
Declarative Taxonomic Constraint Enforcement in
Conceptual Schemas (Extended Version)

Dolors Costal, Cristina Gómez and Ernest Teniente

Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{dolors|cristina|teniente}@lsi.upc.edu

Fax number: 93 413 7833

Abstract. We propose to declaratively specify policies for the enforcement of
taxonomic integrity constraints directly in the structural conceptual schema.
These policies depend on the kind of constraint to be enforced (disjointness,
covering or specialization) and on the particular event that may cause its
violation. We provide a formal definition of these policies and of the repair
actions that must be considered to ensure constraint enforcement. Those repairs
may then be generated automatically by a repair process that is guaranteed to
terminate. Our work eases conceptual modelling since defining taxonomic
constraint enforcement declaratively allows omitting its specification from the
external events in the behavioural conceptual schema.

1. Introduction

In recent years, proposals that give a key role to conceptual modeling in information
systems development are emerging. We may remark among them conceptual schema-
centric development (CSCD) [Oli05]. One of the main problems to solve to achieve
the CSCD goal is facilitating the designer the task of conceptual modeling. Our work
represents a step forward in this direction for the specification of taxonomic constraint
enforcement. In this sense, we propose to declaratively specify enforcement policies
in a single place in the structural conceptual schema (instead of spreading its behavior
among the specification of all the external events) and we provide a formalization that
serves as a basis for its implementation.

An information system maintains a representation of the state of a domain in its
information base (IB). The conceptual schema of an information system must include
all relevant knowledge about the domain. Hence, the structural conceptual schema
defines the structure of the IB and its constraints while the behavioural conceptual
schema defines how the IB changes when events occur.

Taxonomies are fundamental constructs of structural conceptual schemas [OT02].
In its most basic form, a taxonomy consists of a set of entity types and a set of
specialization relationships among them. A specialization relationship implies a
constraint between the populations of two types. Usually, taxonomies also include
other constraints like disjointness and covering.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Figure 1.1 illustrates a simple taxonomy that specializes entities of type Person as
entities of types Single, Married, Divorced or Widower. We assume a disjointness
constraint ensuring that a person has no more than one marital status and also a
covering constraint that guarantees each person has at least one.

Figure 1.1 Example of a taxonomy

Integrity enforcement ensures that constraints are satisfied after each update of the
IB. This may be achieved either by integrity checking, which rejects any update
leading to an inconsistent state of the IB; or integrity maintenance, aimed at repairing
constraint violations by performing additional updates that maintain the IB consistent.

The classical approach to specify how to perform integrity enforcement in
conceptual modelling has been to spread the enforcement of those constraints among
the various events (possibly a large number) of the behavioural schema that may
violate the constraint. Apart from increasing the difficulty of the conceptual
modelling task (since the designer must be able to determine all events that may
violate each constraint), this approach has a negative impact on the understandability
and modifiability of the resulting conceptual schemas (since integrity enforcement is
not localised in a single place but distributed among the behavioural schema).

In our example, an event of Marriage, aimed at adding two entities in the Married
subtype, will need to include also the removal of those entities from the type of their
previous marital status to maintain the IB consistent. Such additional removals are
also required into an event of Divorce or into the one of becoming a widower.

The approach we propose in this paper, which is independent of the particular
language used, overcomes the previous limitations by specifying taxonomic constraint
enforcement declaratively in the structural conceptual schema. We define a set of
predetermined policies for each taxonomic constraint, which depend on the type of
change that causes the constraint violation, and that can be easily specified by the
designer.

Another significant contribution of our work is the formalization of the proposed
constraint enforcement policies by a precise definition of the repair actions or
rejecting conditions for events they imply. This formalization serves as a basis for the
automatic generation of events that preserve consistency and for ensuring that this
generation process always terminates. An implementation of our taxonomic constraint
enforcement policies by means of SQL:1999 standard triggers is also presented.

In this way, our approach allows specifying integrity constraint enforcement
declaratively (without the need to know which events may violate a given constraint)
and in a localised way in the structural conceptual schema. As a consequence, the
definition of external events becomes simpler because only its intended effect must be
considered and taxonomic integrity enforcement actions or conditions may be
omitted.

In the previous example, our approach allows specifying that violations of the
disjointness constraint due to a subtype insertion must always be repaired by a policy
of removal of the entity from the previous subtype. Thus, the designer does not need

maritalStatus

 Single Married Divorced Widower

Person

 3

to care about including additional changes into the events of Marriage, Divorce nor
becoming a widower to specify integrity constraint enforcement since they will be
automatically determined from the specified policy.

This paper is structured as follows. Next section presents basic concepts. Sections
3 and 4 describe the intuition and formalization of the proposed policies, respectively.
Section 5 shows termination for any procedure based on our formalization. Section 6
presents a procedure to repair events by means of SQL triggers. Section 7 reviews
related work. Finally, section 8 gives the conclusions and outlines future work.

2. Basic Concepts

In this section we present basic concepts of structural and behavioral conceptual
schemas in terms of first-order logic in order to be independent of particular
conceptual modeling languages.

2.1 Structural conceptual schemas

Structural conceptual schemas define the structure of the IB and its constraints. We
assume that entities are instances of their types at particular time points [Bub77],
which are expressed in a common base time unit. We represent by E(e,t) the fact
entity e is instance of entity type E at time t. For example, Employee(Marta,D1)
means that Marta is an instance of Employee at time D1. The population of E at t is
the set of entities that are instances of E at t.

Taxonomies of entity types consist of a set of entity types and a set of
specialization relationships among them. A specialization is a relationship between
two entity types E’ and E, that we denote by E’ IsA E. For instance, JuniorEmp IsA
Employee. E’ is said to be a subtype of E, and E a supertype of E’. An entity type may
be supertype of several entity types, and it may be a subtype of several entity types. A
specialization implies a taxonomic specialization constraint between the populations
of the subtype and the supertype. In terms of the population of E’ and E, this implies
that all instances of E’ at a certain time point are also instances of E at that time point.

Generalization and specialization are two different viewpoints of the same IsA
relationship, viewed from the supertype or from the subtype. We denote by E Gens
E1,...,En the generalization of entity types E1,...,En to E. For instance, Employee Gens
JuniorEmp, SeniorEmp.

Given a generalization E Gens E1,...,En, we denote by Disjoint(E1,...,En) the
taxonomic disjointness constraint which indicates that an entity can be instance of at
most one Ei at t [Len87]. For example, Disjoint(JuniorEmp, SeniorEmp) would
indicate that an employee cannot be both junior and senior.

We also denote by Covering(E,E1,...,En) the taxonomic covering constraint of a
given generalization which indicates that every instance of E at t is instance of at least
one Ei at t [Len87]. For example, Covering(Employee, JuniorEmp, SeniorEmp) states
that an employee must be either junior or senior.

Note that generalizations labelled as overlapping (incomplete) in some
specification languages correspond to the absence of disjointess (covering) constraint.

 4

Satisfaction of taxonomic constraints can be ensured by the schema or by
enforcement. A constraint is satisfied by the schema when the schema entails the
constraint. For example, in ORM [Hal01] formal subtype definitions are required
which may imply the satisfaction of some taxonomic constraints. UML [OMG03]
admits derived types which can also ensure taxonomic constraints. A constraint must
be enforced when it is not satisfied by the schema, but it must be satisfied by the
information base [OT02]. Our work deals with the latter case.

2.2 Behavioural conceptual schemas

Behavioural conceptual schemas define how the IB changes when events occur. Our
description of behavioural conceptual schemas is mainly based on that of [Oli00].

The state of a domain at some time point is the set of instances of the entity and
relationship types that exist in the domain at that time. When the state of a domain
changes, the IB must change accordingly. We say that there is a change in the state of
a domain at time t if the entity or relationship instances at time t are different from
those existing at previous time t-1.

External events cause changes in the state of the domain and, consequently, in the
IB. External events can be defined precisely in terms of a more basic concept, a
structural event. A structural event causes an elementary change in the IB. These
event types are called structural because they are completely determined from the
structural part of a conceptual schema. We use two structural event types [COS97], to
update the contents of IB taxonomies: entity insertion and entity deletion.

Let E be an entity type. We denote an entity insertion (resp. deletion) structural
event in E by predicate Insert_E(x,t) (resp. Delete_E(x,t)). Its effect is the addition
(removal) of the fact that entity x is instance of entity type E at time t. It is assumed
that the event is applicable [VF85], that is, it ensures that the intended effect does not
hold at previous state. For each one of them, we formally specify its effect (denoted
by Eff) in the IB and also an applicability axiom (App) that guarantees that the event
is applicable. Formally,

Insert_E(x,t) Delete_E(x,t)
App: ∀x,t(Insert_E(x,t) → ¬E(x,t-1)) App: ∀x,t(Delete_E(x,t) → E(x,t-1))
Eff: ∀x,t(Insert_E(x,t) → E(x,t)) Eff: ∀x,t(Delete_E(x,t) → ¬E(x,t))
Entities existing (or not existing) at previous state of the IB that are not affected by

the structural events remain unchanged [VF85].
An external event consists of a set of structural events which causes composite

changes in the IB. The time at which the change occurs is the occurrence time of the
event. The effect of an external event Ev is defined by an expression (written in some
language) such that its evaluation gives the set S of structural event facts defined by
Ev. We denote S by {SE1,...,SEi,...SEn} and our work is independent of the language
used to specify the expression that permits to obtain the set S. For instance, an
external event Marriage of Pere and Maria at time 25 in the example of figure 1.1
would be: S={Insert_Married(Pere,25), Insert_Married(Maria,25)}.

 5

3. Specifying taxonomic constraint enforcement policies

Our proposal for taxonomic constraint enforcement specification consists of
providing, for each type of constraint and type of change that may cause its violation,
a set of predetermined policies (which may follow either integrity checking or
maintenance) for integrity enforcement. Policies must consider the type of change that
induces the violation because the enforcement strategies that make sense are different
depending on it.

In order to facilitate their practical use to the designer, the provided policies must
have a simple and clear meaning, there must be a reasonable number of them (not too
large) and, at the same time, they must offer the necessary expressiveness to deal with
the more usual cases of integrity enforcement. It is interesting to note that although
the meaning of policies might be simple considered individually, their global
implications to the enforcement of external events are usually not straightforward,
since multiple policies may interact.

In the following, we give an intuitive explanation of the policies we propose and,
finally, we provide an example of a taxonomy which combines several policies.

3.1 Disjointness Constraint

Given a generalization E Gens E1,...,En, a disjointness constraint Disjoint(E1,...,En)
indicates that every instance of E at time t is instance of at most one Ei at t. Therefore,
the only type of structural event that may induce a disjointness constraint violation is
an entity insertion in one of the subtypes of the generalization. This subtype insertion
may come directly from the external event definition or, indirectly, from the
application of a previous integrity maintenance policy.

Policy delete-when-subtype-insertion is an integrity maintenance policy that repairs
the external event by adding an action that deletes the involved entity from the
subtype of the generalization to which it belonged in the previous time instant. For
example, this policy is adequate to deal with the disjointness constraint of figure 1.1,
and thus, it is able to repair the event of Marriage presented in section 2.2:
S={Insert_Married(Pere,25), Insert_Married(Maria,25)}, by adding to it the deletion
of Pere and Maria from the subtype of their respective previous marital status.

The alternative policy restrict-when-subtype-insertion is an integrity checking
policy and, like all integrity checking policies, consists of rejecting the external event
that violates the constraint.

These policies might be used for disjointness constraints among entity types which
do not have a common direct supertype although we do not address this case.

3.2 Covering Constraint

The covering constraint for a generalization E Gens E1,...,En indicates that every
instance of the supertype E at time t is instance of at least one subtype Ei at t. Then,
there are two types of structural events that may induce a covering constraint
violation: an entity insertion in the supertype of the generalization or an entity
deletion (a set of entity deletions) from one (some) of the subtypes.

 6

Policy insert-in-Ei-when-supertype-insertion repairs a covering violation induced
by an insertion in a supertype by performing an insertion of the involved entity in a
particular subtype Ei. Observe that the subtype Ei is selected by the designer among
the subtypes of E when he specifies the policy. Policy restrict-when-supertype-
insertion deals with this case by rejecting the external event.

In case of a covering violation induced by deletions from subtypes, policy insert-
in-Ei-when-subtype-deletion adds an insertion of the involved entity in a particular
subtype Ei. Policy delete-when-subtype-deletion repairs this situation by performing a
deletion of the involved entity from the supertype of the generalization. Finally,
policy restrict-when-subtype-deletion rejects the external event.

3.3 Specialization Constraint

The specialization constraint for a relationship E’ IsA E indicates that every instance
of the subtype E’ at time t is instance of the supertype E at t. This constraint may be
violated only by two types of structural events: an entity insertion in the subtype of
the specialization relationship or an entity deletion from the supertype.

Policy insert-when-subtype-insertion repairs a specialization violation induced by
an insertion in the subtype by adding an insertion of the involved entity in the
supertype and restrict-when-subtype-insertion rejects the external event in that case.

Additionally, policy delete-when-supertype-deletion repairs a specialization
violation induced by a deletion from the supertype by performing a deletion of the
involved entity from the subtype and restrict-when-supertype-deletion rejects the
external event in the same situation.

3.4 Default policies

For practical purposes, we establish default policies. For disjointness constraint the
default policy is restrict-when-subtype-insertion. Covering constraints have as default
restrict-when-supertype-insertion and restrict-when-subtype-deletion depending on
the type of change. Default policies for specialization constraints are insert-when-
subtype-insertion and delete-when-supertype-deletion.

3.5 Application to an example

Consider the taxonomy of figure 3.1 that is part of a conceptual schema which
represents information about people currently related with a company. People are first
classified depending on whether they are employed by the company or not.
Unemployed people include, among others, people who have applied for a job in the
company. Employees may be temporary or permanent.

 7

Figure 3.1 Example of taxonomic constraint enforcement policies
This taxonomy includes the specification of policies for all taxonomic constraints

(default policies are omitted). Each policy is determined by the specific requirements
of the company. The policy insert-in-Temporary-when-supertype-insertion for the
complete constraint of generalization Employed Gens Temporary, Permanent is
appropriate because employees usually are temporary when they are hired in the
company. The policy delete-when-subtype-insertion for the disjoint constraint of
generalization Person Gens Employed, Unemployed is adequate because usually when
an unemployed person is inserted as employed we want to eliminate him as
unemployed and vice versa. The rest of policies can be explained similarly.

These policies allow specifying taxonomic constraint enforcement in a declarative
and localised way. Hence, as stated before, the definition of the external events
becomes simpler because only its intended effect must be considered and taxonomic
integrity enforcement actions or conditions to avoid them violating an integrity
constraint may be omitted since they can be obtained from the declared taxonomic
integrity enforcement policies.

In the following, we show this for a sample external event that violates several
constraints of the given schema. We explain intuitively how to repair the external
event according to the selected policies. The formal definition of this procedure is
described in section 4.

Assume an IB at time 1 containing: {Person(Pere,1), Person(Maria,1),
Employed(Pere,1), Permanent(Pere,1), Unemployed(Maria,1), Applicant(Maria,1)}.
Consider now a Substitution external event occurring at time 2 with the intended
effect of replacing an employee of the company (Pere) for another person (Maria)
previously unemployed. Its definition consists of the following structural events:
{Insert_Employed(Maria,2), Delete_Employed(Pere,2)}.

The Substitution external event induces the following violations:
1) The insertion of Maria as an employed person induces the violation of the covering
constraint of the generalization Employed Gens Temporary, Permanent because
Maria would be an employee neither temporary nor permanent. Then, according to
the insert-in-Temporary-when-supertype-insertion declared policy, the insertion
Insert_Temporary(Maria,2) must be included in the external event.
2) The insertion of Maria as an employed person also induces the violation of the
disjointness constraint associated to Person Gens Employed, Unemployed because,
after the insertion, Maria is both employed and unemployed. Due to the delete-when-
subtype-insertion policy, the deletion Delete_Unemployed(Maria,2) must be added. In
this case, the repair action of deleting Maria as unemployed induces itself a new
violation:

{disjoint: delete-when-subtype-insertion,
complete: delete-when-subtype-deletion,
insert-in-temporary-when-supertype-insertion}

Person
{disjoint: delete-when-subtype-insertion,
complete: delete-when-subtype-deletion}

Employed Unemployed

Permanent Temporary Applicant

{incomplete}

 8

2.1) The specialization constraint Applicant IsA Unemployed is violated since
Maria is no more unemployed but is still an applicant. The policy to apply is
delete-when-supertype-deletion (default policy), which establishes that the final
external event must include Delete_Applicant(Maria,2).

3) The deletion of Pere as employee induces the violation of the covering constraint
associated to Person Gens Employed, Unemployed since, after the deletion, Pere is a
person who is neither employed nor unemployed. According to the delete-when-
subtype-deletion policy, the deletion Delete_Person(Pere,2) must be included in the
external event.
4) The deletion of Pere as employee also induces the violation of the specialization
constraint Permanent IsA Employed. According to the delete-when-supertype-deletion
policy, the final external event must include Delete_Permanent(Pere,2).

Summing up, the resulting external event will include the original external event
together with the five repair actions determined by the selected policies:
{Insert_Employed(Maria,2), Delete_Employed(Pere,2), Insert_Temporary(Maria,2),
Delete_Unemployed(Maria,2), Delete_Applicant(Maria,2), Delete_Person(Pere,2),
Delete_Permanent(Pere,2)}.

4. Formalizing taxonomic constraint enforcement policies

We provide a formal definition of the proposed taxonomic constraint enforcement
policies that gives them precise semantics. This formalization establishes a logical
basis for the automatic repair of events to preserve consistency. Section 4.1 describes
the framework used. Sections 4.2, 4.3 and 4.4 present definitions of disjointness,
covering and specialization constraint policies, respectively.

4.1 Framework for policies definition

Enforced external events. The set of policies chosen for the taxonomic constraints of
a given structural conceptual schema must determine how to obtain, for any external
event to be applied to its IB, either an indication of rejection of the event or its
corresponding enforced external event. Intuitively, an enforced external event is an
event that preserves the intended effect of its original event but which maintains
consistency. Therefore, it consists of a set of structural events which necessarily
includes all structural events belonging to its original external event in order to
preserve all its changes and which may include additional structural events with the
purpose of repairing integrity. Figure 4.1 illustrates that the transitions of the IB are
always performed by means of enforced external events in our proposal.

Figure 4.1 Transition of the IB
In some cases, an enforced external event cannot be obtained and the original event

must be rejected. The reason may be that it violates a constraint for which an integrity
checking policy has been selected or because it is irreparable. Irreparable situations

IB(t-1) IB(t)Enforced external event
(corresponding to time t)

 9

may arise when the (enforced) external event performs changes of the IB which are
not jointly compatible. To indicate the rejection of the external event, we use an
additional predicate Abort.

States and transitions. The impact of taxonomic constraint enforcement policies on
enforced external events can be specified as declarative formulas by incorporating
states into a logical framework as in Statelog [LLM98] or in Zaniolo’s work [Zan93].
We take these approaches as a basis to define our policies.

We use states to describe the successive steps that, departing from an original
external event and the IB to which it must be applied, obtain either an enforced
external event or an indication of rejection.

Then, each transition from a state to its successor corresponds to the application of
a single policy or to the detection of an irreparable situation. In case of integrity
maintenance policies, the transition consists of the addition of a structural event to the
initial set of events. In case of integrity checking policies or irreparable situations, the
transition consists of the addition of the Abort fact. Intuitively, each intermediate state
corresponds to the partial enforced external event obtained so far.

The state of a predicate is represented as a superscript; thus for example
Insert_Es(x,t) corresponds to Insert_E(x,t) at state s. The successor state of a state s is
denoted by s+1. In general, state s+1 contains facts existing at state s plus the fact
added in the transition.

According to this framework, it is possible to define integrity maintenance policies
by means of declarative formulas. Each formula describes a transition from a state s to
its successor state s+1 and represents either the application of a maintenance policy
towards obtaining the enforced external event or the reaching of an indication of
rejection. More specifically, the antecedent of the formula should describe the
conditions at state s that must hold to apply the policy, and the consequent should
describe its effect at state s+1. Figure 4.2 illustrates these transitions, where Sefi

Si
stands for a structural event fact added in a transition.

Figure 4.2 Transitions to obtain the enforced external event or the rejection

The initial state s0 represents the starting point for the application of a selected set
of policies to transform a given external event (which occurs at time t and that must
be applied to the IB existing at time t-1) into its corresponding enforced external
event. Therefore, the initial state consists of the set of structural events superscripted
by s0 from the original external event that occurs at time t, and the set of facts
superscripted by s0 that belong to the IB at t-1.

The final state sn is obtained when an indication of rejection is added or when no
more policies can be applied, i.e. a fixpoint is reached for the set of formulas. In the
last case, it is composed by a set of structural events superscripted by sn that includes
all events from the original external event and the repair structural events added in the
transitions; and the set of facts superscripted by sn that belong to the IB at time t-1.

Sefi+1
Si+1 Sefn

Sn or AbortSn
S1 Si Si+1 Sn-1 Sn S0

Sef1
S1

 10

Figure 4.3 Example of obtaining an enforced external event
Then, the enforced external event is the set of structural events at the final state

without the state-superscript. Figure 4.3 shows transitions and some states of the
example presented in section 3.5. We have omitted facts from the IB at time t-1 in the
states of the figure. Appendix 1 gives part of the formulas of this example.

4.2 Policies for disjointness constraints

Given a disjointness constraint d, we use Delete-when-subtype-insertion(d) to denote
the policy delete-when-subtype-insertion corresponding to d.

Definition 1. (Delete-when-subtype-insertion policy for disjointness). Let E Gens
E1,...,Ei,...,Ej,...,En be a generalization and D=Disjoint(E1,...,Ei,...,Ej,...,En) a
disjointness constraint such that Delete-when-subtype-insertion(D) holds. The
application of this policy is defined by a set of formulas of the form:

∀ x,t (Insert_Ei
s(x,t) ∧ (¬Insert_E1

s(x,t) ∧ … ∧¬Insert_Ei-1
s(x,t) ∧¬Insert_Ei+1

s(x,t)
∧…∧¬Insert_En

s(x,t)) ∧ Ej
s(x,t-1) ∧ ¬Delete_Ej

s(x,t) → Delete_Ej
 s+1(x,t))

where Ei, Ej are any pair of subtypes of E for the given generalization.
This set of formulas implies that disjointness constraint violation caused by a

single event Insert_Ei(x,t) is repaired by the structural event Delete_Ej(x,t). For the
example of section 3.5, one of the formulas obtained from this definition is:∀x,t
(Insert_Employeds(x,t) ∧ ¬Insert_Unemployeds(x,t) ∧ Unemployeds(x,t-1) ∧
¬Delete_Unemployeds(x,t) → Delete_Unemployeds+1(x,t)), which repairs the
disjointness violation induced by Insert_Employed(Maria,2) with the addition of
Delete_Unemployed(Maria,2).

Note that the previous set of formulas does not deal with external events that
include the insertion of an entity in two or more subtypes that are disjoint. Obviously,
those external events cannot be repaired without undoing their intended effect and
must be rejected. This situation is handled by definition 2.

Definition 2. (Irreparable disjointness constraint). Let E Gens E1,...,Ei,...,Ej,...,En be
a generalization and D=Disjoint(E1,...,Ei,...,Ej,...,En) a disjointness constraint. The
following set of formulas defines the external event rejection for an irreparable
disjointness constraint:

∀ x,t (Insert_Ei
s(x,t) ∧ Insert_Ej

s(x,t) → Aborts+1)
where Ei, Ej are any pair of subtypes of E for the given generalization.

S1 S0

Insert_TemporaryS1
(Maria,2) S2

Delete_UnemployedS2
(Maria,2) S3

Delete_ApplicantS3
(Maria,2) S4 S5

Delete_PersonS4
(Pere,2)

Delete_PermanentS5
(Pere,2)

From external event:
Insert_EmployedS0(Maria,2)
Delete_EmployedS0(Pere,2)

Repair updates:
Insert_TemporaryS2(Maria,2)
Delete_UnemployedS2(Maria,2)
From external event:
Insert_EmployedS2(Maria,2)
Delete_EmployedS2(Pere,2)

Repair updates:
Insert_TemporaryS5(Maria,2)
Delete_UnemployedS5(Maria,2)
Delete_ApplicantS5(Maria,2)
Delete_PersonS5(Pere,2)
Delete_PermanentS5(Pere,2)
From external event:
Insert_EmployedS5(Maria,2)
Delete_EmployedS5(Pere,2)

… …

 11

We use predicate Restrict-when-subtype-insertion(d) to denote the policy restrict-
when-subtype-insertion corresponding to d.

Definition 3. (Restrict-when-subtype-insertion policy for disjointness). Let E Gens
E1,...,Ei,...,Ej,...,En be a generalization and D=Disjoint(E1,...,Ei,...,Ej,...,En) a
disjointness constraint such that Restrict-when-subtype-insertion(D) holds. The
application of this policy is defined by a set of formulas of the form:

∀ x,t (Insert_Ei
s(x,t) ∧ (¬Insert_E1

s(x,t) ∧ … ∧¬Insert_Ei-1
s(x,t) ∧¬Insert_Ei+1

s(x,t)
∧…∧¬Insert_En

s(x,t)) ∧ Ej
s(x,t-1) ∧ ¬Delete_Ej

s(x,t) → Aborts+1)
where Ei, Ej are any pair of subtypes of E for the given generalization.

Observe that this set of formulas implies that the situation of disjointness violation
due to an event Insert_Ei(x,t) causes the rejection of the external event.

4.3 Policies for covering constraints

We use predicate Insert-when-supertype-insertion(c,ei), where c is a covering
constraint Covering(E,E1,...,Ei,...,En) and ei is one of the subtypes E1,...,Ei,...,En, to
denote the policy insert-in-Ei-when-supertype-insertion corresponding to c.

Definition 4. (Insert-in-Ei-when-supertype-insertion policy for covering). Let E
Gens E1,...,Ei,...,En be a generalization and C=Covering(E,E1,...,Ei,...,En) a covering
constraint such that Insert-when-supertype-insertion(C,Ei) holds. The application of
this policy is defined by the following formula:

∀ x,t (Insert_Es(x,t) ∧ (¬Insert_E1
s(x,t) ∧ ... ∧ ¬Insert_En

s(x,t)) → Insert_Ei
s+1(x,t))

It establishes that a covering violation caused by event Insert_E(x,t) is repaired by
adding the structural event Insert_Ei(x,t) to the enforced external event. For the
example of section 3.5, the application of this definition implies that the covering
constraint violation induced by Insert_Employed(Maria,2) is repaired with the
addition of Insert_Temporary(Maria,2).

We use predicate Restrict-when-supertype-insertion(c) where c is a covering
constraint to denote the policy restrict-when-supertype-insertion corresponding to c.

Definition 5. (Restrict-when-supertype-insertion policy for covering). Let E Gens
E1,...,En be a generalization and C=Covering(E,E1,...,En) a covering constraint such
that Restrict-when-supertype-insertion(C) holds. The application of this policy is
defined by the following formula:

∀ x,t (Insert_Es(x,t) ∧ (¬Insert_E1
s(x,t) ∧ ... ∧ ¬Insert_En

s(x,t)) → Abort s+1)
We use predicate Insert-when-subtype-deletion(c,ei), where c is a covering

constraint Covering(E,E1,...,Ei,...,En) and ei is one of the subtypes E1,...,Ei,...,En, to
denote the policy insert-in-Ei-when-subtype-deletion corresponding to c.

Definition 6. (Insert-in-Ei-when-subtype-deletion policy for covering). Let E Gens
E1,...,En be a generalization and C=Covering(E,E1,...,Ei,...,En) a covering constraint
such that Insert-when-subtype-deletion(C, Ei) holds. The application of this policy is
defined by a set of formulas of the form:

∀ x,t (Delete_Ei1
s(x,t) ∧ …∧ Delete_Eik

s(x,t) ∧ ¬Delete_Es(x,t) ∧ (¬Eik+1
s(x,t-1) ∧ ... ∧

¬Ein
s(x,t-1)) ∧ (¬Insert_Eik+1

s(x,t) ∧ ... ∧ ¬Insert_Ein
s(x,t)) ∧ ¬Delete_Ei

s(x,t)
→ Insert_Ei

s+1(x,t))

 12

where in each formula 1≤ k ≤ n and where Ei1
,...,Ein

 is any permutation of E1,...,En.
The set of formulas implies that a covering violation caused by the deletion of an

entity from all subtypes to which it belonged is repaired by adding an structural event
Insert_Ei(x,t) to the enforced external event. Note that k corresponds to the number of
subtypes from which the entity is deleted. If the involved generalization is disjoint
previous formulas can be simplified as explained in [CGT05].

Observe that literal ¬Delete_Ei
s(x,t) guarantees that Ej is not one of the subtypes

from which the entity has been deleted because this leads to an irreparable situation
since the repair action would undo the intended effect of the external event. Definition
7 corresponds to this case.

Definition 7. (Irreparable covering constraint). Let E Gens E1,...,Ei,...,En be a
generalization and C=Covering(E,E1,...,Ei,...,En) a covering constraint such that
Insert-when-subtype-deletion(C, Ei) holds. The following set of formulas defines the
external event rejection for an irreparable covering constraint:

∀ x,t (Delete_Ei1
s(x,t) ∧ …∧ Delete_Eik

s(x,t) ∧ ¬Delete_Es(x,t) ∧ (¬Eik+1
s(x,t-1) ∧ ... ∧

¬Ein
s(x,t-1)) ∧ (¬Insert_Eik+1

s(x,t) ∧ ... ∧ ¬Insert_Ein
s(x,t)) ∧ Delete_Ei

s(x,t) → Aborts+1)

where in each formula 1≤ k ≤ n and where Ei1
,...,Ein

 is any permutation of
E1,...,Ei,...,En.

We use predicate Delete-when-subtype-deletion(c), where c is a covering constraint
Covering(E,E1,...,En), to denote the policy Delete-when-subtype-deletion
corresponding to c.

Definition 8. (Delete-when-subtype-deletion policy for covering). Let E Gens
E1,...,En be a generalization and C=Covering(E,E1,...,En) a covering constraint such
that Delete-when-subtype-deletion(C) holds. The application of this policy is defined
by a set of formulas of the form:

∀ x,t (Delete_Ei1
s(x,t) ∧ …∧ Delete_Eik

s(x,t) ∧ ¬ Delete_Es(x,t) ∧ (¬ Eik+1
s(x,t-1) ∧ ... ∧

¬Ein
s(x,t-1)) ∧ (¬Insert_Eik+1

s(x,t) ∧ ... ∧ ¬Insert_Ein
s(x,t)) → Delete_Es+1(x,t))

where in each formula 1≤ k ≤ n and where Ei1
,...,Ein

 is any permutation of E1,...,En.
These formulas imply that a covering violation caused by the deletion of an entity

from all subtypes to which it belonged is repaired by adding a structural event
Delete_E(x,t) to the enforced external event. Following them, in the example of
section 3.5, the covering constraint violation induced by Delete_Employed(Pere,2) is
repaired with the addition of Delete_Person (Pere,2).

We use predicate Restrict-when-subtype-deletion(c) where c is a covering
constraint to denote the policy restrict-when-subtype-deletion corresponding to c.

Definition 9. (Restrict-when-subtype-deletion policy for covering). Let E Gens
E1,...,En be a generalization and C=Covering(E,E1,...,En) a covering constraint such
that Restrict-when-subtype-deletion(C) holds. The application of this policy is defined
by a set of formulas of the form:

∀ x,t (Delete_Ei1
s(x,t) ∧ …∧ Delete_Eik

s(x,t) ∧ ¬ Delete_Es(x,t) ∧ (¬ Eik+1
s(x,t-1) ∧ ... ∧

¬Ein
s(x,t-1)) ∧ (¬Insert_Eik+1

s(x,t) ∧ ... ∧ ¬Insert_Ein
s(x,t)) → Abort s+1)

where in each formula 1≤ k ≤ n and where Ei1
,...,Ein

 is any permutation of E1,...,En.

 13

4.3 Policies for specialization constraints

We use predicate Insert-when-subtype-insertion(s) where s is a specialization
relationship to denote the policy insert-when-subtype-insertion corresponding to s.

Definition 10. (Insert-when-subtype-insertion policy for specialization). Let S=Ei
IsA E be a specialization relationship such that Insert-when-subtype-insertion(S)
holds. The application of this policy is defined by the following formula:

∀ x,t (Insert_Ei
s(x,t) ∧ (¬Es(x,t-1) ∧ ¬Insert_Es(x,t)) → Insert_E s+1(x,t))

It implies that the specialization constraint violation caused by event Insert_Ei(x,t)
is repaired by adding the structural event Insert_E(x,t) to the enforced external event.

We use predicate Restrict-when-subtype-insertion(s) where s is a specialization
relationship to denote the policy restrict-when-subtype-insertion corresponding to s.

Definition 11. (Restrict-when-subtype-insertion policy for specialization). Let
S=Ei IsA E be a specialization relationship such that Restrict-when-subtype-
insertion(S) holds. The application of this policy is defined by the following formula:

∀ x,t (Insert_Ei
s(x,t) ∧ (¬Es(x,t-1) ∧ ¬Insert_Es(x,t)) → Abort s+1)

We use predicate Delete-when-supertype-deletion(s) where s is a specialization
relationship to denote the policy delete-when-supertype-deletion corresponding to s.

Definition 12. (Delete-when-supertype-deletion policy for specialization). Let
S=Ei IsA E be a specialization relationship such that Delete-when-supertype-
deletion(S) holds. The application of this policy is defined by the following formula:

∀ x,t (Delete_Es(x,t) ∧ (Ei
s(x,t-1) ∧ ¬Delete_Ei

s(x,t)) → Delete_Ei
s+1(x,t))

It implies that the specialization constraint violation caused by event Delete_E(x,t)
is repaired by adding event Delete_Ei(x,t) to the enforced external event.

We use predicate Restrict-when-supertype-deletion(s) where s is a specialization
relationship to denote the policy restrict-when-supertype-deletion corresponding to s.

Definition 13. (Restrict-when-supertype-deletion policy for specialization). Let
S=Ei IsA E be a specialization relationship such that Restrict-when-supertype-
deletion(S) holds. The application of this policy is defined by the following formula:

∀ x,t (Delete_Es(x,t) ∧ (Ei
s(x,t-1) ∧ ¬Delete_Ei

s(x,t)) → Abort s+1)
Specialization constraints are irreparable for external events which imply both an

insertion of an entity in a subtype and a deletion of the same entity in its supertype.
Obviously, this external event cannot be repaired without undoing its intended effect.

Definition 14. (Irreparable specialization constraint). Let S=Ei IsA E be a
specialization relationship. The following formula defines the external event rejection
for an irreparable specialization constraint:

∀ x,t (Insert_Ei
s(x,t) ∧ Delete_Es(x,t) → Abort s+1)

5. Termination

As stated before, we use states to describe the successive steps for obtaining either an
enforced external event or an indication of external event rejection (see figure 4.2).
The transition from a state to its successor is defined by formulas presented in section

 14

4. The final state is obtained when an indication of rejection is added or when no
more policies can be applied, i.e. a fixpoint is reached for the set of formulas.

When formulas with a consequent part including a repair action to add to the
enforced external event are applied, it may happen that the repair action induces a
new constraint violation, and consequently, a new application of a formula. This
situation might be cyclic and then a fixpoint (and the final state) would not be reached
in a finite number of steps.

In the following, we prove that the above situation does not occur to guarantee that
the application of our proposed set of formulas to obtain an enforced external event
always terminates. Intuitively, the main idea of our proof is to show that given an
entity that violates some taxonomic constraint, the repair actions we perform do not
involve other entities of the same taxonomy (lemma1). Then, for each entity, we have
to perform at most as much repairs as entity types exist. Clearly, termination is
guaranteed if as usual the number of entity types in the conceptual schema is finite
(theorem 1).

Lemma 1. (Termination for single instance external events). Let S be an external
event composed by s structural events all of them corresponding to a particular
instance x and to a time instant t. The application of the set of formulas that define
taxonomic integrity constraint enforcement policies and that permit to obtain the
enforced external event corresponding to S, that is, EEE(S), terminates if the number
of entity types of the structural conceptual schema to which S must be applied is
finite.

Proof:
Step 1) All structural event facts added to EEE(S) when a transition from a state to

its successor is performed due to a formula application, correspond to instance x
because all formulas are universally quantified over x and t and they do not include
existential quantifiers.

Step 2) Two or more structural event facts that perform the insertion of x in the
same entity type cannot be added to EEE(S) due to the application of the set of
formulas. This situation is either explicitly prevented by our formulas which ensure
that the same event fact does not hold in the previous state or implicitly because of the
applicability conditions of the event (see section 2.2).

Step 3) For the same reasons as in step 2, two or more structural event facts that
perform the deletion of x from the same entity type cannot be added to EEE(S) due to
the application of the set of formulas.

Step 4) The number of insertion structural event facts of x that are added to EEE(S)
corresponding to different entity types is a finite number i if the number of entity
types of the conceptual schema is finite.

Step 5) Step 5 is similar to step 4 for deletion structural event facts. The number of
deletion structural event facts of x that are added to EEE(S) corresponding to different
entity types is a finite number d if the number of entity types of the conceptual
schema is finite.

Finally, from steps 1, 4 and 5 we can conclude that the number of facts that are
added to EEE(S) is the finite number i+d. From steps 2 and 3 we can conclude that
each fact is added to EEE(S) due to a single application of a formula. Therefore, the
application of the set of formulas that obtains EEE(S) terminates.

 15

Theorem 1. (Termination for general external events). Let S be any external event
composed by s structural events corresponding to a time instant t. The application of
the set of formulas that define taxonomic integrity constraint enforcement policies and
that permit to obtain the enforced external event corresponding to S, that is, EEE(S),
terminates if the number of entity types of the structural conceptual schema to which
S must be applied is finite.

Proof:
Step 1) If the number of structural event facts that compose S is a finite number s

then the number of different instances that appear in S is a finite number n.
Step2) A structural event fact corresponding to instance x cannot induce the

application of a formula which adds a structural event fact corresponding to an
instance y such that y<>x because all formulas are universally quantified over x and t
and they do not include existential quantifiers.

Step 3) Let S1,...,Sj,...,Sk,...,Sn be disjoint subsets of S such that each one includes
structural event facts corresponding to a single instance and additionally the instance
corresponding to Sj is different from the instance corresponding to Sk for all j, k such
that j<>k. Then, from step 2, EEE(S) is the union EEE(S1) U...U EEE(Sj) U ... U
EEE(Sk) U ...U EEE(Sn).

Finally, from lemma 1 the application of the set of formulas that permit to obtain
EEE(S1),...,EEE(Sj), ... ,EEE(Sk), ... ,EEE(Sn) terminates and from step 1 n is finite.
Then from step 3 we can conclude that the application of the set of formulas that
permits to obtain EEE(S) terminates.

6. Implementing taxonomic constraint enforcement policies

The implementation of the taxonomic constraint enforcement policies of a given
conceptual schema performs the generation of enforced external events for any input
external event and IB to which the external event must be applied. Figure 6.1 shows
the input data and the output generated by the implementation.

Implementation
based on triggers

IB at previous
time (t-1)

External event
at time t

Enforced external event at t
or

indication of rejection

Figure 6.1 Implementation

We propose an implementation based on SQL:1999 standard triggers [MS02].
Triggers specify certain types of active rules and, as such, they allow specifying
actions to be executed upon occurrence of a triggering event provided that a condition
holds. The main components of a trigger definition are: the triggering event, the
condition that must hold and the action to execute. Triggers are adequate to
implement taxonomic constraint enforcement policies because policy definitions can
be translated into them in a direct way.

Each formula defined in section 4 is implemented by a set of triggers which can be
automatically obtained from the formula. Roughly, for each structural event that

 16

appears as a positive literal in the antecedent of the formula, there is a trigger with the
following components: 1) a triggering event that corresponds to the mentioned
structural event, 2) a condition that corresponds to the rest of the antecedent of the
formula expressed as an SQL search condition, and 3) an action that corresponds to
the consequent of the formula. We call taxonomic constraint enforcement triggers
(TCE triggers), the triggers obtained.

Section 6.1 describes relational tables used to store data managed by TCE triggers
and the transaction that activates them and section 6.2 describes TCE triggers
themselves.

6.1 Relational tables

The following kinds of tables store data used by TCE triggers: IB tables, structural
event tables, triggering tables and an abort table.

IB tables and structural event tables store IB facts at time t-1 and structural event
facts at time t, respectively. There is an IB table for each predicate of the IB and a
structural event table for each structural event predicate. All of them have two
columns named ‘entity’ and ‘time’, to store the two terms of the predicates. For
example, for the IB predicate Person, we have table: person(entity, time) and
for the structural event predicate Delete_Person we have table:
delete_person(entity, time).

The content of IB tables and structural event tables is used to evaluate the
condition part of the TCE triggers. IB facts at t-1 are not altered by the TCE triggers
actions and, thus, IB tables remain unchanged during the whole trigger processing. On
the other hand, structural event tables contain, initially, the structural event facts of
the external event. During TCE trigger processing, as TCE trigger actions may add
new structural event facts to repair consistency, they contain the structural event facts
of the enforced external event generated so far. At the end of the process, they contain
the whole enforced external event provided that an indication of rejection has not
been generated.

Triggering tables are similar to structural event tables but their content and use is
different as will be seen in next paragraphs. For each structural event table there is a
triggering table with the same name prefixed by ‘triggering’ and with the same
columns. For example, for table delete_person(entity, time) we have
triggering_delete_person(entity, time).

Triggering tables are used to fire TCE triggers i.e. TCE triggers are activated by
insertions in triggering tables. They are initially empty. During TCE trigger
processing they contain the structural event facts of the enforced external event that
have already been processed or that are being processed by the trigger mechanism.
Therefore, facts stored by triggering tables are always a subset of facts stored by
structural event tables. At the end of the process, the content of triggering tables and
structural event tables is the same provided an indication of rejection has not been
generated. Note that structural event tables are used to evaluate conditions of TCE
triggers, thus, they must keep track of all known structural event facts, even those that
have not already been processed and do not belong to triggering tables. Consequently,
neither structural event tables nor triggering tables can be omitted.

 17

Finally, a one-column table abort(indication) is needed to store the possible
indication of rejection that may be generated by the constraint enforcement process.
Therefore, the abort table is initially empty and, after the TCE trigger processing, it
may contain a value ‘yes’ which indicates the rejection of the external event.

As TCE triggers are activated by insertions in triggering tables, we need a
transaction that performs the adequate insertions to activate them. This transaction has
an insertion in a triggering table for each structural event fact appearing in the
external event. For example, for the following external event:
{Insert_Employed(Maria,2), Delete_Employed(Pere,2)}, a transaction with the
following statements performs the necessary insertions:

INSERT INTO triggering_insert_employed
 VALUES (‘Maria’,2);
INSERT INTO triggering_delete_employed
 VALUES (‘Pere’,2);
Before the execution of the transaction, structural event tables insert_employed

and delete_employed contain (‘Maria’,2) and (‘Pere’,2), respectively.
When the transaction performs the first statement which inserts (‘Maria’,2) in
triggering_insert_employed, the adequate triggers are activated. To evaluate
the condition part of those triggers, it is necessary to query structural event tables
which have all known structural events. Note that triggering tables could not be used
for this purpose because they still do not have (‘Pere’,2) in
triggering_delete_employed.

Observe that triggering events for TCE triggers are only insertions (not deletions or
updates).

The processing of previous transaction fires the adequate TCE triggers which, in
turn, generate an enforced external event or an indication of rejection.

6.2 TCE triggers

In the following paragraphs, we explain the details of the translation of our formulas
into TCE triggers with the help of an example.

Consider the example of figure 3.1. For the disjointness constraint of Person Gens
Employed, Unemployed, we have a delete-when-supertype-insertion policy. By
definition 1 from section 4.2, one of the formulas that defines the application of this
policy is:

∀ x,t (Insert_Employeds(x,t) ∧ ¬Insert_Unemployeds(x,t) ∧ Unemployeds(x,t-1) ∧
¬Delete_Unemployeds(x,t) → Delete_Unemployed s+1(x,t))

As said before, there is a TCE trigger for each structural event that appears as a
positive literal in the antecedent of the formula. The reason is that only positive
structural event literals may make the antecedent hold because both external events
and consequents of formulas consist only of positive structural event literals. In our
example, there is a single literal of this type: Insert_Employeds(x,t). Therefore, the
formula is translated into a single trigger. The definition of this trigger is shown in
figure 6.2. The rest of the triggers for a subset of the figure 3.1 example can be found
in the appendix 2.

 18

CREATE TRIGGER t1
AFTER INSERT ON triggering_insert_employed
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM insert_unemployed iu
 WHERE iu.entity=nr.entity AND iu.time=nr.time)

AND EXISTS (SELECT * FROM unemployed u
WHERE u.entity=nr.entity AND u.time=nr.time – 1)

AND NOT EXISTS (SELECT * FROM delete_unemployed du
 WHERE du.entity=nr.entity AND du.time=nr.time)

BEGIN ATOMIC
INSERT INTO delete_unemployed VALUES (nr.entity, nr.time);
INSERT INTO triggering_delete_unemployed VALUES (nr.entity, nr.time);
END;

Figure 6.2 Example of a TCE trigger

The triggering event is specified following the AFTER keyword. It is an insertion in

the triggering table triggering_pred being pred the predicate of the positive literal
that has originated the trigger. In our example, this predicate is Insert_Employed,
thus, the translation obtains a triggering event consisting of the insertion in table
triggering_insert_employed.

The condition of the trigger is specified following the WHEN keyword and is
obtained from the antecedent of the formula not including the literal that has
originated the trigger. It consists of an SQL search condition that evaluates this part of
the antecedent in terms of the tables that implement its predicates.

More concretely, each positive/negative literal is translated into a subquery
preceded by EXISTS/NOT EXISTS. The subquery has a FROM clause with the table
that implements the predicate of the literal. Its WHERE clause has join conditions
which relates that table with the row inserted by the triggering event. Translations of
various literals are connected by the AND keyword.

In our example, the antecedent part of the formula to consider is:
¬Insert_Unemployeds(x,t) ∧ Unemployeds(x,t-1) ∧ ¬Delete_Unemployeds(x,t). For the
first literal ¬Insert_Unemployeds(x,t), we have a subquery preceded by NOT EXISTS
with table insert_unemployed in the FROM clause and with join conditions which
relates insert_unemployed and the inserted row. The rest of the literals of the
example have been translated similarly.

The action is specified between BEGIN ATOMIC and END keywords. It corresponds
to the consequent of the formula. When the consequent is Aborts+1 the action is an
insertion of value ‘yes’ in the abort table. Otherwise, if the consequent has the
form Preds+1(x,t), the action consists of two insertions: an insertion in the structural
event table pred and an insertion in the triggering table triggering_pred. In both
cases, the values inserted coincide with the values inserted by the triggering event.
The insertion in the structural event table is needed to take the new fact into account
in the evaluation of the condition of subsequent triggers while the insertion in the
triggering table is needed to fire TCE triggers with that insertion as triggering event.

In the example, the predicate of the consequent of the formula is
Delete_Unemployed. Then, the action consists of insertions in table
delete_unemployed and table triggering_delete_unemployed.

 19

Observe that, although an action of a TCE trigger may fire new triggers, this
process terminates as shown in section 5.

7. Related Work

Declarative constraint enforcement has received a lot of attention in the database
field. For relational databases, the SQL standard supports declarative enforcement
specification for referential integrity constraints [MS02]. Moreover, [BCP94,Ger94]
offer several repair strategies, based on the SQL standard, for a broad spectrum of
constraints expressed in a logic based language. In the context of object oriented
databases, [BG98] proposes to extend the ODMG Object Model to specify
declaratively referential and composite objects constraint enforcement. [ED98]
describes high-level abstractions called stabilizer types that define how a database can
be made consistent when an update exception occurs.

Other works as [CW90,UD90,CFPT94] in the context of databases propose
alternative approaches which emphasize more the automatic generation of reactions
than the declarative specification of reactions associated to constraints.

Following CSCD, we are convinced that declarative constraint enforcement must
be necessarily provided for conceptual modelling and, thus, at the early stages of
information systems development and in a technological independent way. However,
as far as we know, declarative constraint enforcement has mainly been addressed at a
database level. An exception is [ST99] where constraint enforcement is studied for
formal state oriented specifications. The basic idea of this work is to replace
inconsistent operations by new consistent ones preserving at the same time its
intention. Nevertheless, it does not address the problem of providing policies for
integrity enforcement.

This paper differs from most of that work in several aspects: (1) we specify
taxonomic constraint enforcement at a conceptual level; (2) we define declarative
integrity enforcement specific for taxonomic constraints; (3) we generate events that
maintain consistency from inconsistent events, preserving at the same time its
intended effect; and (4) the automatic generation of events that preserves consistency
terminates.

8. Conclusions and future work

We have proposed a set of predetermined policies for the enforcement of taxonomic
integrity constraints. These policies are declaratively specified in the structural part of
the conceptual schema by stating the kind of enforcement to apply when a certain
type of structural event violates a taxonomic constraint.

Our approach facilitates conceptual modelling since taxonomic constraint
enforcement policies must not be spread along all the events that may violate an
integrity constraint. Moreover, it has a positive impact on the understandability and
modifiability of the conceptual schemas. In this way, we overcome the limitations of
previous proposals for the specification of taxonomic constraint enforcement.

 20

Another important contribution of our work has been to provide a formal definition
of each policy in terms of the repair actions they entail or the conditions that need to
be checked to guarantee that the constraint is not violated. We have shown how to
generate enforced external events that preserve consistency according to our
formalization and we have proved that the application of our taxonomic constraint
enforcement policies always terminates.

Finally, we have also explained how our taxonomic constraint enforcement
policies may be implemented by means of SQL:1999 standard triggers.

Further work may include extending our approach to the enforcement of other
types of integrity constraints. We could also define a UML Profile for taxonomic
constraint policies with the aim of allowing the specification of our policies in a
structural conceptual schema in UML. In the same direction, we may extend a CASE
tool to incorporate the mentioned profile.

References

[BCP94] Baralis, E.; Ceri, S.; Paraboschi, S. “Declarative Specification of Constraint
Maintenance”, In Proc. ER 1994, LNCS 881, pp. 205-222.

[BG98] Bertino, E.; Guerrini, G. “Extending the ODMG Object Model with Composite
Objects”, In Proc. of ACM SIGPLAN, 1998, pp. 259-270.

[Bub77] Bubenko, J.A. “The Temporal Dimension in Information Modelling” In
Architecture and Models in Data Base Management Systems, North-Holland, 1977,
pp. 93-113.

[CFPT94] Ceri, S.; Fraternali, P.; Paraboschi, S.; Tanca, L. “Automatic Generation of
Production Rules for Integrity Maintenance”, In ACM Transactions on Database
Systems, vol. 19, no. 3, 1994, pp. 367-422.

[COS97] Costal, D.;Olivé, A.; Sancho, M.R ”Temporal Features of Class Populations and
Attributes in Conceptual Models”, In Proc. ER 1997, LNCS 1331, pp. 57-70.

[CW90] Ceri, S.;Widom, J. ”Deriving Production Rules for Constraint Maintenance”, In
Proc. VLDB 1990, pp. 566-577.

[ED98] Etzion, O.; Dahav, B. ”Patterns of self-stabilization in database consistency
maintenance”, In DKE 1998, pp. 299-319.

[Ger94] Gertz, M. “Specifying reactive integrity control for active databases”, In Proc. of
the IEEE RIDE-ADS, 1994, pp.62-70.

[Hal01] Halpin, T. Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design, Morgan Kaufmann, 2001.

[Len87] Lenzerini, M. "Covering and Disjointness Constraints in Type Networks” In Proc.
ICDE’87, IEEE Computer Society Press, 1987, pp. 386-393.

[LLM98] Lausen, G.; Ludäscher, B.; May, W. "On Logical Foundations of Active Databases”
In Logics for Databases and Information Systems, Kluwer Academic Publishers,
1998, pp. 389-422.

[MS02] Melton, J.; Simon, A.R. "SQL:1999. Understanding Relational Language
Components”, Morgan Kaufmann, 2002.

[Oli00] Olivé, A. "An Introduction to Conceptual Modeling of Information Systems". In
Advanced Database Technology and Design, (Piattini, M.; Diaz, O. Eds.), Artech
House, 2000, pp. 25-57

[Oli05] Olivé, A. “Conceptual Schema-Centric Development: A Grand Challenge for
Information Systems Research”, In Proc. CAiSE’05, LNCS 3520, pp.1-15.

[OMG03] OMG. “UML2.0 Superstructure Specification”, OMG Adopted Specification, 2003.

 21

[OT02] Olivé, A.; Teniente, E. “Derived types and taxonomic constraints in conceptual
modeling”, In Information Systems, vol. 27, no. 6, Sept. 2002, pp.365-389.

[ST99] Schewe, K.D.; Thalheim, B. “Towards a theory of consistency enforcement”, In
Acta Informatica, vol. 36, 1999, pp. 97-141.

[UD90] Urban, S.D.; Delcambre, L.M.L. “Constraint Analysis: A Design Process for
Specifying Operations on Objects”, In IEEE Transactions on Knowledge and Data
Engineering, vol. 2, no. 4, December 1990, pp. 391- 400.

[VF85] Veloso, P.A.S.; Furtado, A.L. “Towards simpler and yet complete formal
specifications”, In Information Systems: Theoretical and Formal Aspects, North
Holland, pp. 175-190.

[WC96] Widom, J.; Ceri, S. Active Database Systems: Triggers and Rules for Advanced
Database Processing, Morgan Kaufmann, 1996

[Zan93] Zaniolo, C. “A Unified Semantics for Active and Deductive Databases”, In Proc.
RIDS’93, Springer, pp.271-287.

 22

Appendix 1

This appendix includes the set of formulas that define policies and irreparable
situations of the part of the example of figure 3.1 illustrated by the following figure.
All these formulas have been obtained according to the definitions presented in
section 4.

The set of formulas that defines the delete-when-subtype-insertion policy declared

for the disjointness constraint of Employed Gens Temporary, Permanent is (by
definition 1):

(1) ∀ x,t (Insert_Temporarys(x,t) ∧ ¬Insert_Permanents(x,t) ∧ Permanents(x,t-1) ∧
¬Delete_Permanents(x,t) → Delete_Permanents+1(x,t))

and:
(2) ∀ x,t (Insert_Permanents(x,t) ∧ ¬Insert_Temporarys(x,t) ∧ Temporarys(x,t-1) ∧

¬Delete_Temporarys(x,t) → Delete_Temporarys+1(x,t))
The formula that defines irreparable situations for previous disjointness constraint

is (by definition 2):
(3) ∀ x,t (Insert_Temporarys(x,t) ∧ Insert_Permanents(x,t) → Aborts+1)

The set of formulas corresponding to the delete-when-subtype-deletion policy
declared for the covering constraint of Employed Gens Temporary, Permanent, is
(according to definition 8):

 (4) ∀ x,t (Delete_Temporarys(x,t) ∧ ¬Delete_Employeds(x,t) ∧
¬Insert_Permanents(x,t) → Delete_Employeds+1(x,t))

and:
 (5) ∀ x,t (Delete_Permanents(x,t) ∧ ¬Delete_Employeds(x,t) ∧

¬Insert_Temporarys(x,t) → Delete_Employeds+1(x,t))
The formula corresponding to the insert-in-temporary-when-supertype-insertion

policy declared for the covering constraint of Employed Gens Temporary, Permanent,
is (according to definition 4):

 (6) ∀ x,t (Insert_Employeds(x,t) ∧ ¬Insert_Temporarys(x,t) ∧
¬Insert_Permanents(x,t) → Insert_Temporarys+1(x,t))

For the default insert-when-subtype-insertion policy corresponding to the
specialization relationship Temporary IsA Employed, we have the following formula
(by definition 10):

{disjoint: delete-when-subtype-insertion,
complete: delete-when-subtype-deletion,
insert-in-temporary-when-supertype-insertion}

Employed

Permanent Temporary

 23

 (7) ∀ x,t (Insert_Temporarys(x,t) ∧ ¬Employeds(x,t-1) ∧ ¬Insert_Employeds(x,t) →
Insert_Employeds+1(x,t))

For the default delete-when-supertype-deletion policy corresponding to the
specialization relationship Temporary IsA Employed, we have the following formula
(by definition 12):
 (8) ∀ x,t (Delete_Employeds(x,t) ∧ Temporarys(x,t-1) ∧ ¬Delete_Temporarys(x,t) →

Delete_Temporarys+1(x,t))
The formula that defines irreparable situations for previous specialization

constraint is (by definition 14):
 (9) ∀ x,t (Insert_Temporarys(x,t) ∧ Delete_Employeds(x,t) → Abort s+1)

For the default insert-when-subtype-insertion policy corresponding to the
specialization relationship Permanent IsA Employed, we have the following formula
(by definition 10):
 (10) ∀ x,t (Insert_Permanents(x,t) ∧ ¬Employeds(x,t-1) ∧ ¬Insert_Employeds(x,t) →

Insert_Employeds+1(x,t))
For the default delete-when-supertype-deletion policy corresponding to the

specialization relationship Permanent IsA Employed, we have the following formula
(by definition 12):
 (11) ∀ x,t (Delete_Employeds(x,t) ∧ Permanents(x,t-1) ∧ ¬Delete_Permanents(x,t) →

Delete_Permanents+1(x,t))
The formula that defines irreparable situations for previous specialization

constraint is (by definition 14):
 (12) ∀ x,t (Insert_Permanents(x,t) ∧ Delete_Employeds(x,t) → Abort s+1)

Appendix 2

Appendix 2 presents TCE triggers for formulas of appendix 1 (which correspond to
part of the example of figure 3.1).

First of all, we list relational tables used for the TCE triggers.
IB tables:

employed(entity, time)
temporary(entity, time)
permanent(entity, time)

Structural event tables:
insert_employed(entity, time)
delete_employed(entity, time)
insert_temporary(entity, time)
delete_temporary(entity, time)
insert_permanent(entity, time)
delete_permanent(entity, time)

Triggering tables:
triggering_insert_employed(entity, time)
triggering_delete_employed(entity, time)
triggering_insert_temporary(entity, time)
triggering_delete_temporary(entity, time)

 24

triggering_insert_permanent(entity, time)
triggering_delete_permanent(entity, time)

Abort table:
abort(indication)

Next, we list the TCE triggers corresponding to the formulas of the appendix 1.
Trigger for formula 1:
CREATE TRIGGER t1
AFTER INSERT ON triggering_insert_temporary
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM insert_permanent ip

WHERE ip.entity=nr.entity AND ip.time=nr.time)
AND EXISTS (SELECT * FROM permanent p

WHERE p.entity=nr.entity AND p.time=nr.time-1)
AND NOT EXISTS (SELECT * FROM delete_permanent dp

WHERE dp.entity=nr.entity AND dp.time=nr.time)
BEGIN ATOMIC
 INSERT INTO delete_permanent VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_permanent VALUES (nr.entity, nr.time);
END;

Trigger for formula 2:
CREATE TRIGGER t2
AFTER INSERT ON triggering_insert_permanent
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM insert_temporary it

WHERE it.entity=nr.entity AND it.time=nr.time)
AND EXISTS (SELECT * FROM temporary t

WHERE t.entity=nr.entity AND t.time=nr.time-1)
AND NOT EXISTS (SELECT * FROM delete_temporary dt

WHERE dt.entity=nr.entity AND dt.time=nr.time)
BEGIN ATOMIC

 INSERT INTO delete_temporary VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_temporary VALUES (nr.entity, nr.time);

END;

Triggers for formula 3:
CREATE TRIGGER t3_1
AFTER INSERT ON triggering_insert_temporary
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM insert_permanent ip

WHERE ip.entity=nr.entity AND ip.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

CREATE TRIGGER t3_2
AFTER INSERT ON triggering_insert_permanent
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM insert_temporary it

WHERE it.entity=nr.entity AND it.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

 25

Trigger for formula 4:
CREATE TRIGGER t4
AFTER INSERT ON triggering_delete_temporary
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM delete_employed de

WHERE de.entity=nr.entity AND de.time=nr.time)
AND NOT EXISTS (SELECT * FROM insert_permanent ip

WHERE ip.entity=nr.entity AND ip.time=nr.time)
BEGIN ATOMIC

 INSERT INTO delete_employed VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_employed VALUES (nr.entity, nr.time);

END;

Trigger for formula 5:
CREATE TRIGGER t5
AFTER INSERT ON triggering_delete_permanent
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM delete_employed de

WHERE de.entity=nr.entity AND de.time=nr.time)
AND NOT EXISTS (SELECT * FROM insert_temporary it

WHERE it.entity=nr.entity AND it.time=nr.time)
BEGIN ATOMIC

 INSERT INTO delete_employed VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_employed VALUES (nr.entity, nr.time);

END;

Trigger for formula 6:
CREATE TRIGGER t6
AFTER INSERT ON triggering_insert_employed
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM insert_temporary it

WHERE it.entity=nr.entity AND it.time=nr.time)
AND NOT EXISTS (SELECT * FROM insert_permanent ip

WHERE ip.entity=nr.entity AND ip.time=nr.time)
BEGIN ATOMIC

 INSERT INTO insert_temporary VALUES (nr.entity, nr.time);
 INSERT INTO triggering_insert_temporary VALUES (nr.entity, nr.time);

END;

Trigger for formula 7:
CREATE TRIGGER t7
AFTER INSERT ON triggering_insert_temporary
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM employed e

WHERE e.entity=nr.entity AND e.time=nr.time-1)
AND NOT EXISTS (SELECT * FROM insert_employed ie

WHERE ie.entity=nr.entity AND ie.time=nr.time)
BEGIN ATOMIC

 INSERT INTO insert_employed VALUES (nr.entity, nr.time);
 INSERT INTO triggering_insert_employed VALUES (nr.entity, nr.time);

END;

Trigger for formula 8:
CREATE TRIGGER t8
AFTER INSERT ON triggering_delete_employed
REFERENCING NEW ROW AS nr

 26

WHEN EXISTS (SELECT * FROM temporary t
WHERE t.entity=nr.entity AND t.time=nr.time-1)

AND NOT EXISTS (SELECT * FROM delete_temporary dt
WHERE dt.entity=nr.entity AND dt.time=nr.time)

BEGIN ATOMIC
 INSERT INTO delete_temporary VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_temporary VALUES (nr.entity, nr.time);

END;

Triggers for formula 9:
CREATE TRIGGER t9_1
AFTER INSERT ON triggering_insert_temporary
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM delete_employed de

WHERE de.entity=nr.entity AND de.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

CREATE TRIGGER t9_2
AFTER INSERT ON triggering_delete_employed
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM insert_temporary it

WHERE it.entity=nr.entity AND it.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

Trigger for formula 10:
CREATE TRIGGER t10
AFTER INSERT ON triggering_insert_permanent
REFERENCING NEW ROW AS nr
WHEN NOT EXISTS (SELECT * FROM employed e

WHERE e.entity=nr.entity AND e.time=nr.time-1)
AND NOT EXISTS (SELECT * FROM insert_employed ie

WHERE ie.entity=nr.entity AND ie.time=nr.time)
BEGIN ATOMIC

 INSERT INTO insert_employed VALUES (nr.entity, nr.time);
 INSERT INTO triggering_insert_employed VALUES (nr.entity, nr.time);

END;

Trigger for formula 11:
CREATE TRIGGER t11
AFTER INSERT ON triggering_delete_employed
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM permanent p

WHERE p.entity=nr.entity AND p.time=nr.time-1)
AND NOT EXISTS (SELECT * FROM delete_permanent dp

WHERE dp.entity=nr.entity AND dp.time=nr.time)
BEGIN ATOMIC

 INSERT INTO delete_permanent VALUES (nr.entity, nr.time);
 INSERT INTO triggering_delete_permanent VALUES (nr.entity, nr.time);

END;

Triggers for formula 12:
CREATE TRIGGER t12_1

 27

AFTER INSERT ON triggering_insert_permanent
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM delete_employed de

WHERE de.entity=nr.entity AND de.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

CREATE TRIGGER t12_2
AFTER INSERT ON triggering_delete_employed
REFERENCING NEW ROW AS nr
WHEN EXISTS (SELECT * FROM insert_permanent ip

WHERE ip.entity=nr.entity AND ip.time=nr.time)
BEGIN ATOMIC

INSERT INTO abort VALUES (‘yes’);
END;

