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Missing data imputation through Generative Topographic Mapping as a mixture of t-distributions: Theoretical developments Alfredo Vellido Department of Computing Languages and Systems (LSI). Polytechnic University of Catalonia (UPC). Barcelona, Spain.  Abstract The Generative Topographic Mapping (GTM) was originally conceived as a probabilistic alternative to the well-known, neural network-inspired, Self-Organizing Map (SOM). The GTM can also be interpreted as a constrained mixture of distributions model. In recent years, much attention has been directed towards Student t-distributions as an alternative to Gaussians in mixture models due to their robustness towards outliers. In this report, the GTM is redefined as a constrained mixture of t-distributions: the t-GTM, and the Expectation-Maximization algorithm that is used to fit the model to the data is modified to provide missing data imputation. Keywords: Missing data; Outliers; Generative topographic mapping; Student multivariate t-distributions; Robust imputation; Data visualization.       
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1. Introduction Finite mixture models have settled in recent years as a standard for statistical modelling (McLachlan & Peel, 2000b). Their strength and flexibility has been attributed to the fact that they “offer natural models for unobserved population heterogeneity” (Böhning & Seidel, 2003). As such, they are being used in classical data analysis problems such as clustering, regression and probability distribution modelling. Gaussian mixture models have received especial attention for their computational convenience (McLachlan & Peel, 2000a) to deal with multivariate continuous data. The usefulness of these models is reinforced by the wide spectrum of their applications, from medicine (Yau, Lee, & Ng, 2003) to ecology (Ter Braak, Hoijtink, Akkermans, & Verdonschot, 2003) and marketing (Wedel & Kamakura, 2000) to name just a few. For more general reviews see, for instance, (Böhning, 1999; McLachlan & Peel, 2000b). This report focuses on the Generative Topographic Mapping model (GTM: Bishop, Svensén, & Williams, 1998), conceived as a probabilistic alternative to the neural network-inspired Self-Organizing Map (SOM: Kohonen, 2000). The GTM can also be interpreted as a constrained mixture of distributions. This definition as a constrained model makes it less flexible than general mixtures, but this renounce to full flexibility is compensated by its multivariate data visualization capabilities. Being a non-linear latent variable model, it generates a description of the multivariate data in the form of a low-dimensional manifold embedded in data space, which allows for data visualizations comparable to those of the SOM, which have been widely illustrated (Vesanto, 1999). The GTM, unlike standard Gaussian Mixture Models, is computationally undemanding and its probabilistic setting enables the definition of principled model extensions for, amongst others, time series data (Bishop, Hinton, & Strachan, 1997), hierarchical structures (Tiňo & Nabney, 2002), incomplete data (Carreira-Perpiñan, 2000; Sun, Tiňo, & Nabney, 2001), regularized models (Bishop, Svensén, & Williams, 1998b; Vellido, El-Deredy, & Lisboa, 2003), and discrete data (Bishop, Svensén, & Williams, 1998b; Girolami, 2002). 
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The GTM was originally defined as a constrained mixture of Gaussian distributions. It is well known (Peel & McLachlan, 2000; Shoham, 2002) that Gaussian mixture models lack robustness in the presence of outlier observations in the data sample, which is a rather common feature on real-world applications (Last & Kandel, 2001) and one that has attracted considerable attention in recent literature (See, for instance, Bashir & Carter, 2005; Castejón Limas, Ordieres Meré, Martínez de Pisón Ascacibar, & Vergara González, 2004; Bullen, Cornford, & Nabney, 2003). Despite the fact that this limitation may also affect the GTM (Tiňo & Nabney, 2002), this model has been used, in its constrained mixture of Gaussians version, for outlier detection (Bullen, Cornford, & Nabney, 2003). An alternative strategy to deal with atypical data using the GTM was proposed by Tiňo & Nabney (2002), relying on the use of the model as the building block of an interactive hierarchical structure.  Starting from the seminal work by (McLachlan & Peel, 1998) and (Peel & McLachlan, 2000), several recent studies have suggested the use of multivariate Student t-distributions as a robust alternative to Gaussians for mixture models, as their longer tails prevent outliers from unduly affecting the estimation of the model parameters. Mixtures of t-distributions include models defined within a Bayesian approach (Archambeau, Vrins, & Verleysen, 2004; Bishop & Svensén, 2004), model extensions to deal explicitly with incomplete data (Wang, Zhang, Luo, & Wei, 2004), and variants of the Expectation-Maximization algorithm for robust data clustering (Shoham, 2002). The occurrence of missing data is a pervasive problem in many application areas, and especially acute in domains such as surveys and census (Little & Rubin, 1987; Olynski, Chen, & Harlow, 2003) and, in general, in social and behavioural sciences and fields in which complex measurements are involved such as genetics and bioinformatics (Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein, & Altman, 2001), environmental sciences (Junninen, Niskaa, Tuppurainenc, Ruuskanena, & Kolehmainen, 2004; Vicente, Vellido, Martí, Comas, & Rodriguez-Roda, 2004), or signal processing (Cooke, Green, Josifovski, & Vizinho, 2001). Methods that impute the missing values are therefore of paramount importance for the 
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successful analysis of such data. Different methods are suitable for different types of data (continuous, discrete, categorical) and for different application fields, with no data imputation method being suitable and successful throughout the universe of data types and application areas. In this report, we provide details on how to integrate missing data imputation as part of the GTM model fitting to data, when GTM is defined as a constrained mixture of t-distributions. Data imputation arises naturally as part of the Maximum-Likelihood estimation of the GTM parameters via de Expectation-Maximization (E-M: Dempster, Laird, & Rubin, 1977) algorithm. The resulting GTM model plays a double role: it deals robustly with outliers while simultaneously imputes missing values, allowing the exploration of multivariate data through visualization at a reasonable computational cost.   The rest of the report is structured as follows. First, a brief introduction to the GTM as a constrained mixture of Gaussians is provided, together with details of the Maximum Likelihood estimation of its parameters within the E-M framework. This is followed by the re-definition of GTM as a constrained mixture of Student t-distributions (henceforth referred to as t-GTM). Finally, we describe the way missing data imputation can be naturally handled as part of the E-M algorithm used to determine the t-GTM adaptive parameters.   2. The standard Generative Topographic Mapping The Generative Topographic Mapping (GTM: Bishop, Svensén, & Williams, 1998a), originally formulated as a statistically principled alternative to Self-Organizing Maps (SOM: Kohonen, 2000), is a non-linear latent variable model that defines a mapping from a low dimensional latent space onto the multidimensional space where the available data reside. The mapping is carried through by a set of basis functions generating a (mixture) density distribution. The functional form of this mapping is defined as a generalized linear regression model: 
( )Wuy ΦΦΦΦ= ,           (1) 
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where ΦΦΦΦ  is a set of M basis functions ( ) ( ) ( )( )uuu M,...,φφ1=ΦΦΦΦ  that can take diverse forms, depending on the data requirements (e.g., Gaussians for continuous data, Bernouilli distributions for binary data, or Multinomials for categorical data). These basis functions were originally defined (Svensén, 1998) as spherically symmetric Gaussians ( )  −
−= 2 22σµφ mm exp uu  to deal with continuous data, with mµ  the centres of the basis functions and σ  their common width; W is a matrix of adaptive weights mdw  that defines the mapping, and u is a point in latent space. One of the main strengths of the model resides on its data exploration capabilities through visualization. In order to provide an alternative to the visualization space defined by the characteristic SOM lattice, and also to achieve computational tractability, the latent space of the GTM is discretized as a regular grid of K latent points ku defined by the probability 

( ) ( )∑
=

−=
Kk kKP 11 uuu δ  ,         (2) where δ  is the Kronecker’s delta. The probability of a data point x , given the latent space points ku  and the adaptive parameters of the model, which are the matrix W and the inverse variance of the Gaussians β , is: 

( ) { }22 22 x-yW,u,x β
π
ββ −= expP D  .       (3) Integrating the latent variables out, and using Eq. (2), we obtain 

( ) ( ) ( ) { }∫ ∑
=

−==
Kk kD expKdPPP 1 22 221 x-yuuW,u,xW,x β

π
βββ  .   (4) According to this general description, the GTM is a constrained mixture of Gaussians in the sense that all the components of the mixture (where each latent point corresponds to a component) are equally weighted by the term 1/K; all components share a common variance 1−β  (therefore I1−= βΣΣΣΣ ); and the centres of the Gaussian components ( )Wuy kk ΦΦΦΦ=  do not 
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move independently from each other, as they are limited by the mapping definition to lie in a low dimensional manifold embedded in the D-dimensional space. The complete log-likelihood can now be defined as 
( ) { }∑ ∑

= =  −=
Nn Kk nkDc expKlog,L 1 1 22 221 x-yXW β

π
ββ      (5) and the E-M algorithm can be used to obtain the Maximum Likelihood estimates of the adaptive parameters W and β . Let us first define, in the usual way, the matrix Z , whose indicators knz  describe our lack of knowledge of which latent point ku  is responsible for the generation of data point nx . With this, the complete log-likelihood in Eq. (5) can be re-defined as 

( ) { }∑ ∑
= =  −=
Nn Kk nkDknc explogz,L 1 1 22 22 x-yZX,W β

π
ββ  .     (6) The expected value of knz  can be obtained in the E-step of the algorithm using Bayes’ formula and Eq. (4): 

( ) ∑ =  −−

 −−
== K'k nk nknkn expexp,,kPẑ 1 2222 xy xyWx

β

β

β  .       (7) Let us now rewrite Eq. (1) for each data dimension d as ( )∑ == Mm mdmd w1 uy φ . In the M-step, by setting the derivative of cL  from Eq. (6) with respect to mdw  to zero, and using Eq. (7), 
( ) ( ) 01 1 1 = −=

∂
∂ ∑ ∑ ∑

= = =

Nn Kk kmndd'mM'm k'mknmdc xwẑwL uu φφ  ,      (8) we obtain Wnew as the solution of the following system of equations in matricial form 0=− XZΦWΦGΦ ˆTnewT ,         (9) 
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where Φ is a MK × matrix with elements ( )kmkm uφφ = ; Ẑ  is a matrix with elements knẑ  that in the GTM literature is know as responsibility matrix; and, finally, G is a square matrix with elements 'kk 'kk,ẑg Nn kn'kk ≠
== ∑ =01 . Maximazing cL  now with respect to β  by setting the corresponding derivative to zero:  

( )( )[ ]
=

∂
−−∂

=
∂
∂ ∑ ∑= =

β
ββ

β

Nn Kk nkknc logDẑL 1 1 2222 xy  ∑ ∑
= =

= −−
Nn Kk nkkn Dẑ1 1 2 0xy

β
 ,        (10) we obtain the update expression for the remaining adaptive parameter, the inverse variance β : 

( ) ∑ ∑
= =

−
−=

Nn Kk nkknnew ẑND 1 1 21 1 xyβ         (11) The GTM usually converges within a short number of iterations of the E-M algorithm.  3. GTM as a constrained mixture of Student t-distributions: The t-GTM The definition of the GTM as a constrained mixture of Gaussians limits its capability of handling outliers in a data sample consisting of continuous, real-valued variables: The presence of outliers is likely to negatively bias the estimation of parameters W  and β , and it is also likely to result in extreme estimates of the posterior probabilities of component membership (Peel & McLachlan, 2000). Here, the GTM is redefined as a constrained mixture of Student t-distributions, the t-GTM, aiming to increase the robustness of the model towards outliers. The t-GTM is a constrained mixture for the same reasons described in the previous section. The mapping described by the generalized linear regression model in Eq. (1) remains, and the basis functions ΦΦΦΦ  are now Student t-distributions. Assuming again a single common inverse 
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variance β  ( I1−= βΣΣΣΣ ) and equal weightings 1/K for all components, the data distribution is defined as: 
( ) ( )

( )( )
222 2 12Γ 22Γ DD DD,,,P +− +

+
=

ν

ν
β

νπν
βν

νβ x-yWux  ,     (12) where ( )⋅ΓΓΓΓ  is the gamma function and the parameter ( )TKv,...,v1=ν  represents the degrees of freedom for each component k of the mixture, so that it can be viewed as a tuner that adapts the level of robustness (divergence from normality) for each component. A multivariate t-distribution converges to a multivariate normal one when ∞→ν . Integrating the latent variables out, and using the discretized latent space prior described by Eq. (2): 
( ) ( ) ( )

( )
∫ ∑

=

+
− +  +

==
Kk DkkDkk Dk kDKdP,,,P,,P 1 2222 12Γ 22Γ1 ν

ν
β

πνν

βν

νβνβ x-yuuWuxWx (13) With this, the complete log-likelihood is expressed as: 
( )

( )
∑ ∑
= =

+
−   +  +

=
Nn Kk DnkkDkk Dkc kDKlog,,L 1 1 2222 12Γ 22Γ1 ν

ν
β

πνν

βν

νβ x-yXW .      (14) Again, the use of the E-M algorithm for the estimation of parameters W, β  and possibly ν , requires re-writing the complete log-likelihood as 
( )

( )
∑ ∑
= =

+
−   +  +

=
Nn Kk DnkkDkk Dkknc kDlogz,,L 1 1 2222 12Γ 22Γ ν

ν
β

πνν

βν

νβ x-yZX,W  ,  (15) where indicator variables Z have once more been introduced. In the E-step, the responsibilities knẑ  now follow the expression: 
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( )

122 222 −  += DkkDkk DC πννβν ΓΓΓΓΓΓΓΓ .     (17) Update expressions for the adaptive parameters are calculated in the M-step of the algorithm. Maximizing with respect to mdw , by setting the derivatives of Eq. (14) with respect to mdw  to zero, we obtain: 
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βν  .              (18) This leads to an equation, in matrix form, for the update of W that is similar to Eq. (9): 0=− XZΦWΦGΦ ** ˆTnewT  ,         (19) where  knoldknk k*kn ẑDẑ 2yx −+

+
=

βν

ν          (20) 
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and knẑ  is defined by Eq. (16). Matrix G* has values 'kk 'kk,ẑg Nn *kn* 'kk ≠
== ∑ =01 . The new terms in Eq. (19) do not add any extra computational burden with respect to Eq. (16), as they have already been calculated in previous steps of the algorithm. The maximization with respect to parameter β  leads to a special case of the update formula for general mixtures of t-distributions: 

( ) ( )∑ ∑
= =

−−
− −++=

Nn Kk nnewknnewkoldkkknnew DẑND 1 1 2121 1 xyxyβννβ ,               (21) where ( ) newknewk Wuy ΦΦΦΦ= . For the standard Gaussian GTM (Svensén, 1998), Eq. (11) can be interpreted as the off-manifold variance of the model being updated to the averaged distance between data points and latent points (or mixture components), where this distance is weighted by the posterior probabilities knẑ . Notice that Eq. (21) implies the existence of a further weighting term for the t-GTM, which, according to (Peel & McLachlan, 2000), will be small for data outliers. As a result, the impact of outliers on the estimation of the variance parameter will be effectively minimized. This leaves us with parameter ν , for which optimization is less straightforward. Different approaches might be considered: an approximation for general mixture models was proposed by (Shoham, 2002) for a common ν  for all mixture components (i.e. νν =∀ k,k  ). Alternatively, ν  might be kept fixed, running experiments for a range of its possible values.  4. Missing data imputation through t-GTM It has been shown how the GTM model, defined as a constrained mixture of either Gaussian or Student t-distributions, can be fitted to the data using the E-M algorithm. As stated in (Ghahramani & Jordan, 1994), “the problem of estimating mixture densities can itself be viewed as a missing data problem”. In the previous sections, the matrix Z  of indicators -describing our lack of knowledge of which latent point ku  is responsible for the generation of data point nx - 
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was treated as missing data. In this section, we see how the missing data themselves can be explicitly dealt with and imputed as part of the own E-M procedure for the t-GTM. For that, we follow (Sun, Tiňo, & Nabney, 2001) and consider two separate submatrices: oX , consisting of the observed data represented by superscript o, and mX , consisting of the missing data represented by superscript m. No constrain has been imposed on the pattern followed by the missing values, although either a Missing Completely At Random (MCAR) or a Missing At Random (MAR) situation is assumed. The Expectation step of the E-M algorithm includes the calculation of the expected complete log-likelihood. The definition of submatrices oX  and mX  entails a modification of Eq. (15), which now becomes: 
( ) ∑ ∑

= =

+
−    ++=

Nn Kk Dmnmkonokkkknmoc kClogz,,L 1 1 2221 ν

ν
βνβ x-yx-yZ,X,XW ,     (22) given that we are defining a common variance for all mixture components and, therefore, using an isotropic covariance matrix I1−= βΣΣΣΣ  that excludes values involving both observed and missing data. The sufficient statistics that must be calculated prior to the M-step are: the expected values of the unknown indicator variables [ ]konkn ,zE νβ ,W,x , which are precisely the posterior probabilities in Eq. (16), calculated using only the observed data: 

( ) ∑ =

+−

+
−  −+

 −+
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ν

ν

ν
β

ν
β

νβ xy xyWx ,        (23) and the interactions between  the indicator variables and the first and second moments of mnx : 
[ ]konmnkn ,zE νβ ,W,xx  and  konTmnmnkn ,zE νβ ,W,xxx . We first define (Ghahramani & Jordan, 1994; Sun, Tiňo, & Nabney, 2001) the expectation 
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[ ] ( )oldmkmknkonknmn ˆ,,zE yx,W,xx === νβ1 ,         (24) where old stands for calculations obtained in the previous algorithm iteration. This way, we obtain 
[ ] mknknkonmnkn ˆẑ,zE x,W,xx =νβ            (25) and 

( )  += − mknTmknoldknkonTmnmnkn ˆˆẑ,zE xx,W,xxx 1βνβ ,       (26) where, for both Eq. (25) and Eq. (26), knẑ  is given by Eq. (23). The missing data imputation is now straightforward: it is performed according to: 
[ ] [ ] ( )oldmkKk knKk konknmnknkonmn ẑ,,zEẑ,E y,W,xx,W,xx ∑∑

==
=== 11 1 νβνβ         (27) This imputation procedure completes the data and allows their full visualization on the low-dimensional latent space. In the Maximization step of the E-M algorithm, we use those now reconstructed data consisting on the combination of the observed and imputed subsets, which we call recX  (where rec stands for reconstructed), to obtain newW  as the solution of a modified version of Eq. (19): 0=− recTnewT ˆ XZΦWΦGΦ **  .          (28) Note that the elements *knẑ  of *Z , also basis of the calculation of the elements of *G , are now calculated as  knold,mkmnold,okonk k*kn ẑDẑ  −+−+

+
= 22 yxyxβν

ν         (29) 
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This matrix of weights newW  can be used to update the generated mixture component centres as ( ) ( )( )mknewnewmk uΦWy =  and ( ) ( )( )oknewnewok uΦWy = , which, in turn, are used to update the mixture component-common inverse variance: 
( ) ( ) ( ) ( )∑ ∑

= =

−
−    −+−++=

Nn Kk mnnewmkknonnewokoldkkknnew zEDẑND 1 1 1221 1 xyxyβννβ   
( ) ( )   −+−

22 mnnewmkknonnewok zE xyxy ,         (30) where 
( ) ( ) ( ) ( ) ( )newmkTmknnewmkTnewmkmknTmknoldmnnewmkknzE yxyyxxxy ˆ2ˆˆ12
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