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Chapter 12

Social Insects and Swarm
Intelligence

12.1 Ants, wasps and bees: The superorganism

Most! of the questions on the dynamical behavior of systems of strongly interacting
(simple) agents we have posed in previous chapters could be reframed, without any
modification, in the context of social insects, since these are, without any doubt,
a truly paradigm for complex systems.

Social insects have been in our biosphere for more than 100 million years, so
nature seems to have already solved our questions about the adaptation ability of
collectives of strongly interacting elements. All the ants, some families of wasps
and bees and the entire order of Isoptera (termites) are what entomologists call
eusocial. To belong to the class of eusocial species three biological traits should
be present: Adults caring for the young, two or more generations of adults living
together and a reproductive division of labour. From now on we will restrict
our discussion to ants (needless to say that ants are representative enough of
all kinds of social behaviour in insects). First, we could ask how rare is social
behaviour in nature, perhaps it has been an evolutive accident surviving only in
few places, or an early error being corrected by the introduction of more individual-
based species. Fortunately both statements are wrong: Social behaviour evolved
from small societies of individuals, that is, ant societies with a huge number of
highly cooperative individuals are the youngest, from an evolutionary point of
view [45]. With respect to their ubiquity, ant species can be found all over the
world, particularly in tropical forests; let us quote [45] concerning estimates of
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diversity and abundance of ants:

“All together, theses creatures seem likely to constitute half or more of
the insect biomass. Consider the following disproportion: Only 13.500
species of highly social insects are known (9.500 of which are ants) out
of a grand total of 750.000 insect species that have been recognized to
date by biologists. Thus, more than half the living tissue of insects is
made up of just 2 percent of the species, the fraction that live in well-
organized colonies.(...) At the risk of oversimplification, we envisage
an overall pattern of ants and termites at the ecological center, solitary
insects at the periphery.”

So it is quite clear that social behaviour is an advantageous strategy in environ-
ments with a certain degree of unpredictability, such as real ecosystems.

There is a large variety of interesting behaviors in ant colonies, behaviours
that are attained collectively without central command. The queen, contrary
to what is popularly thought, does not control the colony, she has essentially a
reproductive function. In fact, queenless colonies are not rare [1] in some ant
species. Examples of well-known collective functions performed by ants are task
allocation, collective decision, collective sorting, foraging, patrolling and brood
care, though there are more surprising behaviours in some ant species, such as
propaganda, slavery, decoding, mimicry, Trojan horses (!) and highwaymen [45].
All these striking behaviors are performed by quite simple individuals with no
more than 40 “behavioral categories” interacting by means of simple mechanisms,
essentially chemical communication (pheromones) and physical contact, though
sound may also be used in some species [45].

Chemical communication underlies a remarkable mechanism that plays an es-
sential role in self-organizing collective behavior, besides being, at the time of
writing, the main source of inspiration for artificial collective systems, it is called
stigmergy (name introduced by P.P.Grassé in the 50’s). Following [62] the hypoth-
esis of stigmergy is that

“(...) it is the work already accomplished, rather than direct communi-
cation among nest mates, that induces the insects to perform additional
labor.”

First of all, it is clear why stigmergy it is interesting for designers of collectives
of robots: The problem of communication between agents simply vanishes. So
what remains is to build a working individual operating in a common environment
with other individuals. There is a plethora of phenomena which can be explained
by means of stigmergic mechanisms, such as nest building in termites, collective
decision making and collective clustering to cite a few. Artificial systems built
according to an underlying stigmergic mechanism are simply most of the systems
built up to now.

Stigmergy is also related with the slaving principle (see chapter 3 and [40]),
since the work done by individuals acts as a sort of “slow” variable slaving, and
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governing, the individual behaviour. Some examples, to be detailed below, may be
the clustering phenomenon: Objects forming small clusters induce the individuals
to put down objects near the clusters, creating a positive feedback that ends with
one or two large clusters; also the example of the Travelling Salesman Problem
(TSP) and that of collective decision, the “trail” and the morphogen have “slow”
dynamics due to changes in concentrations induced by individual activity, though
they also act as a field governing individual behaviour (see below). We see here a
circular causality, one of the main features of complex systems.

The world of ants is so huge that it is quite likely that the phenomena as yet
hidden to us will be far more surprising than those facts already known. Undoubt-
edly the study of complex systems will benefit from these findings and new design
procedures for artificial collective systems will see the light in a near future.

In this chapter we will detail some of the amazing collective behaviors above
mentioned. Furthermore, we will speculate a little about a possible trade-off be-
tween individual complexity and collective complexity, and the consequences this
conjecture could have for a general theory of complex systems. Finally, we will
briefly illustrate how engineers have taken the collective behavior of social insects
as a source of inspiration to find efficient algorithms for combinatorial optimization
problem solving or collective robotics.

12.2 Termite nest building

The first model of social insect behavior, based on a “complex systems” approach,
was proposed by Jean-Louis Deneubourg in 1977 [24]. The model was designed to
explain the early stages of termite’s nest construction. These nests may be several
meters tall, which becomes rather surprising if we consider that their builders are
quite small; it is one of the most evident examples of truly collective behavior. Nest
construction seems to occur in two phases. Firstly, there is a random deposition
of building material. However, it may be that, by chance, one of the deposits
became large enough to start a second phase, where ants deposit material on
that aggregation preferentially. A pillar or wall begins to grow and an arch may
be formed if some other wall also was grown near this one. The model we are
going to detail explains in a simple way how these coherent structures may emerge
from the apparently random interaction between simple individuals. The model
assumes the following hypotheses: The handling of building material by individuals
impregnates the material with a certain amount of attractive pheromone. Let
P(r,t) be the amount of “active” building material at position r and at time ¢. The
pheromone may be dissociated from the material, so let H(r, ) the concentration of
free pheromone. H may diffuse freely in space and its odor attracts termites toward
the regions of high H. There is a constant flux ® of individuals carrying building
material, whose concentration we will denote C'(r,t). The deposited material is
proportional to C, that is, to the density of loaded individuals.

From these assumptions we can build the following rate equations. The first
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Figure 12.1: After solving eqns. 12.1, 12.2 and 12.3 in a region of instability of the
uniform steady state (see text) we can observe a spatial pattern in P. Parameters:
& =3,k =ko = ks = 0.8888, D, = 0.01, Dy = 6.25 x 10~ * and v = —0.4629 x 10 2.
(after [52])

one tells us that the amount of building material is proportional to the density of
carriers:

OP(r,t

Q =k C — kP (12.1)

ot

where ko is the amount of pheromone emitted per unit of deposited material per
unit time. There is a decay in the amount of free pheromone proportional to
its local abundance; also, it passively difuses to nearest locations. However, the
amount of free pheromone grows proportionally to active material. Thus, we have
the equation

H
W = kyP — kyH + Dy V2H (12.2)

Finally, the equation

% =& —kC+ D.V’C+~V-(CVH) (12.3)
introduces the spatio-temporal dynamics of carriers. ® is the flux of insects bring-
ing material into the space where the work is performed, D, is the coefficient of
random dispersion (that is, a random component in movement) and the last term
represents the attraction by the odor (7y is the attraction coefficient, also called
the chemotactic parameter).
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This model allows one to perform a linear stability analysis (according to chap-
ter 10). It admits as a solution the uniform state:
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but this solution becomes unstable [24] at
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since no perturbation can grow for v < v.. In figure 12.1 we plot P as a function of
space (in a one-dimensional version of the model) for v > ~., close to the marginal
state. The system converges to a spatially periodic state, making evident the
appearance of structure in the spatial distribution of active material. Thus, the
“seed” to form pillars and walls appears spontaneously in the form of dominant
modes in a steady state solution of the model.

12.3 Collective decision making

Experiments with several ant species have highlighted their collective ability to
choose the richest (in sacarose concentration, for example) of several food sources [4].
To measure patterns of source exploitation, two food sources were presented to an
ant colony, simultaneously and at the same distance of the nest. Individual ants
are unable to locate a food source in the environment and remember its position to
report on the colony (at least those of the species in the mentioned experiments),
therefore they must rely on some other mechanism to fix the location of food.
These mechanisms are based on the deposition of small amounts of pheromones
leaving a scent on the ground that other ants are able to follow and reinforce, in
such a way that a trail to a specified location is created through a positive feed-
back. With two equal sources, the response of the colony was to choose one of
them, usually the one that was first discovered. If the sources were different and
were discovered simultaneously, the richer one was the more exploited, e.g. the
number of ants around the richer source, taking food and bringing it to the nest,
was quite greater than the number of ants taking food from the poorer source.
However, if a source was first discovered, the introduction of a richer source once
the trail to the first source is well formed induces distinct behavior depending on
ant species. Trail recruiting ants (for example, Lasius niger, Iridomyrmez humilis
or Pheidole pallidula [45]) are unable to switch in order to exploit the richer source,
while group/trail recruiting ants (for example, Tetramorium caespitum [45]) ex-
ploit instead the richer source no matter the order of discovery. Thus, if two
different sources are discovered simultaneously, the richer one becomes much more
exploited. However, a late introduction of the richer source may result in switch-
ing, depending on the species’ recruiting strategy. This is because group/trail
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recruiting ants do not follow the trail as accurately as trail recruiting ants, so
they lose it easily, allowing accidental encounters with other food sources. These
findings, are then exploited thanks to the group/trail recruiting strategy. As sug-
gested by the above discussion, it is enough to measure either the number of ants
per food source or the quantity of scent left in the trail to a food source to get the
picture of the behaviour displayed by the colony.

Beckers et al. also propose the following mathematical model for the observed
behavior. Assume that we have N foragers of which X; are at the source i(= 1, 2),
E are recruits that have lost the trail, and N — EF — X; — X5 are in the nest and
can be recruited. Recruitment accuracy is expressed by means of the fraction of
ants in the nest that will become foragers f;. The resulting equations of motion
are

2

aX; = aXifi(N-> X;i—E)—bX;+cE (i=1,2) (12.5)
2 = 2

QE = (N-Y Xi—E)> (aX;1-f))-pE—2E, (12.6)
=1 i=1

where the constants have the following meanings. Lost foragers can return to the
nest every 1/p time units on average or can find one of the two sources every
1/c time units on average. 1/b is the average number of time units that ants
stay at the source. The fraction f; allows one to take into consideration the
differences between recruitment modes across species. Trail recruitment depends
on the number of foragers at the source, so it is reasonable to make it depend on
X;. Moreover, because a large number of individuals at the source means that
the trail is more reinforced, a monotonic increasing function f; = g(X;) is a good
choice. Group-trail recruitment has the same features as trail recruitment but a
constant term has to be added, because of the recruitment due to direct contact
among individuals; thus, f; = g(X;) + ;.

The model is able to accurately reproduce the experimental results described
above. Trail recruitment and group-trail recruitment both have a term amplifying
small differences in initial conditions; that is, source is discovered first. How-
ever, the constant term in group-trail recruitment makes a difference when the
two sources are different and not simultaneously presented (the richer the last).
In this case the model with group-trail recruitment has just one stationary state:
i.e. exploiting the richer source. Whereas trail recruitment has several stationary
states and which one will be reached depends on initial conditions. Besides recruit-
ment strategies, this model also points out an interesting relation between number
of ants and source exploitation, as we can see in figure 12.2. There is a certain
number N, of ants where two solutions appear, depending on which food source
ants will be exploited. This is an example of symmetry breaking (see chapter 3).

In a related work, another model of this phenomenon was introduced in [47].
Its departure point was the movement of ants along paths where some quantity of
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Figure 12.2: Stationary solutions for Beckers et al. model. ST is the symmetric solution
that bifurcates for a certain N.. Parameters are: b = 0.1, a1 = a2 = 0.001, p = 0.033
and ¢ = 0.018.

scent was laid, following an experimentally determined probabilistic law to switch
at bifurcations [25]. This allows one to define a microscopic dynamics of ants
moving on an ant network (a graph where ants travel from vertices to vertices
through edges, also called segments) that, under some restrictions of homogeneity
and locality, leads to a different model.

Let V; be the length of the i segment. An ant at a vertex of the network,
coming from segment %, will choose segment j to continue its walk with probability
Wi; o< w(o?) depending only on the scent density o/ present at segment j. This
transition probability will be of the form w(o) = (a + 0)? where « is a bias in
the scent and the role of § will be clarified later. These parameters account for
species differences [25]. It is convenient to write this out as w(o) = e (7)) where
€(o) = —In(a + 0); here it is clearly seen that 3 regulates the steepness of the
transition probability as a function of 0. Defining W;; in this way, the following
equality holds

Wije_ﬁei = Wjie_ﬁej - (127)
this property is called detailed balance and is quite useful since it often allows an
analytic treatment of the system. The next step is to define an equation for the
density s* of ants at segment ¢

V;0ps' = Zw(ai)sj —w(o?)st . (12.8)
J
Ants lay scent on the segments according to

oot = —ko' +nis' (12.9)
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where o' is the scent density in segment i, & is the evaporation rate and n; is the
scent quantity laid by an ant per time step in segment i.

Equations (12.8) and (12.9) determine the dynamics of ants and scents on
the network. However, to be able to completely solve these equations, one more
assumption has to be made; a separation of time scales. Assume that temporal
evolution of scent occurs on a time scale much slower than that of ant density.
Thus, we can assume a constant scent in ants temporal evolution. This is called
slaving after H. Haken [40]. In such a case, ant density relaxes to its equilibrium
value before scents change appreciably and s* can be replaced in Eq. (12.9) by their
equilibrium value s¢. This can be computed, thanks to the property of detailed
balance, and one finds that

. N(a+d"s
b 12.1
e (12.10)
where NV is the number of ants and
Z =Y Vi(a+d')’ (12.11)
i

is a normalization factor. Inserting Eq. (12.10) in Eq. (12.9) a nonlinear evolution
equation for scents can be obtained

N(a + ot

Z (12.12)

ool = —ko' +

The case concerning us, that of a choice among food sources, can be rephrased

in terms of this model considering two equal segments, A and B, whose point of

departure is the nest, having in their ends food sources. The parameters defining

the problem will be 4 and np (figure 12.3). This means that ants returning from

each food source lay scent at rates according to the quality of the food source, which

is in agreement with experiment. Using the parameter R = (a+0')/(a +0?) and
some algebraic arrangements, the following dynamical equations are obtained

1 1 mN
= — —_ 12.1
0o KO +V(1+R*5) (12.13)
2 2 n2N
= - —_ . 12.14
Oho SR TRy ) (12.14)

The analysis of this model emphasizes the number of ants IV instead of recruitment
strategies, as did the previous model (see [47, 48] for details).

On the one hand, let us consider n4 = np. In this case, for N < N, (that
is, for N less than a certain critical number of ants N., to be determined from
the equations for o1 and o2) both sources will be exploited evenly, but a change
of behavior occurs at N,, so that for N > N, one of the food sources is chosen,
depending on random fluctuations in the initial density of ants s’. On the other
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Figure 12.3: Collective decision between two food sources at equal distance from the
nest. Scent rates laid by individuals (71 and 72) will depend on the quality of the food
source

hand, for 9, # 72, exploitation of the better food source is a solution for all values
of N, although above a certain N, there will be another solution, i.e. to exploit
the poorer food source. However, if the number N of ants grows from zero, as
usually happens in experimental situations, the better food source will be always
the more exploited.

Thus, we have seen two different models of the same foraging behavior. Each
puts emphasis on different aspects, either recruiting strategies or number of indi-
viduals. Both models capture one important feature of real ants: The creation of
a field of pheromones that guides individual behavior, as we remarked above. The
field, represented by o in Millonas’ model and by g(X;) for trail recruitment in
Beckers et al. model, plays the role of a long-term memory. Information storage
here is spatially distributed. Individual ants manipulate this information, either
reinforcing or decreasing the field, according to the local information available,
that is, the “intensity” of the field on the surroundings of the ant. It is easy to
see how information is transmitted, it comes with the local changes of the field,
though it can be transmitted also from individual to individual in group/trail re-
cruitment. It’s worth also to remark the interplay between the global patterns of
scent and the local variations of pheromone, through depositions of individual ants;
in this sense we can consider the trails -the memory- as an emergent phenomenon,
a global pattern not only emerging from the local activity of individuals, but also
directing the behaviour of these individuals.

All of the above discussion can be rephrased in terms of dynamical systems
theory. The state of our system would be the spatial distribution of pheromone
and the location of each ant on the experimental arena; this state would change



10 Order and Chaos in Complex Systems

with time, in a probabilistic way, towards a stable attractor, a stationary state
where some food sources are being exploited. These attractors may depend on
some features of the colony, such as the number of ants and/or the recruitment
strategy, that is, there may be different possible behaviours in our system that
appear as some parameters are changed. Furthermore, despite these changes may
be purely local (for example different recruitment strategies), their consequences
may appear at the global, emergent, level as changes in the qualitative nature of
the attractor, i.e. different food sources may be exploited.

12.4 Brood sorting

In [27] some experiments are described concerning sorting and clustering in ant
colonies. In one of them a large number of ant corpses were placed randomly on
a arena. A rapid response of the colony (Pheidole pallidula) was observed, sorting
the corpses and clustering them. At the end of the process one or two clusters of
corpses remained on the arena. The other experiment consisted of larvae sorting.
The larvae of a colony of Leptothoraz unifasciatus were tipped out onto an area.
Workers brought back larvae to the nest making some small piles. After a while,
one large pile of larvae was observed, with a clear separation between small larvae
and large larvae.

In the same paper a model of these phenomena was introduced. It is not a
model made out of differential equations, as the models we have seen above, but a
discrete model in time and space, a kind of mobile cellular automata. We assume
an area of Ly x Ly squares, each one containing an individual and/or an object that
can be of one of two types, A and B. Individuals are able to move randomly in one
of the four directions of the Von Neumann neighborhood, except for the borders
of the area. It has, therefore, zero-flux boundary conditions. Each individual can
hold an object if he is located at the same place and if he is not holding another
object. An individual is also able to put down an object, if he is holding one. An
object will be picked up depending on the spatial environment of the object. Each
individual has a short memory where he can remember how many objects of type
A he has found in the last m steps, and also how many objects of type B. Thus,
an individual is able to compute an estimation of the ratio of A objects, f}*, and
of the ratio of B objects, fg', in the environment of a given object, that located
at the same coordinates of the individual at that time step. To pick up an object
is done in a probabilistic manner

+32
pun =KD
VSET

where K7 is a constant. To put down an object we define

Pdown — (‘]L“T/B)2
AT K+ )
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where K~ is a constant. As is obvious from the definition of PX;’B, the more
objects an individual finds of a certain type the less probable is that he picks up
one of them, and from the definition of Pgm]‘é" we see that an individual will put
down an object with a probability that increases with the objects of the same type
he finds while walking around. This simple model reproduces the results observed
in experimental manipulations, at least qualitatively [27]. In figure 12.4 we can see
snapshots of the object locations at different time steps. An increasing clustering
according to the type of the objects is observed. Remarkably, this model attains
a global result (clustering of objects initially spread out on the lattice) using only
local rules, just as did Millonas’ model of collective decision.
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Figure 12.4: Four snapshots of the clustering process in ant-like robots (not shown).
Each snapshot shows the object distribution in a 50 x 80 lattice. The order in time
is from top to bottom and from left to right. Parameters: K™ = 0.1, K~ = 0.3 and
m = 15. For a description of the model see text (after [27]).

In this case we deal with a stigmergic process implying that information trans-
mission is performed through the spatial distribution of A and B objects. This
turns out to be also the memory used by the collective system to proceed with
the clustering task, memory that is modified by individual activity through the
picking up and putting down of objects. As the model suggests, the clustering
process relies on some fluctuation in the random redistribution of objects that
takes place in the initial steps, fluctuation that must be large enough to attract
more objects of the same sort. Then, a change in an initially unstructured distri-
bution occurs so that the clustering of equal objects can be initiated. This change
in the information storage of our system (a change in structure), how could it be
quantified in computational terms? Furthermore, ants gather information from
their local neighborhood. Although only local information concerning the types of
objects around is available at a given time, there is a certain amount of informa-
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tion stored in terms of memory. Each ant is able to remember a certain number of
past events and this memory is afterwards used in deciding whether or not to pick
up/put down an object of a given type. The final outcome is a pattern formation
process where the available long-term memory of individuals ants makes possible
to cluster the objects properly. As the objects become clustered, the large-scale
structure acts somehow as an order parameter. As more and more objects of the
same type become clustered, it is more likely for the ant to remember sequences
of objects of the same type, thus introducing a further reinforcement into the pro-
cess. Again, we have a system in which local behaviour induces a global, emergent,
phenomenon that is useful for the survival of the colony. In this case the state of
the system is the spatial location of each object and the position of the ants, the
dynamics is again stochastic, since ants are considered as random walkers on a two
dimensional surface, and any state with two large clusters of objects of distinct
type has some non-zero probability of being the attractor of the system.

There are some refinements of this model, introduced in [39]. The individuals,
as defined up to now, are called “basic” ants; he defines alternative rules for move-
ment, picking up and putting down objects. These ants are called “complexity-
seeking” ants. Roughly, these ants are able to measure what Gutowitz calls the
local complexity of a square of the lattice. This is a measure of how many consec-
utive changes of content there are among neighbor cells, i.e., the number of “faces”
that separate cells of different type. This determines the direction of the move-
ment and manipulation of objects. Complexity-seeking ants are able to achieve
the same resuts as basic ants, but faster. This is seen in the decreasing rate of the
spatial entropy (see [39] for details).

12.5 Army ants

Swarm raid patterns in army ants are among the most astonishing social be-
haviours one can observe in nature. In a matter of hours, thousands of ants leave
their bivouac, forming large columns or swarms, with the only purpose of finding
food for the colony. These raids are able to sweep out an area of 1000 m? in a
single day. The “Huns and Tartars of the insect world” (Wheeler [45, p. 573])
are a beautiful example of decentralised control and self-organised behaviour [11].
The term “Army Ant” (a.k.a. “legionary ants”) refers essentially to the subfami-
lies Ecitoninae and Dorylinae, although behaviour patterns characteristic of those
mentioned above are also found in the subfamilies Leptanillinae, Ponerinae and
Myrmicinae [45]. Such large-scale predatory patterns have been the subject of
research by naturalists and myrmecologists since the past century: the structure
of the patterns, the relation between division of labour and the raid patterns, their
adaptive significance, etc. A sample of the reasons of the scientific interest in raid
patterns can be found in [45, chap. 16].

Different species of army ants display different raiding patterns. The column
raiding of Eciton hamatum, the swarm raiding of E. burchelli and the intermediate
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pattern —between columns and swarms— characteristic of the monomorphic species
E. rapax would be good examples of the diversity in raid pattern structure. This
diversity was explained by a theoretical model (detailed below, see [26, 25]) which
predicted that different patterns were the result of different food distributions and
parameter combinations (according to prey preferences), though the underlying
mechanism to build raid patterns was the same in all cases. These predictions
were successfully tested by means of experiments with E. burchelli, whose charac-
teristic swarming pattern changed, when prey distribution was modified, to look
like the raiding pattern of E. rapaz [31] The mechanism behind raid patterns is
a behavioural trait of army ants that has been subject to the forces of natural
selection and, as such, it is “partially adaptive and partially an epiphenomenon
created by stronger selection occuring on other traits” [53, p. 314].

Following [26], we consider a simple model of army ant raid patterns which
involves individual, discrete units moving on a two-dimensional discrete lattice
where a pheromone field is created and maintained by the mobile units. More
precisely, let Si(t) be the state of a given ant which will be either S = 1 or
S = 2 if the ant is searching and moving away from the bivouac or returning back,
respectively. Let ¢(i,j) > 0 be the trail concentration at lattice site (i,j). When
ants are searching, they leave one unit of pheromone, unless the total amount of
pheromone already exceeds a threshold value o1. When returning from exploration
with a food item (returning ants always carry a food item) they leave ¢ units of
pheromone; now the threshold is 2. The pheromone evaporates at a given decay
rate 0: at each discrete time step ¢(i,7) — (1 — §)d(1, j).

Movement involves two different rules. These are:

1. Probability of movement. A given ant located at (i,7) will move with a
probability P, by depending on the pheromone field in the three grid points
in front of (i, ). If the ant is leaving the nest, it reads:

¢0+LJ+D+¢0+Lﬁ+¢@+Lj—D_1ﬂ
¢*
(and similarly for returning ants but replacing i+ 1 by ¢ —1). The parameter

¢* represents the concentration of trail pheromone for which the probability
of moving per step is 0.5.

Pm:%[l—l—tanh(

2. Once movement is allowed to occur, we have to chose one of the new grid
nodes. The nodes with higher pheromone levels are more likely to be chosen.
We have three probabilities 7y, 79 and mg indicating left, central and right
front nodes, respectively. These probabilities are:

T = =lp+ ¢+ 1,5+ 1)

TR =

Ql~ Q=

[+ ¢(i+1,5— 1)
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and obviously 7, =1 — wg — mp. Here C is given by
C=lp+o(+1,7+ D + [+ +1,7)P +[u+ 6 +1,5 -1

This choice of a sigmoidal-like function is based on experiments [31]. The

Figure 12.5: Simulation of Deneubourg et al. model, as detailed in the text, for a
certain set of parameters. We can see in (A) the spatial distribution of individuals and in
(B) the associated spatial distribution of pheromone. There is a clear matching between
both. Pheromones pattern controls individuals movement though the pattern needs to
be reinforced by individuals

parameter p weights the attractiveness of empty nodes. If the chosen node
is such that the total number of ants exceeds a maximum value A,,, then
no movement is allowed to occur. Two additional rules are required: (a)
lost ants (i. e. those such that the reach the limits of the lattice) are
removed from the system; (b) new ants enter from the bivouac, here located
at (1,L/2). This is a fixed number but if the bivouac site is already at the
limit A,,, no new ants are added.

An example of the amazing raid patterns generated by the model can be seen
in figure 12.5. This simple model was able to provide evidence of a common
mechanism underlying different foraging patterns in different ant species. Besides,
this prediction was verified experimentally, supporting the validity of the model.

Furthermore, an evolutionary study of this model was recently performed, using
a variant of a genetic algorithm (chapter 13) to optimize its parameters. The
results showed that different optimal patterns, in different conditions, could be
obtained with similar values of the parameters, except for the two pheromone
saturation parameters, o1 and oy. These two parameters may have been the two
parameters tuned by evolution to make different species of army ants adapted to
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their respective ecological niches, represented here by spatial food distributions.
This result is an important addition to Deneubourg et al. work: these authors
showed that it is in principle possible to obtain the observed patterns with a single
set of parameter values but they did not quantify the patterns in any way; while
the above mentioned study was not able to quantify the spatial patterns per se,
it was able to quantify their impact on foraging efficiency and did not rely solely
on the eye of the beholder. The result of this more accurate quantification of the
patterns is that different sets of parameter values are required to generate optimal
patterns in different conditions, and we have identified which parameters values
should be significantly different.

Assuming that the model reflects indeed what the ants do, which seems to be
confirmed to a certain extent by a remarkable set of experiments, this suggests
that self-organised raid patterns have been optimised in the course of evolution.
Since raid patterns emerge out of relatively simple rules followed by individuals,
it means that colony-level selection has shaped the behaviour of individuals in
such a way that individuals self-organise to implement optimal foraging strategies.
Variation at the level of individual genotypes has been expressed in colony-level
patterns through self-organisation.

12.6 Self-synchronization

Ants, refuting popular fables, do not work untiringly all day long. As Sudd [59]
pointed out, the proportion of time spent in resting can be high, and the study
of Herbers [43] on acts performed by ants of Leptothoraz longispinosus and L.
ambiguus species reveals that “(...) ants spent two-thirds of their time apparently
doing nothing at all”. These behavioural patterns are by no means exceptional,
Franks & Bryant [29] found them in L. acervorum and Cole [12] noted that “(...)
Time spent quiescent occupies a large fraction of the total time of an ant (on
average 55%)” while studying ants of the species L. allardycei. A more refined
study by Franks et al. [30] measured even a 72% of time spent resting for workers
inside nests of L. acervorum. However, not only patterns of alternate activation
have been found in individual ants, these patterns also appear in whole colonies,
showing synchronized patterns of activity: surprisingly, Franks & Bryant [29], by
means of video-recording techniques, were able to get a long enough time series
of the activity in whole colonies of L. acervorum to show, using spectral analy-
sis, that activity was roughly periodic, with periods between 15 and 30 minutes.
This synchronized behaviour has also been found in L. longispinosus, L. ambiguus,
L. curvispinosus, L. allardycei and L. muscorum (see [50, Chap.2]), also in other
species such as Pseudomyrmez elongatus, P. pallidus, Tapinoma littorale, Zacryp-
tocerus varians and Crematogaster ashmeadi [15]. Activity patterns are not just
synchronized, but self-synchronized: no external signal has been found experimen-
tally as a possible cause of colony synchronization [13]. Furthermore, Cole [14] was
able to show evidence of chaotic activity in single ants. So, one important conclu-
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sion is already at hand, that is, self-synchronization is a collective property, since
individual patterns of activation are not periodic.
Two main observations/conclusions emerge from these experiments.

e Randomness is present at the individual level, acting as a source of noise.

e Collective ordered dynamics emerge from the microscopic chaos. The ob-
served oscillations are present in different species and seem to be an intrinsic
relevant feature of ant colonies.

There are diffreent mathematical models of self-synchronization in ant colonies.
Different approaches based on ordinary differential equations or probabilistic pro-
cess algebra have been proposed. These models have been criticized on the basis
of a lack of testable predictions or dubious assumptions, see [61] for a survey
and [5, 23] for some recent work on modelling of collective oscillations. We will
detail here the mathematical model known as Fluid Neural Network (FNN).

In FNNs the standard approach of neural networks is used [2], but a new set
of rules defining local movement and individual activation are also introduced. A
set of N automata or “neuron-ants” is used. The state of each automaton (say
the i-th one) is described through a continuous state variable S;(t) € R, at each
time step ¢t € N. Each element can move on a L X L two-dimensional lattice

A set of rules is defined:

o Neural network structure: Interactions are described as in neural networks
by means of a sigmoidal function ®(x). If S;(t) is a given automaton (the
spatial dependence is omitted for simplicity), the new states are updated
following:

Si(t + At) = [ g {J“SZ(t) + Z Jiij(t) — @z} (1215)
i#jEB(i)

where B(i) are the nearest automata, located in the neighborhood defined by

the eight nearest lattice sites, and J;; # 0. For simplicity we use the threshold

©; =0, and we take ®(z) = tanh(gz) with g being a gain parameter.

e Spontaneous activation: We have seen above that one of the properties
Cole [13] observed in isolated ants was spontaneous activation. In FNNs
this has been included in the following way: each automaton can be either
active or inactive and, if active, it moves randomly to one of the eight near-
est cells (if no space is available, no movement takes place). In our model a
given automaton will be active if S;(t) > ..+ and inactive otherwise. Once
an automaton becomes inactive, it can return to the active state (with an
spontaneous activity level S,) with some probability p,.

e Coupling matriz: the coupling matrix J is not fixed. Connections are local
and changing over time as a consequence of movement. They are also state-

dependent i.e. J;; will be a simple function of the states of the actually inter-
acting pair (i, j) of automata, i.e. Ji; = f(a},a}), where a} = © [S;(t) — 0,04
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(O [z] is the Heaviside step function). In our case, where two basic states
are defined, i.e. “active” and “inactive”, the connectivity matrix reduces to

the following 2 x 2 table:
A1 Ao
A =
< o1 Aoo )

At a given time step, the interaction J;; between the i-th and the j-th
elements is equal to Aaﬁa; € A by depending on the activity states of the
given elements. More precisely, J;; will be equal to: A;; when both ants are
active, to Aig, o1 when one is active and the other inactive and to Agg if
both automata are inactive. In this thesis we take for simplicity Aat at = 1.
Our choice is based in the observation of ant colonies. Self-interaction and
positive feed-back (with local excitability) play an essential role in colony
dynamics. The consistency of our choice is fully supported by experimental
studies of ant colonies [15].

A technical point is what sort of boundary conditions we use. Though not
biologically plausible, we use periodic boundary conditions, because we want to
verify that ordered temporal behaviour is a consequence of the intrinsic dynamics
of the system, not a boundary effect. Nevertheless, this turns out to be irrelevant
because of the same phenomenology is observed with diverse boundary conditions
(periodic and zero-flux).

The collective behaviour we want to measure in FNNs is the mean activity
of the system. We have defined above an activity for each individual S;(t), al =
O [S;i(t) — b4ct], sO the mean activity at time ¢ will be

1Y 1 Y
p?‘ = N Za; = N Z ® [Sz(t) — eact] (1216)

j=1 j=1

where p;” € [0,1]. We define also the total density of automata as p = N/L?. We
can see in figure 12.6 two samples of the temporal behaviour of p; .

FNNs were originally defined to ascertain whether there was a transition be-
tween synchronized and non-synchronized behavior, depending on the density p.
At low p we have a very disordered pattern, which becomes more and more ordered
as p is increased. So, a clear transition from random to ordered, self-synchronized
temporal behaviour is made evident. Solé et al. [57] calculated the Fourier spec-
trum for FNNs time series and a well defined maximum in the amplitude was
found with growing p.

Solé & Miramontes [56] showed that a first approach to a quantitative char-
acterization of the transition in the dynamical behavior of the FNN was to mea-
sure the Shannon-Kolmogorov entropy of the following probability distribution
{p(j,p)}: let T} the number of time steps where exactly j elements were active
(j =0,1,..., N); now, if T is the total number of time steps, the relative frequency
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Figure 12.6: Evolution in time of pj. We may get either bursts of synchronized be-
haviour or non-synchronized behaviour, depending on the set of FNN parameters we
choose.

of j simultaneously active elements will be p(j, p) = T;/T. The SK entropy is then
defined as:

N
S(p) == _p(i,p) logy pli,p)

i=0
It is expected that SK entropy will provide us with a measure of the diversity of
macroscopic states. S(p) has an upper and a lower bound: S(p) € [0,log, (N + 1)].
At low densities, S(p) will grow until the onset of collective oscillations, where it
will decrease due to the highly correlated temporal patterns. So, the transition
occurs at a critical density p. such that S(p.) is maximum. Using SK entropy,
Solé & Miramontes performed an extensive study of the (p, g)-space. They found
four dynamical domains: random behaviour, chaotic attractors, steady states and
periodic oscillations. For high g values the automata collapses to a steady state
where all individuals are active. Lower g results in coherent oscillations or disor-
dered behaviour depending on the density p. These domains are separated by a
maximum in SK entropy.

Thus, a transition from disordered to oscillatory behaviour in FNNs has been
characterized numerically as the maxima of SK entropy. Now, how good are
FNNs to model the real system? In principle the same phenomenology has been
observed. However, we observe the onset of oscillations for a critical density p. ~
0.2, the same density observed in real ant colonies [32]. This is clearly a point
in favour of FNNs as models of self-synchronized behaviour in Leptothoracine ant
colonies, besides providing the first evidence of real systems living at the edge of
a phase transition [56]. On the other hand, despite having identified a transition,
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which kind of transition is it? Non-equilibrium systems (and FNNs are obviously
not in equilibrium) may display different types of transitions. In order to get a
quantitative theory of a transition phenomenon we have to identify a quantity
called order parameter (see chapter 7). Focusing on the relation between p and
pa We were able to characterize the transition as a noise-induced transition [19] by
means of a well-defined order parameter. Also, it is possible to simplify the model
to get a mean-field theory of FNNs [21]. This simple FNN has the same behavior
as the original FNN, though in this case it is possible to obtain analytically the
critical density p., showing a very good agreement with numerically computed
critical densities.

FNNs have also been used to obtain some results concerning the adaptive char-
acter of self-synchronization [18, 23]. Cole [13] discussed the adaptive significance
of short-term activity cycles arguing that it is unlikely that these cycles contribute
to the efficiency of the colony. They are “(...) the inevitable outcome of interac-
tions within social groups”. However, at least two functional behaviours in ant
colonies have been related to self-synchronized activity: task allocation [55] and
mutual exclusion [42].

G.E. Robinson suggested that self-synchronized behavior provides a mechanism
for information propagation:

“Sampling behavior that involves social interactions may be facilitated
by synchronous bursts of worker activity, which have been observed in
ant colonies (...). The decision of which task to perform would be based
on the integration of acquired information, coupled with behavioral
biases associated with worker, caste, physiological status and prior
experience.” [55, pag. 652]

So, according to [55], self-synchronization facilitates the sampling of any infor-
mation an individual may need from other individuals. Let us try to clarify this
point. Assuming that ants cannot be active all the time (which is what is ob-
served in nature, see above), why self-synchronized behavior would be a better
(simple) strategy than, say, random (in the sense of “non-synchronized”) activity
patterns? We will need further assumptions to answer this question: First, the
obvious one of locality (an individual is able to get only local information) and
second, the quite reasonable (and biologically plausible [30, 13, 14]) assumption
that the unique interaction allowed to an inactive individual is to be “awaked”
by other(s) individual(s); an inactive individual does not carry any information,
namely, it is equivalent to a “slept” individual. Now, in this context, it would be
clear why we should obtain an increase of efficiency with synchronized patterns
of activity: It would maximize the number of simultaneously active neighbours of
an active individual (let us remind that we are assuming that individuals cannot
be active all the time). We took FNNs to model self-synchronization and Finite
Threshold Model [9] as a model of task fulfilment to test Robinson’s idea in a
formal setting. Our results supported Robinson’s conjecture, showing that self-
synchronization enhances task spreading, allowing a more efficient task-solving
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process in a spatially distributed colony of simple agents (see [23] for details).

12.7 Task allocation

Division of labor is one of the most explored aspects of behavior in ant colonies.
Every instant, active individuals in ant colonies are performing one of the essential
tasks for colony upkeep: Foraging, patrolling, nest maintenance or midden work.
Every task is done accurately by a certain number of specialized individuals. This
specialization is unquestionable in what concerns some tasks such as reproduc-
tion, where there are clear differences, morphologically and in reproductive status,
among queens, workers and males [45]. The term “caste” was used originally to
distinguish among these classes of individuals. However, later on “caste” has been
used to distinguish among workers performing different tasks. In polymorphic ant
species, where ants morphologically different carry out different tasks, we have
“physical” castes (physical polyethism) and in monomorphic ant species we have
“temporal” castes, where task is age-dependent (temporal polyethism). Underlying
this notion of caste there is the idea of a fized specialization of individuals, which
would determine colony behavior through caste distribution [53], caste distribution
being a species character subject to evolutionary processes.

This fixed specialization of workers is nowadays controversial, because, as ar-
gued by some authors [35], there is a large body of evidence that individuals switch
tasks, in both polymorphic and monomorphic ant species. It is interesting that,
as Gordon points out, these notions of fixed specialization and caste distributions
could have been reinforced by experiments done with small number of colonies in
very stable conditions and over short time periods. Concerning task allocation
and division of labor, we will assume the ideas unfolded in [35], where a complex
dynamical process between the individual level and the collective level is the ul-
timate reason for the percentage of individuals performing each task. For other
current points of view concerning division of labor, see [55].

One of the more interesting properties of task allocation is its flexibility. Usu-
ally the environment of an ant colony is, to some extent, unpredictable and the
colony has to deal with very diverse situations throughout its life. These situ-
ations include perturbations in the number of individuals doing some task and
task allocation systems should compensate this loss, so that colony upkeep con-
tinues as unperturbed as possible. This compensation can take the form of ei-
ther reassignment of individuals to tasks or activation of inactive individuals or
both, involving, among other things, task switching. But this is not so simple.
Some experiments [36] show that task switching alone does not account for some
colony-level phenomena. The experiments with colonies of Harvester ants (Pogon-
omyrmex barbatus) consisted of marking exterior workers (those either foraging,
patrolling, doing nest maintenance or midden work) to compare their behavior in
unperturbed colonies with their behavior in colonies where some task has been
intensified. Furthermore, colonies of different age were also compared with respect
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to task fidelity. Results seemingly suggested some level of task fidelity, although
perturbations made workers change task. This change is not independent of the
task an individual is performing, since some characteristic trends, such as the ten-
dency of workers to switch task out of nest maintenance and into foraging, were
found; see figure 12.7 to sum up the changes among tasks in unperturbed work-
ers. It was also observed that task fidelity is weaker in younger colonies. There
are also very interesting results concerning colony-level dynamics suggesting that
there is not a simple relation between task switching and number of workers en-
gaged in different tasks. For example, in the perturbation experiments foragers
rarely switched tasks to do nest maintenance but perturbations increasing nest
maintenance work decreased the number of workers foraging.

) Midden
Foraging Work

Nest
Maintenance]

Patrolling

Figure 12.7: Perturbations in Pogonomyrmez barbatus colonies induce activity switching
(see text). Arrows in the figure show for each activity, to which other activities regular
workers will switch; after [36].

From these and other experimental results [35, 36, 45, 55, 62] it is clear that the
interplay between the colony and the individual, in what concerns task allocation,
cannot be accounted for either by optimization models [53] or by simple linear
relationships between numbers of workers engaged in such and such task. Recently
some models have been proposed to explain these phenomena, having in common
a serious consideration of the complex dynamics underlying these task allocation
systems. A model of the above mentioned experiments was suggested in [37] based
on attractor neural networks [2]. Individuals are divided into eight categories
according to task and activity: Forager, patroller, nest maintenance worker and
midden worker, being either active or inactive for each task. A triple (£1,+1,+1)
represents each category. Interaction among ants is defined through three matrices
a, B and 7, each one representing one binary decision, so that one of the eight
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categories can be chosen from the interaction with other ants. These matrices are
defined according to some plausible rules of interaction among workers. If we have
an ant in a state (af, bt cl), the next state will be given by

at = 01 ayd (12.17)
i#k

Bt = 0| Byt (12.18)
P

gt = 0> (12.19)
FE

where ©(z) = 1 if x > 0 and O(x) = 0 otherwise. The existence of a global
attractor for this system can be demonstrated (see [37] for details) using the energy
function

E = —% [Z Qjkajak + Zﬂjkb]’bk + Zvjkcjck} (12.20)

Multiple attractors can be obtained with the same system modifying the ~y
matrix (this can be shown with the same energy function Eq. 12.20). Although
the model does not reproduce exactly either the interactions among workers or the
structure of these interactions, the type of dynamics proposed reproduces, at least
qualitatively, the phenomena to be explained, that is, the non-linear behavior of
workers engaged in some tasks with respect to perturbations in workers performing
other tasks.

There are other factors, besides that of interaction among workers, affecting
allocation of individuals into different tasks. One of these factors is colony size [45].
Recently a model based on ordinary differential equations and stochastic processes
has been proposed to account for this phenomenon [54]. Briefly, the model is
able to suggest how individuals have to regulate the per capita rate of social
interaction in order to keep in balance the acquisition of information through
environmental stimuli and social exchanges. Besides, the comparison between
deterministic and stochastic versions of the model is useful to see the plausibility of
the deterministic model for small groups, perhaps surprisingly due to the collective
nature of the phenomenon. Finally, the model is able to show how a very simple
mechanistic interaction allows the system to achieve distributions near those that
would maximize colony fitness.

Task allocation is a more general problem than those reviewed previously,
though myrmecologists have speculated on some aspects of its information pro-
cessing properties, for example information transmission: Robinson ( [55]) suggests
that synchronized activity may enhance the sampling of information in individu-
als, assuming that information is transmitted from individual to individual (see
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above), and Bonabeau et al. [9] suggest that a “stimulus” associated with each
task induces an individual to work in that task in a genetically determined way.
The set of individuals with the tasks they are performing would be the state of
the system, and the state of the environment will be taken as a sort of boundary
conditions. Each individual has also a certain amount of memory since, as we have
seen above, task switching depends on the actual task an individual is engaged
in. This memory, as [9] points out, is likely to be genetically determined by the
thresholds associated to each task. However the collective also needs some sort of
global memory, as we have seen in [37], in order to mantain the correct balance
of task assignments. This collective memory would be the upkeep status of the
colony that individuals perceive locally to decide the next task to perform. In this
sense the attractor of the system is a set of states such that the survival of the
colony would be guaranteed. Information, in what concerns task allocation, flows
within the colony via the stigmergic process of task achievement, that is, through
the change of state of the system and the corresponding modification of the global
memory, as defined above.

12.8 Individual complexity ws. collective com-
plexity

An interesting general problem is that of the capabilities and limitations of col-
lective systems in general. Are collective systems restricted to a certain set of
possible tasks? Is there some threshold in individual simplicity beyond which any
useful task is impossible? or, on the contrary, are non-simple individuals unable
to display emergent functional behavior? If we do not restrict the (not formally
defined) class of “collective systems” some answers are already at hand, since col-
lective systems such as cellular automata and neural networks are able of universal
computation, by means of Turing machines simulation [33] (see also chapter 9).
Collectives of concurrent simple agents can also simulate any Turing machine, as
was shown with the process algebra CCS in [49]. Furthermore, it is widely believed
that some problems are “inherently sequential” (technically, P-complete, see [3]),
so it is clear that collective systems are not always more efficient than hierarchical
and sequential systems.

However, the topic we want to address now is easy to state: the more complez a
society, the more simple the individual (Klaus Jaffe, cited in [51]). This sentence,
of course, concerns to social insects, among which we will take ants as a main
example. We mentioned above that all ants species are eusocial, nevertheless
there exist large differences among species, with respect to the number of ants
that compose the colony, their collective capabilities and the cognitive skills of
individuals. A specific example is that of recruitement strategies: there is a clear
correlation between the size of the colony and the behavioral sophistication of
individual members [4]. In one extreme we find the more advanced evolutionary
grade: mass communication (information that can be transmitted only from one
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group of individuals to another group of individuals, according to [45, page 271]).
Mass communication is the recruitement strategy used by Army Ants (e.g. Eciton
burchelli), whose colonies are composed by a huge number of individuals, who are,
nevertheless, almost blind and extremely simple in behaviour when isolated. The
other extreme is occupied by those ants using individual foraging strategies (e.g.
the desert ant Cataglyphis bicolor), who displays very complex solitary behaviour.
Our interest here is not so much to study this remarkable feature of eusocial insects,
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Figure 12.8: DFA with probabilistic labelings resulting from the e-MRA applied to (a)
logistic map with p = 1.4; (b) logistic map with p = 2. These are the individuals over
which we will check if the collective can induce more complex behaviour. As is obvious
from the automata, (@) is much more complex than (b) (see text). In all cases the e-
MRA parameters are M = 10", D = 32 and L = 16. In (a) and (b) the state 1 is the
initial state, all other states are accepting states. p is the dimensionless parameter of the
logistic map

as to see if this could be a general trait of collectives of agents. That is, is there a
trade-off between individual complexity and collective behaviour, in such a way that
complex emergent properties cannot appear if individuals are too much complex?
In order to go on with our work, let’s start looking thoughtfully at the concept
of emergence. According to Hermann Haken [41] and what we have seen in previous
chapters, the emergent properties of a system can be studied with the notion of
order parameter and its associated slaving principle. We can look for an answer in
two directions: from the individual to the collective and vice versa. Immediately
we can discard the former, because the simplest individuals are those who display
collectively the most complex behaviour. So, we can ask now a more concrete
question: what kind of behaviour the collective induces on the otherwise simple
individual to attain emergent functional capabilities? Of course we can answer it
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from an evolutionary point of view, arguing that adaptation to the environment
is the ultimate reason of those diverse features of ant colonies. This is not the
unique answer we can provide [34], because we can also look for relations between
the order parameter and the individuals in such a way that, perhaps, complex
solitary behaviour imposes severe constraints on the behaviour that a collective
would induce on individuals. This would be a structural solution of our problem,
and it will be the answer we are seeking.

Now, the collective system we are working on is a Globally Coupled Map (see
chapter 3) and our individual will be a randomly chosen logistic map (also, chapter
3) of the system. Our purpose is to see how the collective is (or is not) able to
induce more complex behaviour than that the individual is able to show. Here,
“complex” refers to Crutchfield’s notion of statistical complezxity, which will be
computed using the e-Machine Reconstruction Algorithm (e-MRA), as seen in
chapter 9.

Given a logistic map (our individual) a high statistical complexity is observed
for p close to pieo, i-€. the onset of chaos. There we need a large number of states to
model the high periodicity of the orbits. We have chosen p = 1.4 whose statistical
complexity is C1.4 ~ 4. As we can see in figure 12.8 (a), this automaton has a
large number of states. The next step is to define a GCM with p = 1.4, and
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Figure 12.9: If we have a complex individual, no matter how much interaction it receives,
its behaviour will not change. The collective cannot induce on the individual any kind of
added behaviour. In the figure, the individual possesses the same statistical complexity,
for all the values of the coupling parameter. Parameters of the e-MRA: M = 107, D = 32
and L = 16. All the automata have 1 as initial state, and all other states are accepting
states.

look at the statistical complexity of an individual chosen at random, say, i, as the
degree of interaction increases, i.e. we examine C7} 4 as the coupling parameter of
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Figure 12.10: With a simple individual like that of ¢ = 0 (in this figure), the collective is
able to impose additional behaviour on the individual. We have a decreasing complexity
from turbulent phase boundary onwards with increasing e, except in the region of 0.27
(see text). Parameters of the e-MRA: M = 107, D = 32 and L = 16. All the automata
have 1 as initial state, and all other states are accepting states.

the GCM goes from 0 to 0.4.

The result is simply that there are no changes (as can be seen in figure 12.9).
The intrinsic computation of the individual remains to be the same, C} , ~ 4, no
matter how large is the interaction with the rest of the system. So, the collective
has not been able to induce any kind of added complexity to the individual. In
this case there is no emergent behaviour. The collective behavior can be reduced
to that of the individuals.

Now, if we take y = 2 the logistic map has completely chaotic dynamics. It
is, in statistical complexity terms, the same as a fair coin toss. So, its automaton
has Co = 0 with just one state (figure 12.8 (b)). We can apply the e MRA to
the symbolic dynamics (i.e. the bit string of length M) of an individual chosen at
random among the N that compose the GCM.

Our result is somewhat surprising (figure 12.10), since the individual is able to
reach high complexity, If we compare this case with the previous one, we see that
simple individual behaviour allows the interaction to create more sophisticated
behaviour in the individual, inducing a certain amount of statistical complexity
that was not present at the individual level. So, a coordinated behaviour, which
the individual is unable to show, emerges from the collective through interaction
(details on the relation between the reconstructed automata and GCMs parameter
space can be found in [20]).

The e-machine reconstruction of single maps close to the onset of chaos gives
us a finite automaton with many states (here 31). So at this point we have a
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complex object in terms of computation. Interestingly, the coupling with other
units via GCM do not modify this complexity. So entities which are computa-
tionally complex in isolation do not change in the presence of coupling: nothing
new is induced by the collective. This observation matches the behavior of weakly
evolved, primitive ants, where individuals are enough complex to work in isolation
and the interactions among them are rather irrelevant.

However, if we start with random, computationally trivial maps and then cou-
ple them, the situation turns out to be very different. At p = 2.0 a fully chaotic
map is obtained. The partition of this chaotic attractor defines a Bernouilli se-
quence and so we have a (), = 0 complexity. The coherent motion and the
spontaneous emergence of clustering gives birth to well defined e-machines. The
coupling starts to control the dynamics of individuals and they behave in a com-
putationally complex way. Nothing except the coupling has been introduced, but
it is enough to generate complexity. As in the real ant colonies discussed above,
simple isolated individuals can behave in a complex way inside the collective. This
is precisely what we have observed. A very important suggestion emerging from
this result is that in collectives of simple agents complex behavior is only defined
at the level of individuals inside the colony and not as isolated entities. In this
sense, the observed behavior is the result of an emergent property.

12.9 Conclusion

Finally, after our brief review of Termites nest building, foraging, brood sorting,
task allocation and self-synchronization, we can sum up some facts we would like
to emphasize:

e Ant colonies display collective, structured, patterns at a macroscopic level
(the colony level) like other pattern-forming systems such as Belusov-Zhabotinski
reaction or slime mold aggregation (see previous chapters).

e These patterns are capitalized by the system in order to get food or maintain
the upkeep of the colony, so they are useful for the system itself. They are
examples of intrinsic emergence [17].

Now, let us assume that we, as engineers, can build a collective system with
this property of “intrinsic” emergence, but with problem-solving capabilities as
a by-product of emergent properties. That is, would we be able to capitalize
emergent properties in order to get the solution to some specific problem? This is
the “collective of simple agents” approach to problem solving (also called swarm
intelligence, see the excellent book [8])

As a representative example of the “collective of simple agents” view of problem
solving we will detail a collective solution to the Travelling Salesman Problem
(TSP [16, 28, 8]) Consider a set of N cities Cy,...,Cn and distancies between
cities d(C;, C;) for each pair (C;,Cj). A solution to the TSP is a permutation m
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of cities such that the quantity

N-1
Z d(Cx(i), Cr(iv1)) + d(Criny, Cr(1))

i=1

is minimized. The collective is a set of M agents scattered among the cities, where
bi(t) is the number of agents in the i-th city.

The algorithm is as follows: An agent in city ¢ decides, in the time interval
between ¢ and ¢ + 1, to go from city i to city j with certain probability p;;(¢)

[ ()] d;,°
Zanllowed[sij (®)]~ d;jﬁ

if 7 € allowed
pij(t) =
0 otherwise

depending on the distance d;; (whose inverse is called visibility) and the intensity
of trail s;;(t) on edge (i,j) at time ¢. The trail is a kind of evanescent “formal
chemical substance” that an agent modifies once it has visited all the cities (see [16],
for details on trail dynamics). Each agent is forced to go from a city ¢ to those
“allowed” j, that is, those cities not visited in the current tour. Once it has visited
all N cities the tour starts again from a “free” state and the trail in each edge
(i, ) visited is modified. a and 8 are parameters that allow the user to control the
importance of trail versus visibility. This algorithm is cycled for all agents NC'
times and at the end the shortest tour found is the solution to the instance of the
TSP problem.

The results of this algorithm are quite satisfactory. We only mention that,
with the best parameter values, the algorithm finds solutions better than the best
found with genetic algorithms and it is very fast in finding good enough (though
not optimal) solutions. Furthermore, once found the best parameters (« and ) for
problems with a certain dimension, the parameters are little sensitive to increasing
the dimension of the problem.

The algorithm makes clear some points already mentioned above. Each agent
is simply a stochastic process deciding which city to go from the city where it
is. It is not able to perceive a global situation in which to choose the best next
city in its tour. In this sense it only uses local information. Besides, information
processing capabilities are quite limited, since the only thing it is able to do is to
choose randomly a city to go and to remember which cities it has passed during
the current tour. It is quite robust since the removing of a certain fraction of
agents does not affect the result, though it delays the finding of the solution.

Another instance of collectives of simple interacting agents are groups of robots
cooperating to solve some given task (see [8] for a very recent survey on collective
robotics). Examples of tasks solved with groups of robots are finding paths to
a certain location [38] pushing a box [46] and clustering objects scattered in an
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arena [27] In this case there are some added difficulties, due to the physical embod-
iment of robots (though plenty of collective robotics experiments are performed by
means of computer simulations). This embodiment is, in fact, an advantage since
some collective behavior is often guided by physical or temporal constraints in the
environment, allowing the system to act as if it had some global representation of
that environment.

An example of implicit cooperation are the five robots of Kube & Zhang [46]
that, without any interaction but with an explicit non-interference command,
pushed a box that cannot be pushed by a single robot, due to the weight of
the box. To get the task done the robots must locate the box, move toward it
without collisions, distribute along a side and push. Each robot was built accord-
ing to Brooks’ subsumption architecture. Using a implicit cooperation strategy,
the robots succeeded in pushing the box. Another interesting experiment was to
build robots that cluster objects. Initially 81 objects were scattered over an arena
and the robots (again built according to Brooks’ subsumption architecture) might
take some, depending on a microswitch able to detect a certain quantity of ob-
jects pushed by the robot. These robots group the objects in little clusters that
grow until they cannot be pushed by any robot. When there is no objects in little
clusters to be moved by robots the task is done. This is also a case of implicit
cooperation [6, pp. 198-201].
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