, 50% destruction of randomly chosen paths, and 50% destruction of the
longest paths).

Figure 16: Two different ways of showing the information concerning the joined analysis of
the candidate list size, the destruction rate, the destruction type and the sequen-
tial/parallel solution construction strategies. The results are obtained for graph graph4
when trying to establish disjoint paths between 108 randomly chosen endpoints (i.e., 0.25|V |)
of the graph, and fixing first phase to yes, the determinism rate (drate) to 0.75, β and γ to 1, and
the eating away parameter (erate) to 0.10. Only the cost of the best obtained solutions are plotted.
Subfigure 16(a) presents the information separated according to the destruction rate; then, the
information is discretized according to the size of the candidate lists and, for each of these values,
according to the solution construction strategy. Subfigure 16(b) presents the information sep-
arated according to the candidate list size; then, the information is discretized according to the
different solution construction strategies and, in each of the categories, a finer grain is obtained
according the destruction rate and type.
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(a) The cases of no destruction (leftmost graphic), 25% destruction (middle) and 50% destruction (rightmost

graphic) are considered. The x-axis of each graphic shows different sizes for the candidate lists (i.e., 2 candi-
dates, 50% candidates and all the candidates), together with the different solution construction strategies (i.e.,
sequential and parallel).
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(b) The cases of considering only 2 candidates (leftmost graphic), 50% of the candidates (middle) and all the

candidates (rightmost graphic) are shown. The x-axis of each graphic shows from left to right, respectively,
different combinations of values for the solution construction (i.e., sequential or parallel), and for the combina-
tion of destruction rate and destruction type (i.e., any destruction, 25% destruction of randomly chosen paths,
25% destruction of the longest paths, 50% destruction of randomly chosen paths, and 50% destruction of the
longest paths).

Figure 17: Two different ways of showing the information concerning the joined analysis of
the candidate list size, the destruction rate, the destruction type and the sequen-
tial/parallel solution construction strategies. The results are obtained for graph graph4
when trying to establish disjoint paths between 173 randomly chosen endpoints (i.e., 0.40|V |)
of the graph, and fixing first phase to yes, the determinism rate (drate) to 0.75, β and γ to 1, and
the eating away parameter (erate) to 0.10. Only the cost of the best obtained solutions are plotted.
Subfigure 17(a) presents the information separated according to the destruction rate; then, the
information is discretized according to the size of the candidate lists and, for each of these values,
according to the solution construction strategy. Subfigure 17(b) presents the information sep-
arated according to the candidate list size; then, the information is discretized according to the
different solution construction strategies and, in each of the categories, a finer grain is obtained
according the destruction rate and type.
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