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Abstract� The fringe analysis studies the distribution of bottom sub�
trees or fringe of trees under the assumption of random selection of keys�
yielding an average case analysis of the fringe of trees�
We are interested in the fringe analysis of the synchronized parallel in�
sertion algorithms of Paul� Vishkin� and Wagener �PVW� on 	
� trees�
This algorithm inserts k keys with k processors into a tree of size n with
time O�log n� log k�� As the direct analysis of this algorithm is very dif�
cult we tackle this problem by introducing a new family of algorithms�
denoted MacroSplit algorithms� and our main theorem proves that two
algorithms of this family� denoted MaxMacroSplit and MinMacroSplit� up�
per and lower bounds the fringe of the PVW algorithm�
Published papers deal with the fringe analysis of sequential algorithms
and it was an open problem for parallel algorithms on search trees� We
extend the fringe analysis to parallel algorithms and we get a rich math�
ematical structure giving new interpretations even in the sequential case�
We prove that the random selection of keys generates a binomial distri�
bution of them between leaves� that the synchronized insertions of keys
can be modeled by a Markov chain� and that the coe�cients of the tran�
sition matrix of the Markov Chain are related with the expected local
behavior of our algorithm� Finally� we show that the coe�cients of the
power expansion of this matrix over �n����� are the binomial transform
of the expected local behavior of the algorithm�

Keywords� Fringe analysis� Parallel algorithms� ��� trees� Binomial trans�

form�

� Introduction

One of the basic problems of managing information is the dictionary problem�
where a set of keys has to be dynamically maintained� One solution to this
problem are balanced search trees as ��� trees introduced by J� Hopcroft in the
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seventies 	AHJ
��� The exact analysis of the sequential case is still open� but good
lower and upper bounds for several complexity measures have been obtained
using a technique called fringe analysis� This analysis studies the distribution
of bottom subtrees or fringe of trees under the assumption of random selection
of keys� and has been applied to most search trees	EZG���BY���� Note that
fringe analysis is the average case analysis of the fringe of the tree�

We are interested on the fringe analysis of the synchronized parallel algo�
rithm on ��� trees designed by Paul� Vishkin� and Wagener �PVW�	PVW���
This kind of algorithms manage data types in a synchronized manner �PRAM
algorithms 	J�aJ����� They can be envisaged as many sequential algorithms run�
ning simultaneously and executing the same operation at the same time� There�
fore� it may happen that several processes read or write on the same memory
location at the same time� The goal is to avoid these concurrent accesses� The
�rst synchronized parallel algorithms on search trees was the PVW one� The
time needed to search or update k elements with k processors on a tree with n
keys is O�logn � log k� which is very close to the optimal speedup of O�logn��
The analysis of this algorithm is still open and the main drawback is the re�
constructing phase that is composed by waves of synchronized processors which
modi�es the tree bottom�up�

In this paper we introduce a new family of synchronized parallel algorithm�
denoted MacroSplit� whose two extreme cases� denoted MaxMacroSplit and Min�

MacroSplit algorithms� bound the PVW one in the following sense� the expected
values of the fringe derived from the PVW algorithmare upper and lower bounded
by the expected values derived from these two extreme cases� The key idea is that
the fringe analysis works for the MacroSplit algorithms because they reconstruct
the tree with only one wave meanwhile the PVW algorithm needs a pipeline of
waves�

The fringe analysis of the MacroSplit algorithms is an extension of the fringe
analysis of sequential case but with many signi�cant improvements � As later
on is shown� the direct extensions of this technique for the parallel insertion of
two and three keys suggest the inapplicability of this technique for the case of
inserting more keys� We have overcome this limitation with two facts that allow
us the analysis of the generic case �the insertion of k keys��

� The random selection of keys generates a binomial distribution of them on
each bottom node �nodes from which the leaves are attached�� This fact
allows us to analyze the local behavior for any bottom node�

� The global behavior or fringe evolution of all nodes can be analyzed because
we prove that this binomial distribution can be assumed for all bottom nodes
simultaneously� Then the global behavior is determined by the expected local
behavior of the algorithm�

The relation between the global and the local behavior of the MacroSplit

algorithms gives a new theoretical explanation to the fringe analysis� but from
practical considerations it is necessary to develop a formula to compute them�
For this reason we present the power expansion of the transition matrix and we
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Fig� �� The transformation of x and y bottom nodes after insertion of one key� In case
��� the key b hits a bottom node x and node x transforms into a node y� In case �	�
the key c hits a bottom node y and node y splits into 	 nodes x�

calculate its coe�cients for the two algorithms MaxMacroSplit and MinMacroS�

plit�

The rest of the paper is organized following the main facts pointed in this in�
troduction� In sections � and � we recall the fringe analysis of the sequential case
and we introduce the PVW algorithm and the family of MacroSplit algorithms�
Section � develops the direct extension of the sequential fringe analysis for the
parallel insertion of two and three keys and discusses the inapplicability of this
extension for greater values� Section � contains the analysis of the MacroSplit

algorithms� relates their local and global behavior and develops the power ex�
pansion of the transition matrix� Section � contains the detailed results for the
two concrete algorithmsMaxMacroSplit and MinMacroSplit� Section 
 shows that
the fringe generated by these two algorithms bounds the fringe generated by the
PVW� Finally� the last section contains the main conclusions and future work�
A preliminary and partial version of this paper was presented in 	BYGM���

� Fringe analysis for sequential insertions

The fringe of a tree is composed by the subtrees on the bottom part of the tree�
Our fringe is composed by trees of height one� A bottom node with one key is
called and x node� and a bottom node with two keys is called an y node� These
nodes separate the leaves into ��type leaves if their parents are x nodes and
��type leaves if their parents are y nodes�

Let Xt and Yt be the random variables associated to the number of ��type
leaves and ��type leaves respectively at the step t� Notice that Xt � Yt � n � �
being n the number of keys of the tree �we assume also that it is not possible to
insert a key greater than the key located at the right most leaf of the tree��

When a new key falls into a bottom node this node is transformed according
to the following rules �see Fig ��� if a key b hits a bottom node x that contains
the key a then node x transforms into a node y having keys a and b �Case � of
Figure�� We have Xt�� � Xt � � and Yt�� � Yt � �� If a key c hits a bottom
node y containing a and b then this the node y splits into � nodes x containing
a and c respectively� while b is inserted in the parent node recursively �Case �
of Figure�� Now Xt�� � Xt � � and Yt�� � Yt � ��
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The probability that a key hits a bottom node x is Xt

n�� and for a node y is
Yt
n��

� The conditional expectations verify

E�Xt�� j Xt� Yt� �� �
Xt

n� �
�Xt � �� �

Yt
n � �

�Xt � �� �

�
�� �

n� �

�
Xt �

�

n� �
Yt

E�Yt�� j Xt� Yt� �� �
Xt

n� �
�Yt � �� �

Yt
n� �

�Yt � �� �
�

n� �
Xt �

�
�� �

n� �

�
Yt

The expected number of leaves �conditioned to the random insertion of one
key� at the step t can be modeled by the following de�nition

De�nition �� 	Yao
�EZG���BY��� Given a fringe with n�� leaves and the
sequential insertion algorithm� we de�ne the ��OneStep transition matrix Tn��
as the matrix verifying��

E�Xt�� j ��
E�Yt�� j ��

�
� Tn��

�
E�Xt j ��
E�Yt j ��

�

As the conditional expectations verify

E�Xt�� j �� �E�E�Xt�� j Xt� Yt� �� j ��
E�Yt�� j �� �E�E�Yt�� j Xt� Yt� �� j ��

we get�

Theorem �� �EZG����BY��	 The ��OneStep transition matrix is�

Tn�� �

�
� �

�

n� �

�
I �

�

n� �

��� �
� ��

�
being I �

�
� �
� �

�
�

In a more compact form� the ��OneStep can be rewritten as�

Tn�� �
�

n� �

�
n� � �
� n� �

�

Later on we will give a direct proof of this compact expression�

� Synchronized parallel insertion algorithms

In this section we recall the algorithm of Paul� Vishkin� and Wagener 	PVW���
and we introduce our MacroSplit algorithm� It is assumed that an array of k
sorted keys a	� � � �k� is inserted into a ��� tree having n leaves� The algorithms
�rst hang the keys from the leaves and later rebalance the tree� The PVW algo�
rithms di�ers from the MacroSplit algorithms on the rebalancing phase�
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Fig� �� Traveling waves for the PVW insertion algorithm on 	
� trees

��� PVW algorithm

The tree is balanced using pipelines of processors� These pipelines can be en�
visaged intuitively in terms of traveling plane waves� Assume� for instance� the
basic insertion case in which every leaf incorporates at most one new key �Fig�
ure ��i�� Something like a wave of processors is generated at the bottom of the
tree� namely a plane wave� because all leaves of a ��� tree have the same depth
�Figure ��ii�� This wave is sent up in further iterations �Figure ��iii� until it
disappears �Figure ��iv�� In the general insertion case �Figure ��v�� in which a
packet of many new keys can hang from a single leaf� a pipeline of waves is gen�
erated to get something like periodic traveling waves� Each new wave is created
as follows� some iterations after the last wave has been created� the packets are
split� the middle key of each one is attached as a new leaf and the remaining left
subpacket is hung from the new leaf� while the right subpacket is maintained in
the same leaf� This set of new leaves created by the middle keys constitute the
new wave� Then� at most O�logk� waves are created and the time spent at each
step is constant� so the parallel time to insert k keys becomes O�logn� logk��

��� MacroSplit algorithm

In the general insertion case �Figure ��v� the MacroSplit algorithm incorporate
simultaneously all the keys of packets at the bottom internal nodes of the tree
creating only one wave� In successive steps the wave moves up until it reaches
the root or disappears� Then the reconstruction is based in just one unique wave
moving bottom up�

The evolution of this unique wave needs the usage of rules so calledMacroSplit

rules �see Figure ��� These rules determine the transformation of wide nodes into
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Fig� �� Choices forMacroSplit rules� In �i� the rule creates a maximum number of splits�
In �ii� the rule creates the minimum number� Intermediate strategies are allowed�

nodes x and y� For instance� the rule of case �i� of Figure � makes the maximum
number of splits� and the rule of case �ii� makes the minimum number of splits�
Intermediate strategies are allowed� Let us see several examples� At most� k keys
can reach a node� If the node stores more than two keys� it must split using a
MacroSplit rule� Table � show us several split possibilities for x and y bottom
nodes� For instance� the �rst row show us the splits of the x and y nodes when
k � ��see Figure ��� In this case there is just one possibility� The fourth row
show us how x and y nodes can be split when k � �� In this case a bottom node
x can be split into � nodes x or into � nodes y� Later on we will consider two
extreme cases�

MaxMacroSplit algorithm� maximize the number of splits at each step� then it
maximizes also the number of x nodes created�

MinMacroSplit algorithm� minimize the number of splits at each step� then it
maximizes also the number of y nodes created�

When k � � or � both algorithms coincides �see table ���

The usage of MacroSplit rules increases the parallel time� but it allows the
fringe analysis of the MacroSplit algorithms� Suppose� for instance� that all the
keys reach the same node� the PVW algorithm creates logk waves meanwhile the
MacroSplit algorithm creates only one wave� but in the �rst case the time spent
at each step is constant meanwhile the time spent in the second case is linear on
k�

Let us introduce the analysis of the MacroSplit algorithm� Consider that at
the t � � step k random keys �we asume a uniform distribution of them� fall
in parallel into a fringe with Xt leaves of ��type and Yt leaves ��type such that
Xt � Yt � n � �� The expected values of Xt�� and Yt�� after the insertions
depends on two facts�

� The concrete form of the MacroSplit algorithm� This algorithm explicits how
many leaves of ��type and ��type will be generated by bottom nodes when
they receive some number of keys�

� The preceding values of Xt and Yt�
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k x node y node

� y xx

	 xx xy

� xy xxx or yy
� xxx or yy xxy

� xxy xxxx or xyy
� xxxx or xyy xxxy or yyy

Table �� MacroSplit possibilities for x and y bottom nodes once k keys are inserted�

We deal with a Markov chain and the evolution can be analyzed through the so
called k�OneStep transition matrix Tn�k�

De�nition �� Given a fringe with n� � leaves and a MacroSplit algorithm� we
de�ne the k�OneStep transition matrix Tn�k as the matrix verifying��

E�Xt�� j k�
E�Yt�� j k�

�
� Tn�k

�
E�Xt j k�
E�Yt j k�

�

��� A �rst connection between both approaches

The MacroSplit algorithm can be seen as a �high level� description of the PVW
algorithm�PVW algorithm takes place by splitting a MacroSplit step into several
more basic steps chained together in a pipeline� Then� the fringe analysis of the
PVW algorithm must take into account all the waves of the pipeline meanwhile
this same analysis for the MacroSplit algorithms take into account only one wave�

The goal of this paper is to bound the evolution of the fringe of the PVW

algorithm by the evolution of the MaxMacroSplit and MinMacroSplit algorithms�
Consider the following lemma�

Lemma �� Let X�� Y� be the initial values of the fringe
 On the �rst step� k keys
�not necessarily random� are inserted into this fringe using an algorithm A
 The
values of the fringe at the end of the �rst step depends on A� therefore we note
XA

� � Y
A
� these values
 If algorithm A is MaxMacroSplit� PVW or MinMacroSplit

algorithm� it holds

XMaxMacroSplit
� � XPVW

� � XMinMacroSplit
�

Y MaxMacroSplit
� � Y PVW

� � Y MinMacroSplit
�

The insertion of the �rst k keys generates three di�erent trees depending on
the algorithm� When the second set of k keys is inserted� it is possible that the
PVW algorithm creates more x nodes than the MaxMacroSplit algorithm because
the initial tree is di�erent �even though the initial tree for the PVW algorithm
has less x nodes than the initial tree for the MaxMacroSplit algorithm�� Namely�






��� �� P ��� �� E�Xt��jXt� Yt� 	� ��� ��� E�Yt��jXt� Yt� 	� ��� ���

�x�x� Xt

n��

�

n��
Xt � 	 Yt

�x�� x��
Xt

n��

Xt��

n��
Xt � � Yt � �

�x�y� 	 Xt

n��

Yt
n��

Xt � 	 Yt

�y� y� Yt
n��

�

n��
Xt � 	 Yt

�y�� y��
Yt
n��

Yt��

n��
Xt � � Yt � �

Table �� Parallel insertion of two keys�

it is possible to �nd a fringe X�� Y� and � batches of �non random� k keys such
that the following inequalities�

XMaxMacroSplit
� � XPVW

� � XMinMacroSplit
�

Y MaxMacroSplit
� � Y PVW

� � Y MinMacroSplit
�

which bound the values of the fringe and the end of the second step� are false�
Then� the previous lemma holds only for one step� Later on� we prove that this
lemma can be extended to consecutive insertions of k keys if we take into account
the expected number of nodes�

� Parallel insertion of � and � keys

In this section we compute Tn�� and Tn�� following directly the technique applied
before to sequential insertions 	EZG��� and we discuss the viability of this
approach�

��� Direct extensions

First� let us consider the case k � �� We have only one MacroSplit algorithm
�see Table ��� The expected number of leaves is characterized by ��OneStep Tn��
transition matrix� �

E�Xt�� j ��
E�Yt�� j ��

�
� Tn��

�
E�Xt j ��
E�Yt j ��

�
�

We compute the probabilities of the di�erent splits by an exhaustive case anal�
ysis �see Table ��� As at most two keys can reach the same bottom node� the
transformation of bottom nodes is unique �second row of table ��� Both keys can
be either at the same bottom node or at di�erent bottom nodes� and in each case





bottom nodes can be of type x or y� Let P �x� x� be the probability that both keys
reach the same x node� P �x�� x�� the probability to reach di�erent x nodes and
so on for the remainder probabilities P �x� y�� P �y� y� and P �y�� y��� We denote
the generic case as P ��� ��� being ��� �� the generic pair of nodes accessed�

As E�Xt�� j �� � E�E�Xt�� j Xt� Yt� ��� we compute the expected number
of ��type leaves as

E�Xt��jXt� Yt� �� �
X
�����

P ��� �� E�Xt��jXt� Yt� �� ��� ���

being E�Xt��jXt� Yt� �� ��� ��� the expected number of ��type leaves when � keys
reach node ��� �� conditioned to Xt and Yt� For instance� if both keys reach dif�
ferent x nodes then it holds

P �x�� x�� �
Xt

n� �

Xt � �

n� �

and E�Xt��jXt� Yt� �� �x�� x��� � Xt � � �table � contains the other values��

Lemma �� The conditional expectations verify

E�Xt�� j Xt� Yt� �� �

�
�� �

n� �
�

��

�n� ���

�
Xt �

�


n� �
� �

�n� ���

�
Yt

E�Yt�� j Xt� Yt� �� �

�
�� �

n� �
�

�

�n� ���

�
Yt �

�
�

n� �
� ��

�n� ���

�
Xt

Proof
 We compute the conditional expectation only for Xt�� �the Yt�� term
has a similar development�� Then E�Xt��jXt� Yt� �� is�X

�����

P ��� �� E�Xt��jXt� Yt� �� �� � ���

�
�

�n � ���

�
�Xt�Xt � �� �Xt�Xt � ���Xt � �� � �XtYt�Xt � ��

� �Yt�Xt � �� � Yt�Yt � ���Xt � �
�

�Xt �
�

�n� ���

�
��Xt � �X�

t � �XtYt � Y �
t � �Yt�

�

�

�
�� �

n� �
�

��

�n � ���

�
Xt �

�


n � �
� �

�n� ���

�
Yt�

As the conditional expectations are linear in Xt and Yt and

E�Xt�� j �� � E�E�Xt�� j Xt� Yt� ���

E�Yt�� j �� � E�E�Yt�� j Xt� Yt� ���

we have�

�



��� �� P ��� �� �� E����Xn��jXn� Yn� E����Yn��jXn� Yn�

�x� x� x� Xn

n��

�
�

n��

��
Xn Yn � �

�x�� x�� x�� �
Xn

n��

�

n��

Xn��

n��
Xn Yn � �

�x�� x�� x��
Xn

n��

Xn��

n��

Xn��

n��
Xn � � Yn � �

�x� x� y� � Xn

n��

�

n��

Yn
n��

Xn � � Yn � �

�x� y� y� � Xn

n��

Yn
n��

�

n��
Xn Yn � �

�x�� x�� y� � Xn

n��

Xn��

n��

Yn
n��

Xn Yn � �

�x� y�� y�� � Xn

n��

Yn
n��

Yn��

n��
Xn � � Yn � �

�y�� y�� y��
Yn
n��

Yn��

n��

Yn��

n��
Xn � �	 Yn � �

�y�� y�� y�� � Yn
n��

�

n��

Yn��

n��
Xn � � Yn � �

�y� y� y� Yn
n��

�
�

n��

��
Xn Yn � �

Table �� Parallel insertion of three keys

Lemma 	� The ��OneStep transition matrix is�

Tn�� �

�
� �

�

n� �

�
I �

�

n� �

��� �
� ��

�
�

�

�n� ���

�
�� ��
��� �

�

Consider brie�y the case k � �� Table � contains the exhaustive case analysis
of the probabilities� Now there are two possibilities �third row of table ��� We
have selected the second transformation that corresponds to the MinMacroSplit

algorithm�

Lemma 
� In the case of the MinMacroSplit algorithm� the ��OneStep transition
matrix Tn�� is��
� �

�

n� �

�
I �

�

n� �

��� �
� ��

�
�

�

�n� ���

�
�� ��
��� �

�
�

�

�n� ���

��� ��
� ���

�

��� Discussion of the cases � and �

Based on the preceding cases we can point several facts and questions�

�� The exhaustive case analysis �generalizing the sequential approach 	EZG����
for larger k � �� �� � � � � becomes intractable�

��



�� For k � �� �� � the expectations E�Xt�� j Xt� Yt� k� and E�Xt�� j Xt� Yt� k�
are linear in Xt and Yt� It is unclear why non�linear terms always disappears�
Note that we assume this point of view in the equation k�OneStep transition
matrix Tn�k�

�� The intuitive meaning of the coe�cients appearing in the expectations is
unclear� For instance� the term � � �

n�� � ��
�n���� appearing in E�Xt�� j

Xt� Yt� �� in lemma � does not have any direct explanation in terms of the
MacroSplit algorithm�

�� By local behavior of the algorithmwe mean what happens when i keys hit just
one bottom node x or y �table �� � By global behavior we mean the evolution
of Xt and Yt� The previous exhaustive analysis does not give a clear cut
between the local and the global behavior of the MacroSplit algorithm�

�� Note that

� Lemmas � and 
 can be envisaged as a power expansion over �n� ����

of the transition matrix�
� The matrices appearing when k � � also appears for k � � �see lemmas �
and 
��

This suggest us a power expansion of the k�OneStep of the form

Tn�k �

�
� �

k

n� �

�
I �

���k�

n� �

��� �
� ��

�

�
���k�

�n � ���

�
�� ��
��� �

�
�

���k�

�n� ���

��� ��
� ���

�
� � � �

Moreover� a little bit of thought suggest us �i�k� �
�
k
i

� � � �
�� The di�erent coe�cients appearing into the matrices re�ect the behavior of

the MacroSplit algorithm� We search for a precise meaning of this intuitive
fact�

In the following we solve all these questions�

� Behavior of the MacroSplit algorithms

In order to study the expected behavior of an x or y node belonging to a fringe
of n � � leaves when k keys are inserted at a given step� we need to know the
characteristics of the MacroSplit algorithm we are using�

��� Local behavior

We would like to know how many ��type and ��type leaves are generated when
i keys fall at the same time into a unique node x or y� To deal with this fact we
introduce the following de�nition�

De�nition �� At the bottom level� the local behavior of the MacroSplit algo�
rithm is given by the following functions�

��



� The Xx�i� is the number of ��type leaves after the insertion of i keys into a
unique x node �for instance� Xx��� � �� X x��� � �� � � � �� In the same way�
X y�i� is the number of ��type leaves after the insertion of i keys into an y
node �for instance� X y��� � �� Xy��� � �� � � � ��

� Dually� Yx�i� is the number of ��type leaves after the insertion of i keys into
an x node �for instance� Yx��� � �� Yx��� � �� � � � ��
Finally� Yy�i� is the number of ��type leaves after the insertion of i keys into
an y node �for instance� Yy��� � �� Yy��� � �� � � � ��

These coe�cients verify Xx�i� � Yx�i� � � � i and Xy�i� � Yy�i� � � � i�

Assume that random k keys fall �in parallel� into a fringe having n�� leaves�
First of all� let us isolate just one bottom node x and one key to insert� Then� the
new key can be inserted into the node x in two di�erent positions �corresponding
to the left of each leaf�� Therefore just one key hits a node x with probability
�

n�� � By a similar reasoning one key hits a node y with probability �
n�� �

Now we consider what happens with node x and y when k random selected
keys are inserted�

Lemma �� Let Nx and Ny be the random variables denoting the number of keys
falling into a �xed bottom node x and y
 Then� these variables follows a binomial
distribution given by

PfNx � ig � b
�
i� k�

�

n� �

�
and PfNy � ig � b

�
i� k�

�

n� �

�
�

such that b �i� k� p� �
�
k
i

�
pi ��� p�k�i �

Recall that the expected value of the binomial distribution is kp�

The number of ��type leaves generated by the keys falling into a unique node
x is given by the random variable Xx � Xx�Nx� and the number of ��type leaves
generated by the keys falling into a unique node x is Yx � Yx�Nx� �similarly for
Xy and Yy��

Lemma �� The expected number of leaves generated by one bottom node when
a batch of k keys is inserted into a fringe having n� � leaves is�

E�Xx j k� �
kX
i	�

b
�
i� k�

�

n� �

�
Xx�i� E�Yx j k� �

kX
i	�

b
�
i� k�

�

n� �

�
Yx�i�

E�Xy j k� �
kX
i	�

b
�
i� k�

�

n� �

�
Xy�i� E�Yy j k� �

kX
i	�

b
�
i� k�

�

n� �

�
Yy�i�

Proof


E�Xx j k� �
kX
i	�

PfNx � igXx�i� �
kX
i	�

b
�
i� k�

�

n� �

�
Xx�i�

�

��



Note that these expected values depend of the concrete local behavior of the
algorithm�

Lemma ��� The expected number of leaves generated by just one bottom node
when k random keys are inserted in parallel into a fringe having n� � is�

E�Xx � Yx j k� � �
�
� �

k

n� �

�
and E�Xy � Yy j k� � �

�
� �

k

n� �

�

��� Global behavior

Lemma ��� Given an n�key random tree T with a fringe with Xt leaves of ��
type and Yt leaves of ��type� when k keys are inserted at random into T in one
step we have

E�Xt�� j Xt� Yt� k� � E�Xx j k�Xt

�
�E�Xy j k�Yt

�

E�Yt�� j Xt� Yt� k� � E�Yx j k�Xt

�
� E�Yy j k�Yt

�

Proof
 Let us consider a fringe having Xt leaves of ��type and Yt leaves of ��

type and Xt � Yt � n� �� Let us consider the set S of functions � de�ned from
f�� � � � � kg to f�� � � � � n��g� Note that each function � determines the distribution
of the k keys between the n� � leaves� Then

E�Xt��jXt� Yt� k� �
X
��S

Pf�gE�Xt��jXt� Yt� k� ���

Let x�� � � � � xXt�� and y�� � � � � yYt�� be the x and y nodes� and let X�xm� �� be
the expected number of ��type leaves created when k keys are inserted and some
of them� determined by function �� reaches node xm� Then

E�Xt��jXt� Yt� k� �� �

Xt��X
m	�

X�xm� �� �

Yt��X
m	�

X�ym� ���

and

E�Xt��jXt� Yt� k� �
X
��S

Pf�g
Xt��X
m	�

X�xm� �� �
X
��S

Pf�g
Yt��X
m	�

X�ym� ��

�

Xt��X
m	�

X
��S

Pf�gX�xm� �� �

Yt��X
m	�

X
��S

Pf�gX�ym� ��

�
Xt

�

X
��S

Pf�gX�x� �� �
Yt
�

X
��S

Pf�gX�y� ��

for any node x and y because nodes are not distinguishables� The set of functions
� assign

�
k
i

�
times i keys with � � i � k to nodes x or y� Let us consider the case

��



of a bottom node x� For each assignment there are �i possibilities to distribute
i keys between the two leaves of this node� The other k � i keys have to be
assigned to the remaining n� � leaves� so�

X
��S

Pf�gX�x� �� �
kX
i	�

�

�n � ��k

�
k

i

�
�i �n� ��k�iX x�i�

�
kX

i	�

�
k

i

��
�� �

n� �

�k�i�
�

n � �

�i
X x�i� �

kX
i	�

b�i� k�
�

n� �
�X x�i��

which is equal to E�Xxjk� by lemma ��� In the case of a node y� there are �i

possibilities to distribute i keys between the three leaves of such a node� The
other k � i have to be assigned to the other n� � leaves and�

X
��S

Pf�gX�y� �� �
kX

i	�

�

�n� ��k

�
k

i

�
�i �n� ��k�iX x�i�

kX
i	�

b�i� k�
�

n� �
�X y�i�

which is equal to E�Xy jk� �

Theorem ��� Given a fringe with n� � leaves and a MacroSplit algorithm� the
k�OneStep transition matrix is�

Tn�k �

�
�
�E�Xx j k� �

�E�Xy j k�
�
�E�Yx j k� �

�E�Yy j k�
�

Proof
 From the preceding lemma we have

E�Xt�� j Xt� Yt� k� � E�Xx j k�Xt

�
�E�Xy j k�Yt

�

As E�Xt � � j k� � E�E�Xt�� j Xt� Yt� k� j k� we have

E�Xt � � j k� � �

�
E�E�Xx j k�Xt j k� � �

�
E�E�Xy j k�Yt j k�

As Xx and Xt are independent E�E�Xx j k�Xt j k� � E�Xx j k�E�Xt j k� and
the proof is done� �

Example ��
 Let us recompute the ��OneStep using theorem ��� Let us start
with a bottom node x� As we have seen in the de�nition  we have Xx��� � ��
Xx��� � ��

E�Xxj�� �
�
�� �

n� �

�
X x��� �

�
�

n� �

�
Xx��� �

�

n� �
�n� ��

Using the property E�Xx � Yx j �� � ��� � �
n�� � given in the lemma �� we get

E�Yxj�� � �

n� �
�

��



Let us consider a bottom node y�

E�Xy j�� �
�
�� �

n� �

�
X y��� �

�
�

n� �

�
X y��� �

�

n� �
�

Using E�Xy � Yy j �� � ��� � �
n��� we get

E�Yyj�� � �

n� �
�n� ��

Substituting we get

Tn�� �

�
�
�E�Xx j �� �

�E�Xy j ��
�
�E�Yx j �� �

�E�Yy j ��
�
�

�

n� �

�
n� � �
� n� �

�

This concludes the example�

��� Power expansion of the transition matrix

In the last section we have proved that the transition matrix is determined by
the expected local behavior of the MacroSplit algorithms� but previous published
papers de�ne the transition matrix by series �as we do in lemmas � and 
�� In
this section we show that these series are the power expansion over �n � ����

of the k�OneStep transition matrix of theorem �� as was suggested in note � of
section ����

Lemma ��� Let I be the two dimensional identity matrix� the k�OneStep veri�
�es�

Tn�k �
�
� �

k

n� �

�
I �

���
�E�Yx j k� �

�E�Xy j k�
�
�E�Yx j k� ��

�E�Xy j k�
�

Proof
 From lemma �� we have� Substituting these values into the matrix ex�
pression Tn�k given in the theorem �� we get the result� �

In order to follow the power expansion� let us recall the binomial transform
B recently developed by Poblete� Munro� and Papadakis 	PMP���� Let hFiii��
be a sequence of real numbers� the binomial transform is the sequence h �Fjij��
de�ned as

�Fj � BjFi �

jX
i	�

����i
�
j

i

�
Fi�

This transformation veri�es the following lemmas 	PMP����

Lemma �	� �
 When Fi � a we have �F� � a and �Fj � �� otherwise


�
 When Fi � ����i we have �Fj � �j


�
 When Fi � i we have �F� � �� and �Fj � � otherwise


��



Lemma �
� Let hFiii�� and hGiii�� be sequences of real numbers and a� b real
numbers� then it holds�

�
 Fi � Bi
�Fj

�
 Bj�aFi � bGi� � aBjFi � bBjGi

�
 For j � � we have �Fj � Bj��Fi�� � �Fj��

�
 �Fj �

P

l	�����l

�


l

�Bj�
Fi�l for j � �

�
 Given p� q � � and hFiii�� we can de�ne
P

i

�
�
i

�
piq��iFi � b�i� �� p�Fi and

get the sequence hb�i� �� p�Fii���
 Then Bjb�i� �� p�Fi � pj �Fj


In the following we will use a weighted form of the binomial transforms of
hYx�i�ii�� and hXy�i�ii���
De�nition ��� Let �j and 	j be the coe�cients �j � ��j�� �Yx�j� and 	j �

��j�� �Xy�j��

Let us develop the relationship of the preceding coe�cients with the local
expected values of the k�OneStep�

Lemma ���

E�Yx j k� � ��
kX

j	�

����j
�n � ��j

�
k

j

�
�j E�Xy j k� � ��

kX
j	�

����j
�n� ��j

�
k

j

�
	j

Proof
 Recall that

E�Yx j k� �
kX
�	�

PfXx � igYx�i� �
kX

i	�

�
k

i

�� �

n� �

�i�
�� �

n� �

�k�i
Yx�i�

Consider the sequence hE�Yx j k�ik��� by property ����

�E�Yx j j� � BjE�Yx j k� �
� �

n � �

�j
�Yx�j�

Now we apply the property ��� of the binomial transform �Fk � Bk
�Fj��

E�Yx j k� � Bk �E�Yx j j� � Bk

�� �

n� �

�j
�Yx�j�

�
Using linearity �property ���� and �j � ��j���Yx�j� we have

E�Yx j k� � �Bk
�� �

n� �

�j
�j���Yx�i�

�
� ��

kX
j	�

����j
�
k

j

�
�j

�n� ��j

The case E�xy j k� is quite similar� �

From lemmas �� and �� we get the following expansion

Theorem �� The k�OneStep transition matrix can be rewritten as

Tn�k �

�
� �

k

n� �

�
I �

kX
j	�

����j
�n� ��j

�
k

j

��
�j �	j
��j 	j

�
�

��
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Fig� �� Application of MaxMacroSplit algorithm on a node x

� Two extreme MacroSplit algorithms

We have shown that the k�OneStep transition matrix depends on the concrete
MacroSplit algorithm� In this section we develop two extreme cases of this algo�
rithm� one denoted MaxMacroSplit algorithms that makes the maximumnumber
of splits and creates the maximumnumber of x nodes and another denoted Min�

MacroSplit algorithm that makes the minimum number of splits and creates the
maximum number of y nodes� These two extreme cases bound the behavior of
the PVW algorithm�

	�� The MaxMacroSplit algorithm

Assume that an even i number of keys are attached to a node x �i � � in the
case � of the �gure ��� This wide node splits by yielding i � � ��type leaves �
in the preceding case� and � ��type leaves� Then Xx�i� � i � � and Yx�i� � ��
On the other hand� an odd number i of keys are attached �i � 
 in case � of
the �gure ��� In this case the split only creates one node y� then Yx�i� � � and
Xx�i� � i�� �� and � respectively in the �gure�� Note that X x�i��Yx�i� � i���
We summarize the previous paragraph into the following lemma�

Lemma ��� The local behavior of the MaxMacroSplit algorithm is given by�

� For even i we have Xx�i� � i� �� Yx�i� � �� Xy�i� � i� Yy�i� � �

� For odd i we have Xx�i� � i� �� Yx�i� � �� Xy�i� � i� �� Yy�i� � �


The following lemma summarizes the expected local behavior of the Max�

MacroSplit algorithm�

Lemma ��� The expected local behavior is

E�Xx j k� �kp� �

�
�
�

�
�q � p�k E�Yx j k� � �

�
� �

�
�q � p�k for p �

�

n� �

E�Xy j k� �kp� �

�
� �

�
�q � p�k E�Yy j k� � �

�
�
�

�
�q � p�k for p �

�

n� �

�




Proof
 First� let us consider the case p � �
n�� � The expected local behavior of

Xx is given by

E�Xx j k� �
kX
i	�

b�i� k� p�Xx�i��

As X x�i� depends of the parity of i �previous lemma�� we de�ne the following
two functions

F��k� p� �
X

i	���������

b�i� k� p� and F��k� p� �
X

i	���������

b�i� k� p�

The expected value of Xx becomes E�Xx j k� � �F��k� p� � F��k� p� � kp� As�
k
i

�
�
�
k��
i��

�
�
�
k��
i

�
� writing q � �� p� the functions F� and F� verify�

F��k� p� �qF��k � �� p� � pF��k � �� p�

F��k� p� �pF��k � �� p� � qF��k � �� p��

with F���� p� � � and F���� p� � �� Note that F��k� p� � F��k� p� � �� therefore
F��k� p� and F��k� p� acts as probabilities and we deal with a Markov chain

having a transition matrix P �

�
q p
p q

�
such that�

�
F��k� p�
F��k� p�

�
� P k

�
�
�

�

In order to compute P k we diagonalize� The matrix P has eigenvalues � and q�p
and eigenvectors ��� �� and ���� �� respectively� Let M be the matrix having as
rows the eigenvectors

M �

�
� �

�� �

�

The matrix P diagonalizes as

P � M��

�
� �
� q � p

�
M

and �
F��k� p�
F��k� p�

�
�

�
�
� ��

�
�
�

�
�

��
� �
� q � p

�k�
� �

�� �

��
�
�

�

Finally� for k � � we have

F��k� p� �
�

�

�
� � �q � p�k

�
and F��k� p� �

�

�

�
�� �q � p�k

�
From the values of F� and F� we compute E�Xx j k�� As p � �

n�� � the expected
value of Yx can be computed directly from lemma ���

E�Yx j k� � �
�
� �

k

n� �

�
�E�Xx j k�

�
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Fig� �� Application of MinMacroSplit algorithm

Let us consider the computation of the expected values of Xy and Yy� The �rst
expected value veri�es E�Xy j k� � �F��k� p� � kp therefore substituting the
value of F� we get the result� Using p �

�
n�� and the equality

E�Yy j k� � �
�
� �

k

n� �

�
�E�Xy j k�

we compute the expected value of Yy� �

Lemma ��� The coe�cients of the power expansion veri�es �� � 	� � ��
	� � �
 For j � � we have �j � �� �j�� and for j � � we have 	j � �� �j��

Proof
 First we prove the value of �j by using lemmas � and �

�Yx�j� � BjYx�i� � Bj���Yx�i� ���Yx�i��

By lemma ��� Yx�i � �� � Yx�i� � � then �Yx�j� � ��j��� As �j � ��j���Yx�j�
then �j � �� �j��� The value of 	j can be proved in a similar manner by
applying X y�i� � i� Yx�i�� �

	�� The MinMacroSplit algorithm

The Figure � pictures the split of an x node when six� seven and eight keys are
attached� The MinMacroSplit algorithm has the following characterization�

Lemma ��� The local behavior of the MinMacroSplit algorithm is given by�

��



� For i mod � � � we have Xx�i� � �� Yx�i� � i� Xy�i� � �� Yy�i� � i� �

� For i mod � � � we have Xx�i� � �� Yx�i� � i��� Xy�i� � �� Yy�i� � i��

� For i mod � � � we have Xx�i� � �� Yx�i� � i��� Xy�i� � �� Yy�i� � i��


In the following� we use the next two functions�


 � �
�
�� �p� p

p
�i

�

�k

and � �
p
� �

�
�� �p� p

p
�i

�

�k

�

Lemma ��� The expected local behavior is determined by�

E�Xx j k� ��� �

�
� E�Yx j k� � pk �

�

�
� for p �

�

n� �

E�Xy j k� ��� �
�
�

�
� E�Yy j k� � pk � � � �
� �

�
� for p �

�

n� �
�

Proof
 As X x�i� depends on the value of i mod � we de�ne the functions

F��k� p� �
X

i	����
����

b�i� k� p� F��k� p� �
X

i	�������

b�i� k� p�

F��k� p� �
X

i	���������

b�i� k� p�

The expected values can be rewritten using these functions as�

E�Xx j k� � �F��k� p� � �F��k� p� E�Xy j k� � �F��k� p� � �F��k� p�

E�Yx j k� � �F��k� p�� �F��k� p� � kp E�Yy j k� � �F��k� p�� F��k� p� � kp

Now we compute the value of these functions� As
�
k
i

�
�
�
k��
i��

�
�
�
k��
i

�
then

F��k� p� �qF��k � �� p� � pF��k � �� p�

F��k� p� �pF��k � �� p� � qF��k � �� p�

F��k� p� �pF��k � �� p� � qF��k � �� p��

with F���� p� � � and F���� p� � F���� p� � �� We deal with a Markov chain
whose transition matrix is

P �

	

 q � p
p q �
� p q

�
A

with eigenvalues

�� �� �

�
p���

p
�i�� �� �

�
p�� �

p
�i�

��



and eigenvectors

��� �� ���
� �

�
����

p
�i� �

�

�
����

p
�i� � �

�
�
� �

�
����

p
�i� �

�

�
����

p
�i� � �

�
�

Let M be the matrix of the eigenvectors

M �

	

 � � �

�
�����

p
�i� �

���� �
p
�i� �

�
���� �

p
�i� �

���� �
p
�i� �

�
A

and M the complex conjugate matrix of M � As

P k �M
��

	

� � �

� �� �
�p���

p
�i� �

� � �� �
�p�� �

p
�i�

�
A

k

M�

after a tedious computation� taking 
 and � as de�ned in the lemma� we obtain
for k � ��

F��k� p� �
�

�
�
�

�

 F��k� p� �

�

�
� �

�
�
� �� F��k� p� �

�

�
� �

�
�
� ��

This concludes the proof� �

Example ��
 Let us compute more precise expressions for the expected behavior
of the MinMacroSplit algorithms when k � �� This will allow us to recover the
expression for Tn���


 ��
�
�� �p� p

p
�i

�

��

�
�

�

�
�� � p� � p�

�

� �
p
� �

�
�� �p� p

p
�i

�

��

�
�

�
p
�
�� � p� � p�

�
�

As E�Xxj�� � �� �
�� with p � �

n�� and E�Xyj�� � �� �
� �
�� with p � �

n�� �

E�Xxj�� � �� ��

�n� ��
�

��

�n� ���
� �

�n� ���

E�Xyj�� � ��

�n � ��
�

���

�n� ���
� ���

�n� ���
�

From lemma ��� E�Xt�� j Xt� Yt� k� � E�Xx j k�Xt

� �E�Xy j k�Yt� then

E�Xt�� j Xt� Yt� �� �

�
�� ��

�n� ��
�


�

�n� ���
� ��

�n� ���

�
Xt

�

�

�
��

�n � ��
�

���

�n� ���
� ���

�n� ���

�
Yt
�

��



Using these expected values we recover the ��OneStep transition matrix given
in 
�

Lemma �
� The coe�cients of the power expansion of the MinMacroSplit algo�
rithm for j � � verify �j�
 � ����j and 	j�
 � ���	j

Proof
 We prove the relation for �j �	j can be proved in a similarmaner�� �j�
 �
����j if Bj�
Yx�i� � ��BjYx�i� for j � �� We prove this relation by induction
on j� It holds for j � �� �� � � �� � We assume for � � k � j that Bk�
Yx�i� �
��BkYx�i� and we should demonstrate that Bj�
Yx�i� � ��BjYx�i�� By applying
lemma � this relation holds if for � � �� � � � � �

BjYx�i � �� � ��Bj�
Yx�i � ���

� � � �� is veri�ed by induction�
� � � �� By lemma �

BjYx�i� �� �Bj��Yx�i� � BjYx�i�

��Bj�
Yx�i� �� ���Bj��Yx�i� � ��Bj�
Yx�i��

But Bj��Yx�i� � ��Bj��Yx�i� and BjYx�i� � ��Bj�
Yx�i��
� � � �� �� It can be proved in a similar maner by applying lemma ��
� � � �� �� �� These cases can be reduced to previous ones because Yx�i� �� �
Yx�i � �� �� � ��

�

� Bounding the PVW algorithm

In this section we prove that the MaxMacroSplit and MinMacroSplit algorithms
bound the expected behavior of the PVW algorithm�

The following lemma prove that the coe�cients b�i� k� p� of the binomial
distribution decrease quickly because p �� ��

Lemma ��� If p�� � � � ck then b�i� k� p� � cb�i � �� k� p� for i � �� � � � � k � �


Proof

b�i� k� p�

b�i � �� k� p�
�

�i � ����� p�

p�k � i�
� �� p

pk
�

�p� �

k

By appling p�� � � � ck the lemma holds� �

The following lemma recalls that the MaxMacroSplit and MinMacroSplit al�
gorithms generates more and less x�nodes that the PVW algorithm�

Lemma ��� Let A be a random tree� then

E�XjA� k�MaxSplit� � E�X j A� k�PVW�

E�XjA� k�MinSplit� � E�X j A� k�PVW�

��



Lemma �� Let A and B be two random trees with n�� leaves with XA and XB

leaves of ��type such that E�XA� � E�XB�� then after inserting k new random
keys with the MaxMacroSplit or MinMacroSplit algorithm it holds E�XjA� k� �
E�XjB� k�


Proof
 Recall that

E�XjA� k� � �

�
E�Xx�E�XA� �

�

�
E�Xy�E�YA�

E�XjB� k� � �

�
E�Xx�E�XB� �

�

�
E�Xy�E�YB��

Then E�XjA� k� � E�XjB� k� � � if �
�E�Xxjk� � E�Xyjk�� We verify this last

inequality for both algorithms�

MaxMacroSplit algorithm� Recall the functions F� and F� from lemma ���
By lemma �� the inequality becomes

�

�
��F��k� p�� F��k� p�� � �F��k� p��

Note that if F��k� p� � �F��k� p� the left term if greater than one and the
right term is less than one� But by lemma � for p�� � � � �k it holds
b�i� k� p� � �b�i� �� k� p� and then F��k� p� � �F��k� p�� As p �

�
n�� then at

least n � �k � ��
MinMacroSplit algorithm�Recall the functions F�� F� and F� from lemma ���

By lemma �� the inequality become

�

�
�F��k� p� � �F��k� p�� � �F��k� p� � F��k� p��

If F��k� p� � �F��k� p� the left term is greater than one and the right term
is less than one� By applying lemma � this inequality holds if at least
n � �k� ��

�

Let XPVW
t � Y PVW

t be the fringe distribution before the algorithm starts and
let XPVW

t�� � Y PVW
t�� be the fringe once the algorithm has �nished� A bound is given

in the following theorem�

Theorem ��� Let XMaxSplit
t � Y MaxSplit

t be the fringe in the MaxMacroSplit algo�

rithm and XMinSplit
t � Y MinSplit

t be the fringe in the MinMacroSplit algorithm
 Let
XPVW
t � Y PVW

t be the fringe in the PVW algorithm� we have�

E�XMinSplit
t j k� � E�XPVW

t j k� � E�XMaxSplit
t j k�

E�Y MaxSplit
t j k� � E�Y PVW

t j k� � E�Y MinSplit
t j k�

��



Proof
 We prove the inequalities by induction on t� Recall thatE�XjA� k�MaxSplit�
means the expected value of X when k keys have been inserted into a random
tree A with the MaxSplit algorithm�

For t � �� let A be a random tree� then by lemma ��

E�XPVW
� j k� � E�XjA� k�PVW� � E�XjA� k�MaxSplit� � E�XMaxSplit

� j k�
For t � � it holds by induction that E�XPVW

t�� j k� � E�XMaxSplit
t�� j k� and we

should demonstrate that E�XPVW
t j k� � E�XMaxSplit

t j k�� Let Bt�� and Ct�� be
the random trees generated after inserting k keys t� � times with the PVW and
MaxSplit algorithm� Then by lemma ��

E�XPVW
t j k� � E�Xjk�Bt���PVW� � E�Xjk�Bt���MaxSplit��

By lemma �� and the hypothesis of induction

E�Xjk�Bt���MaxSplit� � E�Xjk�Ct���MaxSplit� � E�XMaxSplit
t j k��

�

� Conclusions

We have explained the evolution or global behavior of the fringe with a Markov
chain whose matrix coe�cients are determined by the local behavior of the
MacroSplit rule and the binomial distribution of keys that can reach any node�

We have proved that the expected evolution of the fringe generated by the
PVW algorithm is bounded by the expected evolutions of the MinMacroSplit

and MaxMacroSplit algorithms �Theorem ��� and we have developed the power
expansion of these last two algorithms �lemmas �� to �
�� Then� for any number
of keys its is possible to bound the expected number of leaves of two types
generated by the PVW algorithm�

There are synchronized parallel algorithms for other search structures as
B�trees 	HS���� Skip lists 	GMM���� AVL trees 	GM��MD��� and Red�black
trees 	MV��� Our analysis is generic and then can be extended to B�trees� AVL
trees� and Red�black trees� The exact average case analysis of balanced search
trees remains open for both� the sequential and the parallel case�
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