
 1

Generating Alternative Representations for OCL
Integrity Constraints

Jordi Cabot1,2 and Ernest Teniente2

1Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
jcabot@uoc.edu

2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
teniente@lsi.upc.edu

Abstract: Integrity constraints (ICs) play a key role in the definition of
conceptual schemas. In the UML, ICs are usually specified as invariants written
in the OCL language. However, due to the high expressiveness of the OCL, the
designer has different syntactic alternatives to express each IC. In the context
of the MDA, the choice of a particular definition has a direct effect on the
efficiency of the automatically generated implementation. The method
presented in this paper assists the designer during the definition of ICs by
means of generating equivalent alternatives for the initially defined constraints.
Our method can also be applied to help in the detection of equivalent
(redundant) constraints and as a tool to facilitate the learning of the OCL.

1. Introduction

Integrity constraints are a fundamental part in the definition of conceptual schemas
(CS)[5]. Many constraints cannot be expressed using only the predefined constructs
provided by the conceptual modeling language and require the use of a general-
purpose (textual) sublanguage [3]. In the UML this is usually done by means of
invariants written in the OCL language [9]. Predefined constraints can also be
expressed in OCL [4].

Due to the high expressiveness of the OCL, the designer has different syntactic
possibilities to define an integrity constraint. For instance, given the following CS:

 Department EmployeeWorksIn

employee

*
name : string
minSalary: Money
maxJuniorSal:Money

name : string
salary: Money

employer
1

Figure 1.1 – Example Conceptual Schema

the constraint “all employees must earn more than the minimum salary of its
department” may be defined as (among many other options):
1. context Department inv: self.employee -> forAll (e| e.salary>self.minSalary)
2. context Employee inv: self.salary>self.employer.minSalary
3. context Department inv: self.employee -> select(e| e.salary<=self.minSalary)
 ->size()=0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Obviously, the designer may not be aware of all different alternatives, and thus, he
may just choose the one he cares about at the moment of defining the constraint.
Many times, this implies that the designer does not define the constraint in the best
way. As we will discuss later, the meaning of best varies depending on the specific
goal intended by the designer (for instance understandability or efficiency).

In this paper we provide the designer with an automatic method that obtains a set
of alternative constraint representations which are semantically equivalent to a given
integrity constraint. Moreover, we define how to obtain the best one according to a
designer-defined complexity model. These are the two main contributions of the work
reported here.

There exist two different ways to generate an alternative representation for a given
constraint: we can either replace the body of the constraint with an equivalent one (as
it happens between constraints 1 and 3 of the previous example) or rewrite the
constraint by using a different context (as it happens with 1 and 2).

Our method addresses the first case by defining a set of equivalence rules between
the different elements and constructs that can appear in the OCL expression defining
the body of the constraint. Afterwards, the redefinition of the constraint using an
alternative context is formalized as a path problem over a graph representing the CS.
Using the graph we identify which entity types are candidates for acting as new
context and obtain all the possible redefinitions for each of them.

We can generate the alternative representations for a given constraint by means of
generating all redefinitions of the constraint using a different context entity type and
then, for each redefinition, to generate the set of equivalent bodies (or vice versa).
Our method generates all alternative redefinitions of the constraint when using a
different entity type as a context but not all possible equivalent bodies for each of
them because of the huge number of equivalences among the OCL constructs.

The method described in this paper is useful in several situations. First, at design
time, it can assist the designer in the definition of the integrity constraints. Secondly,
in the context of the MDA [11], where the final implementation of the system is
derived from the specification, the simplicity of the constraints has a direct effect on
the efficiency of the implementation. Therefore, our method can be used to increase
the efficiency of the final system by generating equivalent but more efficient
constraints than the original ones written by the designer. Additionally, it may be
useful in schema validation when comparing a set of constraints in search of
redundancies among them. For instance, it could help in the detection that the three
previous constraints are equivalent, thus concluding that two of them are redundant.
Finally, it may also be used as a tool to facilitate the learning of the OCL language.

To the best of our knowledge, ours is the first method to deal with the automatic
generation of alternative syntactic definitions for an integrity constraint. [7] discusses
the advantages of changing the context but does not define which are the possible
new contexts nor provides a method to generate such redefined constraints. [2] tries
to improve the understandability of OCL constraints but without considering the
possibility of redefining the constraint using a different context.

The structure of the paper is as follows. Next section defines several equivalences
between OCL expressions. Then, we propose techniques to change the context of a
constraint to a particular entity type (section 3) and we extend them to any entity type

 3

of the CS (section 4). Section 5 discusses how to select the best representation among
the alternatives generated in sections 2 and 4. Finally, we give our conclusions and
point out future work in Section 6.

2. Equivalences between OCL expressions

As we said, one of the possible ways to generate an alternative representation for a
certain constraint is to replace its body with an equivalent one. We achieve it by
means of the list of equivalences between OCL expressions presented in this section.
Hence, each expression on the one side of the equivalence may be replaced with the
expression on the other side. The list is not exhaustive but it contains those
equivalences we believe to be the most usual and/or useful ones.

Section 2.1 presents a list of basic equivalences. Section 2.2 defines equivalences
to be able to remove the allInstances operation. Finally, section 2.3 provides
equivalences to transform an OCL expression to conjunctive normal form (CNF).
Equivalences in sections 2.1 and 2.3 may be applied to any OCL expression,
including derivation rules and operation pre and postconditions. Section 2.2 is
specific for integrity constraints.

Assume we define an integrity constraint in the CS of Figure 1.1 to prevent junior
employees (those with an age<25) to earn more than the maxJuniorSal defined for
their department. It could be defined by means of the following OCL expression:

context Department inv MaxSalary: Department.allInstances->forAll(d| not
d.employee->select(e|e.age<25)->exists(e|e.salary>d.maxJuniorSal))

Applying the set of equivalences we propose, we could transform the expression
defining the previous constraint into the equivalent one:

context Department inv MaxSalary’: self.employee->forAll(e| not e.age<25 or not
e.salary>self.maxJuniorSal)).

Note that the meaning of both constraints is exactly the same. However, the
second expression is clearly much simpler. We have obtained it by applying first
equivalences 31 and 25 in section 2.1; then removing the allInstances operation (see
section 2.2) and finally transforming the resulting expression to CNF (section 2.3).
We will see in section 3 that MaxSalary’ may even be defined by means of a simpler
OCL expression if using another entity type as a context entity type.

2.1 Basic equivalences

We group the equivalences by the type of expressions they affect. The capital letters
X, Y and Z represent arbitrary OCL expressions of the appropriate type. The letter o
represents an arbitrary object.

Note that, the list is specified in a manner that when applied in the left-right
direction, the equivalences reduce the number of different operations that can appear
in an OCL expression (for instance, equivalence 14 allows to avoid using the includes
operation) or generate shorter expressions (see equivalences 28-31).

 4

Table 2.1 List of equivalences

1. <> ↔ not = 2. X = true ↔ X
3. X = false ↔ not X 4. not false ↔ true
5. not true ↔ false 6. X and false ↔ false
7. X and true ↔ X 8. X or false ↔ X
9. X or true ↔ true 10.not X>Y ↔ X<=Y
11.not X>=Y ↔ X<Y 12.not X<Y ↔ X>=Y

Boolean
types

13.not X<=Y ↔ X>Y
14. X->includes(o)↔
 X->count(o)>0

15. X->excludes(o) ↔
 X->count(o)=0

16. X->includesAll(Y) ↔
 Y->forAll(y1| X->count(y1)>0)

17. X->excludesAll(Y) ↔
 Y->forAll(y1| X->count (y1)=0)

18. X-> isEmpty() ↔ X->size()=0 19. X->notEmpty() ↔ X->size()>0
20. X.attr ↔ X->collect(attr) 21. X->including(o) ↔ X->union(Set{o})

Collection
types

22. X->excluding(o) ↔ X->- (Set{o}) 23. X->union(Y)->forAll(Z) ↔
 X->forAll(Z) and Y->forAll(Z)

24. X->exists(Y) ↔
 X->select(Y)->size()>0

25. not X->exists(Y) ↔ X->forAll(not Y)

26. X->reject(Y) ↔ X->select(not Y) 27. X->one(Y) ↔ X->select(Y)->size()=1
28. X->select(Y)->size()=0 ↔
 X->forAll(not Y)

29. X->select(Y)->size()=X->size() ↔
 X->forAll(Y)

Predefined
iterators

30. X->select(Y)->forAll(Z) ↔
 X->forAll(Y implies Z)

31. X->select(Y)->exists(Z) ↔
 X->exists(Y and Z)

2.2 Removing the allInstances operation

AllInstances is a predefined feature on classes that gives as a result the set of all
instances of the type that exist at the specific time when the expression is evaluated
[9]. For instance, a constraint like “all employees must be older than 16” can be
expressed as:

context Employee inv ValidAge: Employee.allInstances->forAll (e| e.age>16)
This constraint could also be specified using the variable self that represents any

instance of the context entity type:
 context Employee inv ValidAge’: self.age>16

Since constraints are assumed to be true for all instances of the context entity type
(i.e. for all possible values of the self variable), both constraints are equivalent.
Moreover, ValidAge’ is clearly simpler than ValidAge.

We propose two equivalences to include/remove the allInstances operation. They
are applicable when the type over which allInstances is applied coincides with the
context entity type (cet) of the constraint. They may not be applied if the constraint
already contains any explicit or implicit reference to the self variable.
− cet.allInstances->forAll(v|Y) ↔ Y, once replaced all occurrences of v (the iterator

variable) in Y with self. As an example, see the previous ValidAge’ constraint.
− cet.allInstances->forAll(v1,v2,…vn| Y) ↔ cet.allInstances->forAll(v2..vn|Y) once

replaced all the occurrences of v1 in Y with self.

 5

2.3 Transforming to conjunctive normal form

A logical formula is in conjunctive normal form (CNF) if it is a conjunction
(sequence of ANDs) consisting of one or more clauses, each of which is a disjunction
(sequence of ORs) of one or more literals (or negated literals). Likewise, we can
define a CNF for OCL expressions that evaluate to a boolean value.

OCL expressions can be translated into CNF with the following rules:
1. To eliminate the if-then-else, the implies and xor constructs using:

a. X implies Y ↔ not X or Y
b. if X then Y else Z ↔ (not X or Y) and (X or Z)
c. X xor Y ↔ (X or Y) and (not X or not Y)

2. To move not inwards by using:
a. not (not X) ↔ X
b. DeMorgan’s laws: not (X or Y) ↔ not X and not Y

 not (X and Y) ↔ not X or not Y
3. Repeteadly distributive or over and by means of:

a. X or (Y and Z) ↔ (X or Y) and (X or Z)

3. Changing the context of a constraint

Each OCL constraint is defined in the context of a specific entity type, the context
entity type. In general, the designer may choose the context used to define a particular
integrity constraint among several entity types. As we have shown in the introduction,
it is sometimes useful to use a certain context instead of another one. However, it is
not possible to guarantee that the best context will be the one selected by the
designer.

We propose in this section a method that, given a constraint c1 defined over a
context entity type cet1, automatically obtains a semantically equivalent constraint c2
defined over a different context entity type cet2, provided by the designer Two
constraints are semantically equivalent if they prevent the information base to be in
the same set of inconsistent states. Intuitively, we may ensure that c2 and c1 are
semantically equivalent when the sets of instances verified by both constraints
coincide and the condition to be checked is also the same. Our method always
guarantees these two conditions.

The change of context makes only sense when the constraint is defined by using a
single instance of the context entity type (i.e. when using the self variable). Hence, it
does not make sense to rewrite an integrity constraint defined with the allInstances
operation since its body will always be the same. As we have seen, some of the
equivalences proposed in the previous section allow reducing the number of times
that this happens.

We first address the case where cet2 is any entity type of the CS related with cet1
through a sequence of relationship types. After, we deal with the case where cet2
belongs to the same taxonomy as cet1. Both alternatives are not exclusive since cet2
may belong to the same taxonomy as cet1 and be also related with it. It may happen

 6

that several semantically equivalent constraints defined over cet2 exist. Then, our
method generates all of them.

We generalize those ideas in the next section to be able to rewrite a constraint in
terms of all its possible context entity types.

3.1 Changing the context between related entity types

This section focuses on the translation of a constraint c1 with context cet1 to a
semantically equivalent constraint c2 with context cet2. A necessary condition is that
cet1 and cet2 are related, i.e. that there is a sequence of relationship types that allows
navigating between cet1 and cet2. Otherwise, it is not possible to obtain c2 since it
would not be possible to verify it over the same set of instances as c1 (one of the
requirements to consider c1 and c2 semantically equivalent).

Moreover, we must ensure that there is some sequence of relationship types
connecting cet1 with cet2 that verifies that setcet1 = set’cet1; where setcet1 is the set of
instances of cet1 that c1 restricts while set’cet1 is the set of instances of cet1 obtained
when navigating from the instances of cet2 to cet1 through that sequence.

Given a sequence of relationship types seqRT connecting cet1 with cet2 we can
determine whether setcet1 = set’cet1 by studying the multiplicity of the relationship
types included in seqRT.

Intuitively, if two entity types A and B are related through a relationship type AB
with the multiplicity 0..*:1..* (see Figure 3.1) it means that each instance of A is
related at least to an instance of B. Thus, if we navigate from the instances of B to the
related instances of A we necessarily obtain all A instances. Therefore, it is possible to
change the context of a constraint defined in A from A to B. However, this is not the
case from B to A because the minimum 0 multiplicity does not guarantee all instances
of B to be related with instances of A. For instance, the constraint “context A inv:
self.a1>0” may be translated to: “context B inv: self.a->forAll(a1>0)”. On the
contrary, the constraint “context B inv:self.b1<5” when translated to A (context A inv:
self.b->forAll(b1<5)) would not prevent that instances of B which are not related to A
have a value in b1 lower than 5.

Then, we can state that setcet1 = set’cet1 if the value of all minimum multiplicities of
roles used to navigate from cet1 to cet2 through the relationship types in seqRT is at
least one. This guarantees that the navigation from cet2 to cet1 reaches all cet1
instances. Following with the previous example, we can change the context of a
constraint from A to B, A to C, B to C and C to B, but not from B to A or C to A.

Depending on the specific body of the constraint we may be able to relax this
multiplicity condition. When the body of c1 permits to deduce that the constraint only
affects those instances of cet1 related with some instance of cet2 we can use cet2 as
context of c1. Roughly, this happens when each literal appearing in the body of c1
includes a navigation to cet2. As an example consider the MaxSalary constraint of
section 2. Even though not all departments have employees assigned, the constraint
only affects departments with employees (the others always evaluate the constraint to
true). Thus, we can use Employee as an alternative context for the constraint.

 7

Note that, for a given constraint, there may be several different sequences of
relationship types from cet1 to cet2 that verify the previous condition. Each different
sequence results in a different alternative representation of c1.

We formalize the problem of changing the context between two entity types as a
path problem over a graph representing the CS. Next subsections explain how to
create the graph, to find all different solutions and, for each one, to redefine the
constraint over the new context.

 A BAB a b
0..* a1 : integer b1 : integer1..*

C BCb c
1..* c1 : integer 1..*

Figure 3.1 - Example of a conceptual schema

3.1.1 Graph definition
The basic idea to represent the CS by means of a graph is to consider the entity types
as vertices of the graph and the relationship types as edges between those vertices.
Moreover, for our purposes, we want to obtain a graph G that satisfies the following
condition: if the graph presents a path from vertex v1 to vertex v2 then constraints
defined over v1 can be redefined using v2 as a context entity type.

A path is a sequence of vertices such that each vertex is connected to the next
vertex in the sequence (i.e. there exists at least an edge between each pair of
consecutive vertices) and where there are no repeated vertices [6].

The graph must be a directed graph (digraph), since being able to change
constraints from cet1 to cet2 (i.e. from the vertex representing cet1 to the vertex
representing cet2) does not imply that we can also change constraints from cet2 to cet1,
the context change is not symmetric. For instance, consider the graph of Figure 3.2,
which represents the CS of Figure 3.1. The graph shows that constraint defined over
A can also be expressed over B or over C. Constraints defined over B can be
expressed over C but not over A. Constraints defined over C can be expressed over B.

A B C

Figure 3.2 – Example graph

Sometimes the graph may also be a multigraph since it may contain two or more
edges with the same direction between a pair of vertices. This happens when the two
corresponding entity types are related through more than one relationship type.

According to those ideas, we build the graph G by means of the following rules:
− All entity types, including reified ones (i.e. association classes), are vertices of G.
− For each binary relationship type between two entity types A and B, the edge A B

is included in G if the minimum multiplicity from A to B is at least one. The edge
B A is included when the minimum multiplicity from B to A is at least one.

− Given a n-ary relationship type R among a set of entity types E1,…En we add and
edge from Ei Ej if we can deduce, from the multiplicities of roles in R, that the
minimum multiplicity from Ei to Ej is at least one. In class diagrams, these binary
multiplicities remain unspecified. [8] demonstrates that when the multiplicity of

 8

the role next to Ej is at least one, all the multiplicities from any Ei to Ej are at least
one, and thus, the edge Ei Ej is included in the graph.

− For each vertex representing a reified entity type RET, we add the edges RET E1,
RET E2,…,RET En where E1..En are the participants of the relationship type.
We add these edges since an instance of the reified type must be always related to
an instance of each participant type. We add the inverse edges depending on the
multiplicities of the relationship type. If RET is the reification of a binary
relationship type R, we add E1 RET if E1 E2 exist (and conversely with E2).
Similarly, If R is n-ary, we add Ej RET if exists an Ei that verifies Ej Ei.

− Since subtypes inherit all the relationship types of their supertypes, for each edge
A B we add an edge Ai B for each Ai subtype of A. Note that for edges of kind
B A we do not add B Ai since the fact that each instance of B is related with an
instance of A does not imply that it is also related with an instance of Ai.

The graph obtained with these rules is valid for any constraint. Then, if there is a path
from cet1 to cet2 all the constraints defined over cet1 can be expressed using cet2.
Moreover, as we have seen before, a context change from cet1 to cet2 may also be
possible (even though the multiplicity condition is not satisfied) when the body of the
constraint only affects those instances of cet1 related with instances of cet2. To deal
with these special cases, we also add to G some edges that are specific for concrete
constraints. These edges are labeled with the name of the constraint and paths
including them are only valid for changing the context of that particular constraint.

As running example, consider the CS of Figure 3.3. It specifies information about
the departments of a company, their projects and their employees and it includes six
textual integrity constraints. The first two are the previous MaxSalary and ValidAge
constraints (see section 2). The other ensure that departments with more than five
employees are not managed by a freelance employee (NotBossFreelance), that all
projects have at least two project managers (AtLeastTwoProjectManagers), that each
employee assigned to a project finishes his contract after the due date of the project
(PossibleEmployee) and that the number of hours per week that freelances work lies
between 5 and 30 (ValidNHours).

Figure 3.4 shows the graph corresponding to the previous CS. We can draw from it
that constraints over Project may be reexpressed over Employee, Department and
Category; constraints over Employee can be reexpressed over Project, Department
and Category; constraints over Category can not be changed to any other context; etc.

The edge WorksIn from Department to Employee is labeled with the name of the
constraint MaxSalary because this is the unique constraint that can be changed from
Department to Employee.

 9

Department

Employee

Freelance

{disjoint,complete}

W orksIn employee

1 *

Managesmanaged boss

0..1 1

hoursWeek : natural

name : string
maxJuniorSal:M oney

name : string
age : natural
salary: M oney

context Department inv MaxSalary: self.employee->forAll(e| e.age>=25 or e.salary<=self.maxJuniorSal)
context Department inv NotBossFreelance:
 self.employee->size()>5 implies not self.boss.oclIsTypeOf(Freelance)
context Department inv AtLeastTwoProjectM anagers:
 self.project->forAll(p | p.employee->select(e|e.category.name=”PM ”)->size()>=2
context Project inv PossibleEmployeee: self.employee->forAll(e|e.expirationDate<self.dueDate)

context Employee inv ValidAge: self.age>16

context Freelance inv ValidNHours: self.hoursWeek>=5 and self.hoursWeek<=30

employer

Regular
Project

name: String
dueDate: Date

1..*

1..*

1..*

Category

name : String

1..*

1*

BelongsTo

Develops
AssignedTo

Figure 3.3 - Conceptual schema used as running example

Department Employee Category
Manages

BelongsTo

Project Freelance

Regular

AssignedTo

BelongsToDevelops
 Develops

AssignedTo
BelongsTo

WorksIn

WorksIn(MaxSalary)

AssignedTo

AssignedTo

Figure 3.4 – Graph of the conceptual schema

3.1.2 Computing all possible alternative paths
Each different path from cet1 to cet2 represents a different way to express the original
constraint c1 in terms of the new context cet2. To compute all alternative paths from
cet1 to cet2 we can easily adapt (as we have done) a graph-searching procedure such
as the depth-first search [6], using cet1 as initial vertex and terminating the search
only after all different paths reaching cet2 have been generated. Next section uses
these paths to redefine c1 in terms of the context cet2.

For instance, the possible paths from Department to Employee are the following:
Department-Manages-Employee and Department-Develops-Project-AssignedTo-
Employee. When looking for alternatives for the constraint MaxSalary we can use the
edge WorksIn from Department and Employee, and thus, there is an additional path:
Department-WorksIn-Employee.

 10

3.1.3 Redefining the constraint over the new context
Given a constraint c1 with a body X defined over cet1 and a path p={e1,..,en} (where
e1..en are a set of edges linking the vertices {cet1,v2,..vn,cet2}), the semantically
equivalent constraint c2 defined over cet2 has the form:
context cet2 inv c2: self.r1.r2. … rn->notEmpty() implies self.r1.r2. … rn ->forAll(v|X)

where all occurrences of self in X have been replaced with v and r1..rn are the roles to
navigate from cet2 to cet1 using the relationship types appearing in p. Therefore, r1
represents the navigation from cet2 to vn using the relationship type en, r2 the
navigation from vn to vn-1 using en-1, and, finally, rn represents the navigation to cet1
from v2.

c1 and c2 are equivalent since both apply the same condition to the instances of cet1
(the condition X) and apply it over the same set of instances (guaranteed by the graph
definition process).

As an example, the constraint MaxSalary (context Department inv:self.employee->
forAll(e| e.age>=25 or e.salary<=self.maxJuniorSal)) may be redefined over
Employee because of the path p={WorksIn}. The redefined constraint MaxSalary’ is:

context Employee inv: self.employer->notEmpty() implies self.employer->
forAll(d|d.employee->forAll(e.age>=25 or e.salary<= d.maxJuniorSal))

Since OCL does not define the navigation through n-ary relationship types, when
ei represents an n-ary relationship type between vi+1 and vi, we must navigate first
from vi+1 to the corresponding reified entity type and then from the reified entity type
to vi.

Moreover, if an edge ei links vertices vi+1 and vi, the corresponding relationship
type R must exist between the entity types Ei+1 (represented by vi+1) and Ei
(represented by vi) or between Ei+1 and a subtype of Ei. In the latter case when
navigating from Ei+1 to Ei we need to add “select(oclIsTypeOf(subtype(Ei))” to the
corresponding ri. For instance, the constraint ValidNHours when translated from
Freelance to Category results in: self.employee->select(e|e.oclIsTypeOf(Freelance)).
oclAsType(Freelance).hoursWeek >= 5 and …

We provide some equivalences to simplify the new constraint c2.
1. self.r1.r2. … rn->notEmpty() ↔ true if the multiplicity of self.r1.r2. … rn is at least

one, i.e. if all the minimum multiplicities of r1.r2. … rn are at least one.
2. X->forAll(v|v.Y) ↔ X.Y, if X is a collection of a single element. All the

occurrences of v in Y are replaced with X.
3. self.r1.r2. ….ri.rj… rn->forAll(X) ↔ self.r1.r2. ….ri-1.rj+1… rn->forAll(X), when ri

and rj are the two roles of the same binary relationship type and the minimum
multiplicity of ri is at least one. When the maximum multiplicity of rj is also one,
the objects obtained at rn are the same in both expressions. Otherwise, the
sequence of navigations on the left hand side may return more objects at rn.
However, when the minimum multiplicity of all opposite roles from r1 to ri-1 is at
least one, those additional objects will be checked in the right hand side
expression when evaluating another instance of the context entity type.

4. X.ri->forAll(v| v.rj.Y) ↔ X->forAll(v2| v2.Y), when ri and rj are the two roles of
the same binary relationship type. Each additional occurrence of v in Y must be

 11

replaced by v2.ri or by v2.ri->forAll over the expression where v appeared when
the multiplicity of ri is greater than 1. The rule can also be applied when the body
of the forAll is a conjunction or a disjunction of various literals When it is a
disjunction the multiplicity of v2.ri must be at most one.

5. Given a reified entity type RET (see Figure 3.5): X.ret.b.Y ↔ X.b.Y
6. Given a reified entity type RET: context RET inv: self.a.b.r1..rn->forAll(X) ↔

context RET inv: self.b.r1..rn->forAll(X)

A BRET b

RET

a

Figure 3.5 – A reified entity type

With these equivalences, we can simplify the previously obtained MaxSalary’
constraint. We first apply equivalence 1 to remove self…->notEmpty(). Then,
equivalence 2 to remove the first forAll (from self.employer->forAll(d|d.employee-
>forAll… to self.employer.employee->forAll…). Afterwards, we apply equivalence 3
to remove the redundant navigation employer.employee (obtaining self->forAll(…)).
Finally with equivalence 2 again, we obtain the new constraint definition, which is
clearly much simpler than the previous one:

context Employee inv: self.age>=25 or self.salary<=self.employer.maxJuniorSal

3.2 Changing the context within a taxonomy

Given a constraint c1 defined over the context entity type cet1 we are interested in
redefining c1 using cet2 as a context entity type, where cet1 and cet2 belong to the same
taxonomy. This implies that either cet1 is a subtype of cet2, a supertype or both have a
common supertype (they are sibling types).

When cet1 is subtype of cet2, the equivalent constraint c2 defined over cet2 has as a
body: self.oclIsTypeOf(cet1) implies X, where X is the body of c1. This way we ensure
that c2 is only applied over those instances that are instance of cet1.

As an example, consider the constraint ValidNHours. If we want to move the
constraint from Freelance to Employee, the new constraint would be:

context Employee inv ValidNHours:
 self.oclIsTypeOf(Freelance) implies self.hoursWeek>5 and self.hoursWeek<30

If cet1 is a supertype of cet2, the new constraint c2 is defined in cet2 with exactly the
same body as c1. However, c2 cannot replace c1 since in general cet1 may contain
instances not appearing in cet2. Thus, both constraints are not semantically
equivalent1. If the set of generalization relationships between cet1 and its direct
subtypes is covering [10] (also called complete) c1 can be replaced as long as we add
a new constraint to each direct subtype of cet1 with the same body as c1. For instance,
if we try to change the constraint ValidAge from Employee to Freelance we need to
add also ValidAge to Regular to ensure that all employees have a valid age.

1 Except for those constraints where the body is already defined to apply only over the

instances of the subtype cet2. In such a case we c2 is equivalent to c1

 12

When cet1 and cet2 share a common supertype the new constraint c2 can never
replace c1 since not all instances of cet1 need to be instances of cet2. As in the subtype
case, the body of c2 would be self.oclIsTypeOf(cet1) implies X.

Before finalizing the context change to a new context entity type cet we can apply
two simplification rules specially useful for this kind of transformations:

− self.oclIsTypeOf(cet) ↔ true
− self.oclAsType(cet).Y ↔ self.Y

4. Computing all alternative context changes for a constraint

Once we know how to change from a context entity type to another (given) context,
we are going to show how to obtain all alternative representations of a certain
integrity constraint assuming that the new context may be any entity type of the CS.

To compute all possible alternatives we generalize the methods described in
section 3. We build the graph as we have defined in section 3.1.1 with the only
difference that all relationship types with multiplicities *:* are assumed to be reified.
In this way, all reified entity types become vertices of the graph and turn out to be
candidate context entity types.

In our example, the previous rule implies including the vertex AssignedTo into the
graph. Figure 4.1 shows the updated part of the graph where new edges have been
added according to the rules described in section 3.1.1.

Employee

Project

AssignedTo

AssignedEmployee
AssignedTo

AssignedTo

AssignedProject

AssignedProject

AssignedEmployee
Freelance

Regular

AssignedEmployee
AssignedEmployee

Figure 4.1 – Updated graph

Now, to compute all possible representations of a constraint c1, defined over cet1,
when redefined over an alternative entity type E appearing in the graph we need to
consider all possible paths between cet1 and every different E.

As an example, we obtain sixteen different alternative representations of the
constraint MaxSalary defined in Figure 3.3 (one for every path between Department
and the related types in the graph: Employee, Project, Category and AssignedTo).
Table 4.1 shows the list of valid paths.

Table 4.1 – Valid paths for MaxSalary

Final context Path
Department – Manages - Employee
Department - WorksIn -Employee
Department – Develops – Project – AssignedTo - Employee

Employee

Department – Develops – Project – AssignedProject – AssignedTo –
AssignedEmployee - Employee

 13

Department – Manages - Employee - BelongsTo - Category
Department - WorksIn -Employee -BelongsTo – Category
Department – Develops – Project – AssignedTo - Employee -BelongsTo – Category

Category

Department – Develops – Project – AssignedProject – AssignedTo –
AssignedEmployee - Employee BelongsTo - Category
Department – Develops – Project
Department – Manages – Employee – AssignedTo – Project
Department – Manages – Employee – AssignedEmployee – AssignedTo –
AssignedProject – Project
Department – WorksIn – Employee – AssignedTo – Project

Project

Department – WorksIn – Employee – AssignedEmployee – AssignedTo –
AssignedProject – Project
Department – Manages – Employee – AssignedEmployee - AssignedTo
Department - WorksIn –Employee– AssignedEmployee – AssignedTo

AssignedTo

Department – Develops – Project - AssignedProject– AssignedTo

When looking for a simpler representation of c1, we can reduce the search space
just by considering the paths including only edges representing relationship types
referred in the body of the original constraint.

We can discard the other paths since alternatives obtained with them are more
complex than the original one. Recall that any alternative constraint representation c2
for a constraint c1 obtained using the graph G initially presents a body consisting in a
navigation (obtained from the path) from the context cet2 of c2 to the context cet1 of c1
followed by the same body as c1. Therefore, if no simplifications can be applied, c2 is
more complex than c1 since its complexity may be regarded as that of c1 plus that of
the navigation from cet2 to cet1. Note that simplifications over c2 can only be applied
when the edges that form the path from cet2 to cet1 are also included in the body of c1.

Therefore, to obtain the relevant alternative representations for a constraint c1 it is
enough to apply the previous algorithm over the graph G’, subgraph of G, that
contains the edges of G representing relationship types referenced in the body of c1
along with their vertices and the vertices corresponding to the reified entity types of
those edges (plus the edges between the reified type and the other entity types in G’).

The subgraph G’ corresponding to the constraint MaxSalary is shown in Figure
4.2. We reduce the number of alternative representations from sixteen to only one.

Department Employee

WorksIn

WorksIn(MaxSalary)

Figure 4.2 – Subgraph for the constraint maxSalary

According to this optimization, table 4.2 summarizes the alternative
representations (already simplified) for all constraints of our example.

For instance, the constraint PossibleEmployee over the reified type AssignedTo is
first defined as:

context AssignedTo inv: self.project->notEmpty() implies self.project->forAll(p|
p.employee->forAll(e|e.expirationDate<self.project.dueDate)

and then simplified by means of the equivalences in section 3.1.3.

 14

Table 4.2 – Alternative representations for the example constraints

Constraint Alternative representations
context Department inv:
 self.employee->forAll(e|e.age>=25 or e.salary<=self.maxJuniorSal)

MaxSalary

context Employee inv: self.age>=25 or self.salary<=self.employer.maxJuniorSal
context Department inv:
 self.employee->size()>5 implies not self.boss.oclIsTypeOf(Freelance)
context Employee inv:
 not self.managed.employee->size()>5 or not self.oclIsTypeOf(Freelance)

NotBossFreelance

context Freelance2 inv: not self.managed.employee->size()>5
context Department inv:
 self.project->forAll(p|p.employee->select(e|e.category.name=”PM”)->size()>=2
context Project inv: self.employee->select(e| e.category.name=”PM”)->size()>=2

AtLeastTwo
ProjectManagers

context Employee inv:
 self.project.employee->select(e|e.category.name=”PM”)->size()>=2
context Project inv: self.employee->forAll(e|self.dueDate<e.expirationDate)
context Employee inv: self.project->forAll(p|p.dueDate>self.expirationDate)

PossibleEmployee

context AssignedTo inv: self.project.dueDate>self.employee.expirationDate
ValidAge context Employee inv ValidAge: self.age>16
ValidNHours context Freelance inv: self.hoursWeek>=5 and self.hoursWeek<=30

5. Finding the best representation for a constraint

In many situations, the designer is interested to find the best alternative representation
for an integrity constraint c1 among all alternative representations we may obtain by
means of the method we have proposed.

To obtain the best representation we must be able to compare the set of computed
alternative constraints. Given two semantically equivalent constraints c1 and c2, we
define that c2 is better than c1 if the complexity(c1) > complexity(c2) where complexity
is a function that returns the complexity value of an OCL expression, according to a
designer-defined complexity model. Clearly, the best alternative representation may
in some cases be the original one.

The election of a particular complexity model may be caused by different goals in
the simplification process like improving understandability of the resulting
representation or selecting the one that involves more efficient constraint checking.
For instance, a designer may want to define that c1 is better than c2 if it contains a
fewer number of navigations.

Very little work has been done in the area of metrics to evaluate OCL expressions.
[12] proposes a set of parameters to characterize an OCL expression (number of
attributes, navigations, operations…) but does not interpret them. [7] proposes that a
constraint is simpler if it contains less navigations and less iterator expressions but
does not clarify whether it is preferable a constraint with less navigations than another
with less iterator expressions.

2 The constraint can be defined over Freelance as a subtype of Employee because the body of

the constraint can only be violated by Freelance instances

 15

It is out of the scope of this paper to propose a complete complexity model for
OCL expressions. However, as an example, we define a partial complexity model to
optimize integrity constraint checking since, as discussed in [1], the election of a
particular representation affects the efficiency of this process. We consider that a
constraint c1, defined over cet1, is better than an equivalent constraint c2, defined over
cet2, if the number of entities accessed when evaluating c1 over a single instance of
cet1 is lower than the number of entities taken into account when evaluating c2 over an
instance of cet2.

Obviously, at design time we cannot compute the exact number of entities
accessed. Nevertheless, we may still compare alternative representations of the same
constraint. For instance, among the alternatives of table 4.2, MaxSalary is best
redefined over Employee because we only need to compare the employee with his/her
department instead of all the employees of a department. Moreover,
PossibleEmployee is best redefined over AssignedTo since we only need to access
one project and one employee while in the other two options we access all employees
of a project or all projects of an employee.

6. Conclusions and further work

We have presented a method that given an OCL constraint generates its alternative
representations. Our method considers changes in the body of the constraint (defined
as equivalences between expressions) as well as the possibility of redefining the
constraint using as a context a different entity type of the conceptual schema. As far
as we know, ours is the first method able to generate all alternative representations of
a given integrity constraint in terms of possible new context entity types.

The main part of our method is formalized as a path problem over a graph
representing the conceptual schema. The graph is created in such a way that every
path between two vertices corresponds to a different alternative to represent the set of
constraints defined over the first vertex (i.e. over the entity type represented by the
vertex) by using the second one as a context. Using this graph we can compute the
different alternative representations and choose the best one using a complexity
model provided by the designer.

The method proposed in this paper is useful in several situations like increasing the
understandability of integrity constraints, helping its validation, improving the
efficiency of integrity checking or learning the OCL language itself.

Further research may involve looking for additional useful equivalences that may
improve further the results of our method or the definition of a set of complexity
models that would allow obtaining the best representation of a given constraint
according to the preferences of the designer.

 16

References

1. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE'05), to appear, (2005)

2. Correa, A., Werner, C.: Applying Refactoring Techniques to UML/OCL Models. In: Proc.
7th International Conference on the Unified Modeling Language (UML'04), Lecture Notes
in Computer Science, 3273 (2004) 173-187

3. Embley, D. W., Barry, D. K., Woodfield, S.: Object-Oriented Systems Analysis. A Model-
Driven Approach. Yourdon Press Computing Series. Yourdon (1992)

4. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In: A.
Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer-Verlag (2002) 85-
114

5. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. ISO, (1982)

6. Jungnickel, D.: Graphs, networks and algorithms. Springer-Verlag (1999)
7. Ledru, Y., Dupuy-Chessa, S., Fadil, H.: Towards computer-aided design of OCL

constraints. In: J. Grundspenkis and M. Kirikova, (eds.): CAiSE'04 Workshops
Proceedings, Vol. 1. Faculty of Computer Science and Information Technology, Riga
Technical University, Riga, Latvia (2004) 329-338

8. McAllister, A.: Complete rules for n-ary relationship cardinality constraints. Data Knowl.
Eng. 27 (1998) 255-288

9. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14) (2003)
10. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-02)

(2003)
11. OMG: MDA Guide Version 1.0.1. (2003)
12. Reynoso, L., Genero, M., Piattini, M.: Towards a metric suite for OCL Expressions

expressed within UML/OCL models. Journal of Comptuer Science and Technology 4
(2004) 38-44

