
Computing the Relevant Instances that May Violate an 
OCL constraint  

Jordi Cabot1,2 and Ernest Teniente2  

1Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya 
jcabot@uoc.edu 

2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya 
teniente@lsi.upc.edu 

 

Abstract:  Integrity checking is aimed at efficiently determining whether the 
state of the information base is consistent after the application of a set of 
structural events. One possible way to achieve efficiency is to consider only the 
relevant instances that may violate an integrity constraint instead of the whole 
population of the information base. This is the approach we follow in this paper 
to automatically check the integrity constraints defined in a UML conceptual 
schema. Since the method we propose uses only the standard elements of the 
conceptual schema to process the constraints, its efficiency improvement can 
benefit any implementation of the schema regardless the technology used. 

1. Introduction 

A conceptual schema (CS) must include the definition of all relevant integrity 
constraints (ICs) [5] since they state conditions that each state of the information base 
(IB) must satisfy.  

The content of the IB changes due to the execution of operations. In general, the 
effect of an operation over the IB may be specified by means of a set of structural 
events (see for instance [6], [10]). A structural event is an elementary change in the 
population of an entity type or relationship type such as: create object, delete object, 
update attribute, create link, etc. 

The state of the IB resulting from the execution of an operation must be consistent 
with regards to the set of ICs specified over the CS. The traditional approach to deal 
with this problem is to reject those operations whose application would lead to an 
inconsistent state of the IB. This approach is usually known as integrity constraint 
checking and it requires verifying efficiently that the IB state obtained as a 
consequence of an operation execution does not violate any integrity constraint. For 
the sake of simplicity, we assume, without loss of generality, that each operation 
constitutes a single transaction and use both terms indistinctly.   

In this paper we propose a new method to improve efficiency of integrity 
constraint checking in CSs specified in the UML [9] where constraints are written in 
the OCL [8]. Note that, as shown in [3], OCL can also be used to represent the 
graphic constraints expressed in the UML diagrams. 

Constraints in OCL are defined in the context of a specific entity type, the context 
entity type (CET), and must be satisfied by all instances of that entity type. However, 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


when verifying an IC not all instances must be taken into account since, assuming as 
usual that the IB is consistent before the update, only those that have been modified 
by the set of structural events applied over the IB may violate the IC. 

Consider the running example of Fig. 1.1 to illustrate these ideas. After executing 
an operation that hires a junior employee (i.e. an employee under 25), not all 
departments must be taken into account to verify the constraints MaxJuniors and 
NumberEmployees. In fact, since the IB is assumed to be consistent before the 
operation execution, only the department where the employee starts working in may 
induce a violation of one of those integrity constraints. 

 Department Employee 

Freelance 

{incom plete} 

W orksIn em ployee
* *

M anagesmanaged boss

0..1 1

assignm ent : Natural 

nam e : String name : String 
age : Natural 

-- A departm ent m ay not have m ore junior em ployees than maxJuniors 
context Department inv M axJuniors: 
  self.employee->select(e | e.age<25)->size()<self.maxJuniors 
 
-- A freelance assignm ent must lie between 5 and 30 hours 
context Freelance inv V alidAssignment:  
  self.assignment>=5 and self.assignment<=30 
 
-- A departm ent m ust have at m ost half of the total number of em ployees 
context Department inv NumberEmployees: 
  self.employee->size()<= Employee.allInstances()->size()/2 
 
-- A maximum  of 100 em ployees can be freelances 
context Freelance inv M axFreelances: Freelance.allInstances()->size()<=100) 
 
-- The department boss cannot be a  Freelance 
context Department inv NotBossFreelance:  not self.boss.oclIsTypeOf(Freelance) 

employer 
m axJuniors: Natural 

 
Fig. 1.1 - Example of a conceptual schema 

Given a conceptual schema CS with a set of integrity constraints IC, our method 
generates a CS’ with additional entity types, required to record the structural events 
issued by the operation, and where the definition of the original ICs has been 
modified to be able to verify them only in terms of the relevant instances. Moreover, 
the way we compute the relevant instances ensures that a constraint will not be 
verified if no structural event that may violate it has been issued by the operation. 

In addition to the efficiency improvement, the main advantage of our method is 
that it works at the conceptual level, i.e. it is technology-independent, since the result 
of our method is a standard conceptual schema. Then, any architecture able to treat a 
CS to generate automatically its implementation can benefit from our method, no 
matter the target technology platform it generates. Pre-processing the original CS with 
our method allows any code-generation architecture to automatically generate 
efficient integrity constraints that are verified only in terms of its relevant instances. 

The problem of efficient integrity checking has been widely addressed. However, 
as far as we know, ours is the first proposal to cope with this issue at a specification 
level. Previous work addressing similar problems is always particular for a given 
technology. The best approaches are proposed in the fields of deductive [4] or 
relational [2] databases.  



The work presented here extends our previous work in [1] where we proposed a 
method to compute the structural events that may violate an integrity constraint. 
However, that work did not care about how to check integrity constraints efficiently 
when one such structural event was issued by a transaction. This is precisely the main 
concern of this paper. 

The paper is organized as follows. Section 2 introduces some basic concepts. 
Section 3 classifies the different kind of constraints according to the efficiency level 
our method can provide. In particular, our method improves the efficiency of instance 
constraints (section 4) and partial instance constraints (section 5). Finally, section 6 
presents some conclusions and further work.  

2. Determining the structural events that may violate an IC 

The first thing we need to take into account when computing the relevant instances of 
an integrity constraint is to determine the set of structural events that may cause its 
violation, i.e. its set of potentially violating structural events (PSE).  

To compute the set of PSEs we consider the following kinds of structural events: 
- InsertET(ET): insertion over the entity type ET. 
- UpdateAttribute(Attr,ET): it updates the value of the attribute Attr.  
- DeleteET(ET): it deletes an instance of the entity type ET.  
- SpecializeET(ET): it specializes an instance of a supertype of the entity type 

ET to ET.  
- GeneralizeET(ET): it generalizes an instance of a subtype of ET to ET.  
- InsertRT(RT): creation of a new link in the relationship type RT.  
- DeleteRT(RT): it deletes a link of the relationship type RT.  

For instance, the event InsertET(Freelance) is a PSE for ValidAssignment since the 
new freelance may have an assignment below 5 or over 30, and thus, it may violate 
the constraint. On the contrary, the event DeleteET(Freelance) is not a PSE for that 
constraint since it may never induce a violation of ValidAssignment. 

To compute the PSEs and the relevant instances that may violate an integrity 
constraint we assume that OCL constraints are represented as an instance of the OCL 
metamodel [8, ch. 8]. Therefore, we treat the OCL expression of the constraint as a 
binary tree where each node represents an atomic subset of the OCL expression (an 
operation, an access to an attribute or an association, etc.).  

The root of the tree is the most external operation of the OCL expression. The left 
child of a node is the source of the node (the part of the OCL expression previous to 
the node). The right child of a node is the argument of the operation (if any). As an 
example, Fig. 2.1 shows the constraint MaxJuniors (self.employee->select(e| 
e.age<25)->size()<self.maxJuniors) as an instance of the OCL metamodel. The 
operator ‘<’ is the root of the tree. The left child is the source of the operator 
(self.employee->select(e| e.age<25)->size()) whereas the right child is the access to 
the attribute maxJuniors with a child representing the access to the self variable. The 
rest of the constraint is represented in a similar way. 



We use the method proposed in [1] to determine the set of PSEs that may violate 
an integrity constraint. This method draws those PSEs from the nodes of the OCL 
expression that defines the constraint by means of examining the elements and 
operations referred in the constraint as well as its syntactic structure.  

As an example, we have that the application of this method over the tree 
representing the constraint MaxJuniors would result in the marked tree of Fig. 2.1. 
Each node is marked with the set of structural events that may violate the 
subexpression it represents. For instance, the access to the attribute maxJuniors is 
marked with UpdateAttribute(maxJuniors,Department) and InsertET(Department) 
since an update of the attribute maxJuniors (in particular a decrease of its value) or 
the creation of a new department (with more junior employees than permitted) may 
violate the constraint. Other PSEs for MaxJuniors are: InsertRT(WorksIn) and 
UpdateAttribute(Age,Employee). 

 :OperationCallExp
              ( < )

:OperationCallExp
           ( size )

:OperationCallExp
         ( select )

:OperationCallExp
              ( < )

:AssociationEndCallExp
          ( employee ) 

:VariableExp 
      ( self ) 

:AttributeCallExp
         ( age )

:VariableExp
        ( e )

:IntegerLiteralExp
             ( 25 ) 

UpdateAttribute(Age,Employee) 

InsertRT(WorksIn) 

RESULT: 
InsertET(Department) 
InsertRT(WorksIn) 
UpdateAttribute(Age,Employee) 
UpdateAttribute(MaxJuniors,Department) 

:AttributeCallExp
     (maxJuniors )

:VariableExp
      ( self )

InsertET(Department) 
UpdateAttribute(maxJuniors, 

Department) 

 
Fig. 2.1 – Computing the set of PSEs for MaxJuniors 

3. Constraint classification  

After executing a set of operations over the IB, we must verify all constraints having 
as PSEs some of the structural events included in them. A direct computation of the 
OCL expression defining a constraint would evaluate it over all instances of the 
context entity type (CET). However, this is not always necessary and many times we 
can check a constraint by considering only the relevant instances of its CET (those 
affected by the set of structural events). 



For instance, consider again the constraint MaxJuniors. After changing the age of 
an employee, instead of checking all departments, we only need to verify the 
departments where the modified employee works in. 

In general, we may distinguish three different types of integrity constraints: 
instance, partial instance and class constraints. We classify a constraint as instance if 
we can always compute the exact subset of the instances of its CET we need to take 
into account to check it. A constraint is a class constraint if we always have to 
consider the whole population of the CET to check the constraint. Finally, in some 
cases we may need to consider the whole CET population or just a subset depending 
on the structural events issued during operation execution. In this case we say the 
constraint is partial instance. 

MaxJuniors is a good example of instance constraint. We also have that 
MaxFreelances (context Freelance inv: Freelance.allInstances()->size()<=100) is a 
class constraint. The reason is that after inserting a new freelance we need to access 
all instances of the entity type Freelance to verify the number of freelances is still less 
than 101. Finally, NumberEmployees (context Department inv: self.employee-> 
size()<= Employee.allInstances()->size()/2) is a partial instance constraint. Note that 
if we assign a new employee to a department, we only need to check the constraint 
over that particular department. However, if we remove an employee, we need to 
verify all departments, including those where the removed employee did not work. 

A constraint can be classified into exactly one of those types just by examining the 
syntactic structure of the OCL expression defined in the body of the constraint. 
Intuitively, a constraint will be classified as instance if it is defined by means of a 
contextual instance (i.e. using, implicitly or explicitly, the self variable). A constraint 
will be a class constraint if it is defined using the allInstances operation. A partial 
instance constraint is a constraint that includes in its definition both the self variable 
and the allInstances operation. 

To formally classify a constraint within the above categories, we need to introduce 
the concept of subexpression. In short, a subexpression is a sequence of nodes of the 
tree representing the OCL expression of the constraint. An OCL expression can 
consist of several subexpressions. In particular, each node representing an access to a 
variable begins a different subexpression. The reference to an entity type that 
precedes the allInstances operation is also considered a variable 

Then, we can define a subexpression as the sequence of nodes that starts with this 
initial node and includes all its consecutive parent nodes that are traversed up to the 
last node of the subexpression. The last node is a node whose parent represents a call 
to an arithmetic operation, arithmetic or boolean comparison or a loop expression 
having the last node as its right child. 

Fig. 3.1 shows the different subexpressions of the MaxJuniors and 
NumberEmployees constraints. An ellipse circles each subexpression.  

We distinguish between two kinds of subexpressions: instance and class ones. A 
subexpression is considered an instance subexpression when it begins, directly or 
indirectly, with the self variable. A subexpression begins indirectly with the self 
variable when begins with a variable v where v<>self and v is defined within a loop 
expression (select, forAll…) included in an instance subexpression. Otherwise, the 
subexpression is considered a class subexpression. The same Fig. 3.1 classifies each 
subexpression for the example constraints. 



Given a constraint c we define that c is an instance constraint when all the 
subexpressions of c including nodes with PSEs are instance subexpressions. We 
define that c is a class constraint when all the subexpressions of c including nodes 
with PSEs are class subexpressions. Finally, we define c as a partial instance 
constraint when it is neither an instance constraint nor a class constraint, and thus, c 
includes an instance subexpression and a class subexpression, at least. Our method 
improves the verification of instance and partial instance constraints but not the 
verification of class constraints (where we always need to examine all the instances).  

Applying the previous definitions over the example constraints (Fig. 3.1) we obtain 
that the constraint MaxJuniors is an instance constraint and NumberEmployees is a 
partial instance constraint. 
 :OperationCallExp

              ( < )

:OperationCallExp 
           ( size ) 

:OperationCallExp 
         ( select ) 

:OperationCallExp
              ( < )

:AssociationEndCallExp 
          ( employee )

:VariableExp
      ( self )

:AttributeCallExp 
         ( age ) 

:VariableExp 
        ( e ) 

:IntegerLiteralExp
             ( 25 ) 

:AttributeCallExp
     (maxJuniors )

:VariableExp
      ( self )

:OperationCallExp
              ( <= )

:OperationCallExp
           ( size )

:AssociationEndCallExp
          ( employee )

:VariableExp
      ( self )

:OperationCallExp 
              ( / )

:OperationCallExp
     (allInstances)

:VariableExp
 ( Employee )

:IntegerLiteralExp 
             ( 2 ) 

Instance subexpression (directly) 

Instance subexpression (indirectly) 

Class subexpression 

:OperationCallExp
           ( size )

Fig. 3.1 – Subexpressions for MaxJuniors (left) and NumberEmployees (right) constraints 

4. Processing instance constraints 

We explain now the transformation we propose for instance constraints to evaluate 
them only over the relevant instances of the IB. As we have just seen, instance 
constraints must only be evaluated over those instances of the context entity type that 
may have been affected due to the structural events issued during the transaction, 
since these are the only instances that can violate the constraint. 

Given a constraint c defined over a context entity type CET, the basic idea of our 
transformation process is to create a new derived entity type meant to contain only 
those instances of the CET that need to be evaluated. More specifically, the 
population of the new type will be the set of instances of CET affected by the 
structural events. To compute its population we record that set of structural events in a 
special kind of entity types, the structural event types. Then, the context of the 
constraint c is changed from CET to the new derived type, and thus, the constraint is 
evaluated only over the relevant instances.  



In the following, section 4.1 explains the definition and treatment of the structural 
event types while section 4.2 explains the creation of the new derived entity type, the 
computation of its population and the redefinition of the constraint. 

4.1 Definition of structural event types 

We need to define structural event types to record explicitly the structural events. 
More concretely, these types are devoted to record the information about the 
modifications produced by the structural events issued during the transaction.  

In general, we need to define a structural event type for each possible structural 
event. Therefore we define the following types for each entity type of the CS (see 
section 2): iET (to record insertion events over the entity type ET), dET (for deletion 
events over the entity type ET), gET (a generalize event over ET) and sET (an 
specialize event over ET). Additionally, for each attribute of ET, we define a 
structural event type uETAttribute to record the changes in the attribute value. 
Moreover, for each relationship type RT we need to define: iRT (insertion of a new 
link in RT) and dRT (a deletion of a link of RT).  

Nevertheless, since we simply use these types for dealing with instance constraints, 
we are only interested in defining the types corresponding to structural events that 
may be a PSE for that kind of constraints. Therefore, if a structural event cannot 
violate any of the ICs of the CS, we do not define its corresponding structural event 
type. 

As an example, the list of structural event types we will define for the constraint 
MaxJuniors, according to its set of PSEs (see section 2), is the following: 
iDepartment (insertion of a new department), iWorksIn (insertion in the relationship 
WorksIn), uDepartmentMaxJuniors (update of the attribute MaxJuniors), and 
uEmployeeAge (update of the attribute age).  

Note that we never need to define a structural event type for deletion events over 
entity types since this event is never included in the set of PSEs of an instance 
constraint. In fact, this kind of structural event can never appear in an instance 
subexpression. Since an instance subexpression begins (directly or indirectly) with the 
self variable, it is obvious that can not contain the event deleteET when ET=CET (we 
only evaluate the constraint over existing instances). Moreover, when ET<>CET, ET 
is accessed from a navigational expression starting with the self variable. In such 
cases it is the deletion of the link between the instance of ET and the previous 
instance in the navigation that can violate the constraint, not the deletion of the 
instance itself.   

4.1.1 Structure of structural event types 

The next question we need to ponder is the internal structure (attributes and 
relationship types) of the structural event types. They are stereotyped with the 
stereotype <<structural event>> to differentiate them from the entity types of the CS.  

We distinguish between structural event types recording structural events that 
modify entity types and those that modify relationship types.  



The structural event types recording structural events that modify entity types are 
defined as types without attributes and with just one relationship type relating the 
structural event type with the corresponding entity type. Through this reference we 
can access the entity modified by the structural event  

The multiplicity of the relationship type between the structural event type and the 
entity type is 0..1:1. The reason is that an instance of the structural event type must 
necessarily refer to an instance of its entity type while an instance of the entity type 
may appear, at most once, in a structural event type. For the sake of simplicity, the 
role next to the entity type in all those relationship types is always named as ref. 

Fig. 4.1 shows, as an example, the structural event type for the event 
insertET(Department). Note that the only information recorded for each instance of 
iDepartment is a reference to the corresponding new department instance in the 
Department type to access its information when needed.  

We can opt for this kind of structure because there are no structural event types for 
deletion events (see section 4.1), and thus, we can always relate the instance of the 
structural event type with the corresponding entity in the entity type. 

In the definition of these types we assume that the IB corresponding to the CS is 
updated at execution time with the modifications produced by the structural events. 
Thus, we can avoid redundancies by not including in the structural event type the 
information about the changes produced by the event over the affected entity (i.e. in 
the type iDepartment we do not include the information about the attribute values of 
the new department, we just use the reference towards the Department type to obtain 
this information).  

 0..11
ref

Department <<structural event>>
iDepartment

 
Fig. 4.1 Structural event type for the event insertET over Department 

In a similar way, the structural event types for structural events over relationship 
types do not contain attributes either. However, their instances do not refer to the 
corresponding link of the relationship type but to the set of participants of that link.  

Therefore, a structural event type corresponding to a structural event over a 
relationship type RT, contains as many relationship types as the number of 
participants in RT. Each one of these relationship types relates the structural event 
type with one of the participants of RT.  Note that the types dRT (deletion of a link of 
RT) are perfectly possible since their instances do not point to the deleted link (which 
does not already exist in the IB) but to their participants. 

As an example, Fig. 4.2 shows the structural event type for the event 
insertRT(WorksIn). The type iWorksIn presents two relationship types, with 
Department and Employee, since these entity types are the participants of WorksIn. 

When defining the multiplicity of the relationship types between the structural 
event type and the set of participants we distinguish between types for deletion events 
(dRT) and types for insertion (iRT) events.  

For iRT types, the multiplicity of the relationship type is 1:* since, in general, an 
entity of a participant entity type can participate in many links of the relationship type 
(for instance, if we assign a set of employees to the same department, several 



instances of iWorksIn will refer to the same department entity) and every instance of 
the iRT type must be related to an existing entity of the participant entity type.  

refEmployer 1

Department

*

<<structural event>>
*

1

Employeeemployer WorksIn employee

**
refEmployee

iWorksIn
 

Fig. 4.2 Structural event type for the event insertRT over WorksIn 

For dRT types, the multiplicity may become 0..1:*, because, after deleting the link, 
and thus, creating a new instance in the dRT type, it may happen that other events 
delete also some of the participants of the link. This is not possible for iRT types since 
we cannot delete the participant without deleting before the link itself. 

Note that we cannot remove the instance of dRT when deleting one of the 
participants since we may still need the information about the deleted link to compute 
the relevant instances for constraints including the deletion event as PSE. We can 
only delete it when all participants are deleted.  

The constraints including as a PSE the event deleteRT over a relationship type R, 
either navigate R from E1 to E2 or from E2 to E1, where E1 and E2 are the participant 
entity types of R. When, after deleting a link of R, the participant E1 is also deleted, 
the information about the deleted link is irrelevant for constraints that navigate R from 
E1 to E2. In such a case, it is the deletion of E1 what must be taken into account. 
However, for constraints navigating R from E2 to E1, the deleted link is used to 
navigate through the affected E2 participant to obtain the relevant instances for the 
constraint. 

For instance, consider a constraint stating that all departments must have at least 
three employees. The constraint can be violated by a deletion over WorksIn. If we 
delete the link between a department d and an employee e, a new instance of 
dWorksIn is created. Even if, afterwards, we also delete the employee e, the instance 
of dWorksIn allows us to know that the department d needs to be considered when 
evaluating the constraint. 

4.1.2 Instantiating the structural event types 

In general, each structural event type will contain as many instances as events of that 
kind have been executed over the entity or relationship type. For instance, the 
structural event type iDeparment will contain an instance for each new department 
inserted during the transaction, uEmployeeAge an instance for each employee that has 
changed its age during the transaction, etc. 

However, to improve the efficiency of these types we adapt the concept of net 
effect [2] and define two additional rules for insertions and deletions over structural 
event types: 



- Before inserting an instance in an uETAttribute type we must check that the 
same instance does not appear previously in the types iET or uETAttribubte, 
as well. For instance, if we update three times the attribute age of the same 
employee during a single transaction, we only record this fact once. 

- When deleting an entity or a relation, the corresponding instance is also 
deleted from the types iET (iRT), gET, sET and uETAttribute if existing. In 
addition, if the entity (relation) appears in iET (iRT) we do not need to record 
that it has been deleted. For instance, if we update the age of an employee and 
later on, during the same transaction, we delete the employee we do not need 
to worry about its age update. If the employee was inserted in the same 
transaction we neither record his/her deletion. 

4.2 Constraint redefinition 

As we said before, to evaluate an instance constraint only over the relevant instances 
of its CET we create a new derived entity type meant to contain the exact set of 
instances of CET that need to be verified.  

This new entity type, called ETConstraint (i.e. the name of the entity type plus the 
name of the constraint) is defined as a derived subtype of CET. Then, we replace the 
original constraint with a new constraint with the same body but having as a context 
entity type the new type ETConstraint. This is possible because, as a subtype, 
ETConstraint contains all attributes and relationship types of its supertype. As an 
example, Fig. 4.3 includes the redefinition of the constraint MaxJuniors over the 
Department entity type. 

Note that with this replacement we obtain an efficient evaluation of the constraint, 
since the population of ETConstraint is exactly the set of instances we need to check. 
In general, the cardinality of the ETConstraint type is, by far, lesser than the total 
number of instances of CET and it can never be greater. Moreover, this approach also 
avoids redundant checking. The population of an entity type is a set and this ensures 
that we check each instance only once even if the transaction includes several 
structural events that affect the same instance.  

The last problem we need to address is the computation of the population of the 
ETConstraint entity type, i.e. how to automatically define its derivation rule using the 
set of structural events recorded in the structural event types explained in the previous 
section. In short, the population of ETConstraint is the union of instances of CET 
affected by each structural event appearing in the structural event types.  Obviously, if 
the structural event is not a PSE for the constraint no instances of CET are affected. 

 Department 

/DepartmentMaxJuniors 

context DepartmentMaxJuniors inv maxJuniors: 
 self.employee->select(e| e.age<25)->size()<self.maxJuniors 
 

 
Fig. 4.3. Redefinition of the MaxJuniors constraint  



4.2.1 Computing the instances of CET affected by a structural event 

Intuitively, given an instance i of a structural event type ev over the entity type ET, we 
obtain the set of instances of CET affected by i by doing an inverse navigation from i 
to the instances of CET related with i. Roughly speaking, the inverse navigation 
involves four different steps: 

- To select the subexpression of the constraint where the event ev is included in. 
- To reverse the part of the subexpression affected by the event. We reverse the 

part of the subexpression that goes from the beginning of the subexpression up 
to the element affected by the event ev.  

- To remove from the previous result all the elements except for the navigations 
over relationship types.  

- For each navigation appearing in the reversed subexpression, to navigate 
through the same relationship type but in the opposite direction by means of 
using the opposite role. 

As an example, consider the event UpdateAttribute(Age,Employee) over the 
constraint MaxJuniors (context department inv: self.employee->select(e| e.age<25)-
>size()<self.maxJuniors).  This event affects the select operation of the constraint so 
we need to take into account the subexpression self.employee->select(e|e.age<25). 
The subexpression only contains the navigation through the relationship type WorksIn 
using the employee role. Therefore, to obtain the affected departments after the age 
update, we just navigate from the updated employee to the departments related with 
him through the same WorksIn relationship type but using the opposite role (the 
employer role). 

Formally, assume a constraint defined over a CET with a PSE attached to the node 
ni of the tree representing the constraint and where ni is included, at least, in an 
instance subexpression sub where sub  = [n0, n1,n2, …, ni-1, ni, ni+1,…nn]. n0 is the 
initial node of the subexpression and nn the last one. We obtain the set of instances of 
CET affected by an execution of the PSE by, first, reversing the sequence of nodes  
[n0, n1,n2, …, ni-1, ni] to obtain the sequence [ni, ni-1, …, n2, n1, n0]. Note that the 
reversed sequence starts with the node responsible for the PSE.  

Then, we delete from the sequence all nodes that do not represent a navigation 
through a relationship type (i.e. all nodes not representing an access to an association 
end). Finally, for each remaining node, we replace the node with another node 
representing an access to the opposite association end.  

When the node ni appears in an indirectly instance subexpression sub we need to 
concatenate the nodes of sub with those of its parent subexpression and repeat the 
process until we reach the node representing the initial self variable. The parent 
subexpression is the subexpression containing the iterator where sub is included. 
More concretely, if the parent subexpression is of the form parent=[p0, p1,  p2 ,…,pi-1, 
it, pi+1, …, pn] where it is  the iterator where sub is included in, the result of the 
concatenation is result=[p0, p1, p2,…,pi-1, n0, n1,…ni-1, ni], and after reversing the order 
of nodes [ni,ni-1, …, n2, n1, n0, pi-1, …, p2, p1, p0]. 

If the same PSE appears in different instance subexpressions or the node ni is 
included in several ones we repeat the process for each of them. 

As an example, we apply the formalization to obtain the set of departments we 
need to check in the MaxJuniors constraint after the event 
UpdateAttribute(Age,Employee). The subexpression sub where the event is included 



is sub = [e, age] (see Fig.  3.1). Since this is an indirectly instance subexpression we 
must concatenate it with its parent subexpresssion (parent=[self, employee, select, 
size]). The resulting subexpression is [self, employee, e, age], and once reversed [age, 
e, employee, self]. We remove all the irrelevant nodes to obtain the sequence 
[employee] and, once replacing the node by the opposite role, we obtain the final 
result [employer], where employer is the opposite association end of employee, the 
only node representing an access to an association end.  

Therefore, to obtain the affected departments we need to apply the obtained 
subexpression ([employer]) over each updated employee (i.e. each instance of 
uEmployeeAge). For instance, if the uEmployeeAge type contains an instance e1, we 
access the updated employee using e1.ref (see section 4.1) and then we obtain the 
affected departments using the expression e1.ref.employer. 

As a more complex example, consider a constraint stating that an employee cannot 
be older than the bosses of the departments where he/she works. This constraint could 
be expressed as: context Employee inv: self.employer->forAll(d| d.boss.age> 
self.age). When computing the set of PSEs for the constraint we see that the event 
UpdateAttribute(Age,Employee) is included in both constraint subexpressions. Thus, 
to obtain the set of employees we need to check after an age update, we have to apply 
the previous process over both subexpressions and join the two sets of affected 
employees.   

The first subexpression is [self, employer, d, boss, age], and once reversed 
[age,boss,d,employer,self]. After removing the irrelevant nodes: [boss,employer] and 
the final result, once replacing the nodes with the opposite association ends, is 
[managed,employee]. Therefore, to obtain the affected employees we need to 
navigate from the updated employee to the department he/she manages (if any), and 
then, from the department to the employees of that department.  

The second subexpression is [self,age]. It does not include any navigation, and 
thus, the final result will be an empty sequence of nodes. This means that given an 
updated employee, we only need to check that particular employee.  

As a final result we obtain that after an age update we need to check the updated 
employee plus all the employees working in the department he/she manages, if any. 

4.2.2 Derivation rule definition 

The derivation rule for the ETConstraint entity type must ensure that the set of 
instances of the type be exactly the set of instances we need to check. It must include, 
for each instance of the structural event types corresponding to the PSEs for the 
constraint, the computation of the affected CET instances, as explained above. Using 
the work of [7] we define the population of a derived entity type by means of 
redefining its predefined allInstances operation (i.e. the population of the derived type 
will be the set of instances returned by the operation). 

As an example, consider the previous MaxJuniors constraint. In this case, the 
derivation rule for the derived subtype DepartmentMaxJuniors must select, according 
to the PSEs for the constraint, all new inserted departments (departments recorded in 
the iDepartment structural event type), the departments that have updated its 
maxJuniors attribute (departments appearing in the uDepartmentMaxJuniors type) 
and the departments with new assigned employees (departments participating in a 



new relationship of the WorksIn relationship type, recorded in the iWorksIn type), and 
also, for each employee that has changed his/her age, all the departments where the 
employee was working in. 

This last set of departments is obtained by applying the role employer over each 
updated employee (each instance of the uEmployeeAge type) as computed in the 
previous section. 

Therefore, the derivation rule for DepartmentMaxJuniors is the following: 
context DepartmentMaxJuniors::allInstances() : Set(Department) 
body: iDepartment.allInstances().ref->union(  
           uDepartmentMaxJuniors.allInstances().ref->union(  
           iWorksIn.allInstances().refEmployer->union( 
           uEmployeeAge.allInstances().ref.employer))))->asSet() 
Note that, we use the special relationship types between the structural event types 

and its corresponding entity types to access the modified instances (see section 4.1). 
For instance, iDepartment.allInstances().ref, returns the new departments by 
accessing the referenced departments from the iDepartment type. 

In the appendix we show the results of the application of our method over the rest 
of instance constraints of our example.  

5. Processing partial instance constraints  

A constraint is classified as a partial instance constraint if it contains at least an 
instance subexpression and a class subexpression, both including nodes marked with 
PSEs for the constraint. These constraints can be checked efficiently when the 
transaction does not include any of the PSEs included in class subexpressions. 
Otherwise, we must check the constraint over all instances of the CET. For instance, 
the constraint NumberEmployees (context Department inv:  self.employee->size()< 
Employee.allInstances()->size()/2) can be checked efficiently after assigning an 
employee to a department but not after the deletion of an employee. 

To process this kind of constraints we split their set of PSEs into two different 
groups: the set of instance PSEs and the set of class PSEs, depending on the kind of 
subexpression where they are included. If a PSE is included in both kinds of 
subexpressions is considered a class PSE. With the set of instance PSEs we apply 
exactly the same process explained in section 4 with just a slight difference 
concerning the derivation rule of the ETConstraint entity type, as we explain below. 

 For the class set we also create the structural event types. In fact, we are not 
interested in knowing the exact instances affected by the class PSEs because we will 
need to check all instances. We only need to know whether any of the those events 
has been executed, and thus, we could think about creating a new set of singleton 
entity types enough to record the presence or absence of each event. However, since 
probably most structural event types will be already defined to deal with other 
constraints, we think it is worthwhile to reuse the same set of structural event types. 

The only difference relies on the dET kind of entity types, which were not needed 
before. If there is a deleteET event event among the set of class PSEs, we need to 
create the corresponding dET type.  As we have explained before, the instances of this 



entity type cannot reference the deleted instances since they no longer exist, but this 
does not suppose a problem since we are not interested in knowing those instances. 
We just create an empty instance in the dET type. 

Afterwards, in a similar way as before, we create a new derived subtype, called 
ETConstraint’, under the context entity type, and change the context of the original 
constraint to ETConstraint’. Its population will be the same population of the context 
entity type if the transaction has executed any class PSE. Otherwise, its population 
will be empty. Therefore, the derivation rule for ETConstraint’ is:  

 allInstances() = if ( ev1.allInstances()->size() + ev2.allInstances->size() + … 
evn.allInstances()->size() > 0)  then CET.allInstances() 

where ev1..evn represent the structural event types corresponding to the class PSEs. 
Moreover, we change the derivation rule dr for the ETConstraint type created for 

the instance PSEs. The new derivation rule will be: allInstances() = if 
(ETConstraint’.allInstances()->size()=0) then dr. This way we ensure that when the 
transaction includes a class PSE we check all instances of the original context entity 
type (ETConstraint’ will contain the same instances as CET) and avoid redundant 
checkings (ETConstraint will be empty). Otherwise, we check the constraint 
efficiently (ETConstraint will contain the affected instances of CET whereas 
ETConstraint’ will be empty).  

In the appendix we process the partial instance constraint NumberEmployees.  

6. Conclusions and further work  

We have proposed a new method to improve efficiency of integrity constraint 
checking in CSs specified in UML with constraints written in OCL. As far as we 
know, ours is the first method to deal with this issue at the specification level.   

The basic idea of our method is to record the set of structural events applied over 
the IB in order to compute the set of relevant instances for each constraint, and then, 
evaluate the constraint only over those instances, avoiding irrelevant verifications.  

We believe this efficiency gain justifies the overhead of computing the set of 
relevant instances, since, in general, the number of relevant instances will be much 
lesser than the total number of instances. Moreover, the number of entity types added 
to the CS is limited since structural event types do not depend on the number of 
constraints in the CS and for each constraint at most two derived types are defined. 

Our method uses only the standard elements of any conceptual schema (entity 
types, relationship types, derived elements and integrity constraints) to transform the 
original constraints into efficient ones. Therefore, the results of our method can 
benefit any implementation of the CS, regardless the technology used. In fact, any 
code-generation strategy able to generate code from a CS could be enhanced with our 
method to automatically generate efficient constraints, with only minor adaptations. 

The expressive power of the OCL language permits to write the same semantic 
constraint in a variety of syntactic forms. Since our method relies on the syntactic 
definition of the OCL expressions, choosing the simplest representation of a 
constraint can entail a more efficient verification of the constraint. As further work, 



we plan to study how to automatically transform a constraint definition into its 
simplest representation to guarantee the best results when applying our method.  

Acknowledgements 

We would like to thank people of the GMC group for their many useful comments to 
previous drafts of this paper. This work has been partially supported by the Ministerio 
de Ciencia y Tecnologia and FEDER under project TIC2002-00744. 

References 

1. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an Integrity 
Constraint. In: Proc. of the 7th UML Conference (UML'04), LNCS, 3273, pp. 320-334 

2. Ceri, S., Widom, J.: Deriving Production Rules for Constraint Maintenance. In: Proc. 
16th VLDB Conference (VLDB'90), Morgan Kaufmann, pp. 566-577 

3. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL. In: A. 
Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer, 2002, pp. 85-114 

4. Gupta, A., Mumick, I. S.: Maintenance of materialized views: problems, techniques, and 
applications. In: Materialized Views Techniques, Implementations, and Applications. The 
MIT Press, 1999, pp. 145-157 

5. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and 
Information Base. ISO, 1982 

6. Olivé, A.: Time and Change in Conceptual Modeling of Information Systems. In: S. 
Brinkkemper, E. Lindencrona, and A. Solvberg, (eds.): Information Systems Engineering. 
State of the Art and Research Themes. Springer, 2000, pp. 289-304 

7. Olivé, A.: Derivation Rules in Object-Oriented Conceptual Modeling Languages. In: 
Proc. 15th  Int. Conf. on Advanced Information Systems Engineering (CAiSE'03), LNCS, 
2681, pp. 404-420 

8. OMG: UML 2.0 OCL Specification. OMG Adopted Specification  (ptc/03-10-14) ,2003 
9. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-08-

02), 2003 
10. Wieringa, R.: A survey of structured and object-oriented software specification methods 

and techniques. ACM Computing Surveys 30, 1998, pp. 459-527 
 

 

 
 
 



Appendix A 

After applying our method over the constraints defined in the conceptual schema of 
Fig. 1.1 we obtain the following results: 
 
1. PSEs for each constraint: 

a. MaxJuniors: InsertET(Deparment), UpdateAttribute(MaxJuniors, 
Department), UpdateAttribute(Age,Employee), insertRT(WorksIn).  

b. NotBossFreelance: SpecializeET(Freelance), InsertRT(Manages).  
c. ValidAssignment: InsertET(Freelance), UpdateAttribute(Assignment). 
d. NumberEmployees: DeleteET(Employee), InsertRT(WorksIn) 
e. MaxFreelances: InsertET(Freelance), SpecializeET(Freelance) 
 

2. Determining the incrementallity of each constraint: 
MaxJuniors, NotBossFreelance and ValidAssignment are instance constraints. 
NumberEmployees is a partial instance constraint.  
MaxFreelances is a class constraint.  
 

3. Creating the structural event types: 
For each PSE of an instance or partial instance constraint we create the 
corresponding structural event type. We show them in Fig. 1, although in general 
they would be hidden from the designer’s point of view.  
 

4. Redefining instance constraints: 
To transform NotBossFreelance and ValidAssignment, we redefine the 
constraints over the new derived subtypes, DepartmentNotBossFreelance and 
FreelanceValidAssignment. They are shown in Fig. 2 along with their derivation 
rules. The transformation of MaxJuniors has been already explained in section 4. 
 

5. Redefining partial instance constraints: 
We transform NumberEmployees by creating two new derived subtypes of 
Department (Fig. 3): DepartmentNumberEmployees for the instance PSEs and 
DepartmentNumberEmployees’ for the class PSEs. Note that their derivation 
rules do not allow that both have instances at the same time. 



ref 1 
refEmployer 

*

0..1 refEmployee 
* *

0..1

*

ref

0..1

0..1
ref 1

1

1
uEmployeeAge 

<<structural event >> 0..1
ref

uDepartmentMaxJuniors
<<structural event>> 

 

employer 

iManages

0..1 

0..1

<<structural event>> 

 iWorksIn

<<structural event>>

Manages bossmanaged 11 
*refManaged *

refBoss 

1

Department 
0..1

Employee

Freelance

1

WorksIn employee 

ref1

<<structural event>> 

sFreelance 

<<structural event>> 

iFreelance 

<<structural event>> 

uFreelanceAssignment 

<<structural event>>

dDepartment

ref 
0..1 1 <<structural event>>

iDepartment 

Fig. 1. Structural event types for the example CS 

 D ep artm ent -- The redefined  constra in ts 
context D epartm entN otB ossFreelance inv N otB ossFreelance: 
  not self.boss.oclIsT ypeO f(Freelance) 
 
context FreelanceV alidA ssignm ent inv V alidA ssignm ent: 
  self.assignm ent>=5 and self.assignm ent<=30  

-- The derivation ru les 
context D epartm en tN otB ossFreelance::a llInstances() : Set(D epartm ent) 
body: iM anages.a llInstances().refM anaged->union( 
           sFreelance.a llInstances().ref.m anaged))->asSet() 
 
context FreelanceV alidA ssignm ent::allInstances() : Set(Freelance) 
body: iFreelance.allInstances().ref->un ion(  
           uFreelanceA ssignm ent.a llInstances().ref)->asSet() 

 /D epartm entN otB ossFreelan ce  

Freelance  

 /F reelan ceV alid Assig nm ent 

 

Fig. 2. Redefinition of the instance constraints 

Department 

 /DepartmentNumberEmployees

-- The redefined constraints 
context DepartmentNumberEmployees inv NumberEmployees: 
  self.employee->size()<= Employee.allInstances()->size() / 2  
 
context DeparmentNumberEmployees’ inv NumberEmployees’: 
  self.employee->size()<= Employee.allInstances()->size() / 2 

-- The derivation rules 
context DepartmentNumberEmployees::allInstances():Set(Department) 
body: if DepartmentNumberEmployees’.allInstances->size() = 0 then 
           iWorksIn.allInstances().refEmployer.asSet() 
 
context DepartmentNumberEmployees’::allInstances():Set(Department) 
body: if dEmployee.allInstances->size()>0 then   
           Department.allInstances()  

 /DepartmentNumberEmployees’ 

 
Fig. 3. Redefinition of the partial instance constraint 

  
 


