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Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics
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Abstract

We study the long time evolution of a large data struc-
ture while inserting new items. It is implemented using
a well known computer science approach based on 2-
3 trees. We have seen self-organized critical behavior
on this data structure. To tackle this problem we have
introduced and studied experimentally three statistical
magnitudes: the stress of a tree, the sequence of jump
points and the distribution of subtrees inside a tree.

The stress measures the amount of free space inside
the 2-3 tree. When the stress increases some part of the
tree is restructured in a way close to an avalanche. Ex-
perimentally we obtain a potential law for stress distri-
bution. When the tree does not have more free space in
any internal node, needs to grow up. When this hap-
pens, the height of the whole tree increases by one and
we have a jump point. Experimentally these points have
good expected behavior. A 2-3 tree is composed from
a great number of other 2-3 trees called their subtrees.
We have studied experimentally the distribution of the
different subtrees inside the tree.

Finally we analyze these results using simple theo-
retical models based on fringe analysis, Markov and
branching processes. These models give us a quite good
description of the long term process.

Keywords. Self-Organization, sand-pile paradigm, 2-3
trees, fringe analysis, Markov process.
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1 Introduction

One of the most important task of computers con-
sists on store large sets of data information. Therefore,
a corner-stone in computer science consists on the orga-
nization and efficient manipulation of large quantities of
data items.

To tackle this problem different data structures have
been investigated. Between them dictionaries have an
important place. In computer science a dictionary can
find, insert or delete an information item. Dictionaries
having good performances require special constraints.
They are implemented with balanced trees. A tree is
rooted a directed acyclic graph (look at the figure 1).
Moreover a tree is balanced if approximately all the
leaves are at the same distance from the root. There are
different kinds of balanced trees (AVL, 2-3 trees, Red-
Black,� � � ).

Here we study efficient dictionaries as a self-
organized critical structure [3]. Good tree structures re-
quire sophisticated update algorithms in order to main-
tain the performance. More precisely, while evolving
the tree needs to maintain the “general shape” ever if the
concrete details change continuously. Therefore along
its evolution a balanced tree behaves as self-organized
structure, having a critical behavior. This happens be-
cause update algorithms are based on the application of
a sequence of local rules. A local rule modifies just few
closely related nodes. Under these rules the tree behaves
like a big cellular automata. Moreover, when some part
of the tree becomes too stressed (contains too much in-
formation in a little space) it is splitted and give rise
to something quite close to an “avalanche”. These two
facts (the local rules and the avalanches) seem to make
balanced trees close to the “sand pile” paradigm [4].
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Figure 1. An example of a 2-3 Tree.

Here we give some precise limits to this idea.
The application of self-organized criticality ideas in

computer science is not new. Basically it has been ap-
plied to other domains having a collectivity of items.
Between them we can cite the work of W. Bauer and S.
Pratt [5] word processing or the work of M. Takayasu,
H. Takayasu and T. Sato [14] on information traffic.
However the possibility to study large data sets with the
methods of self-organized criticality seems to put these
methods into the core of computer science.

We are going to study one of the most popular data
structure: the 2-3 trees. These trees were introduced by
J. Hopcroft in the seventies [1]. We will study experi-
mentally the long time evolution of the 2-3 trees. We
will see that 2-3 trees under this approach behaves as a
self-organized critical structure. To attack this problem
we have introduced and studied three magnitudes: the
stress of a tree, the sequence of jump points and the dis-
tribution of subtrees inside a tree. Let us describe the
content of the following sections.

The section 2 is devoted to the the 2-3 Trees. More
precisely, we consider how this data structure evolves
under the addition of new items of information.

In section 3 we introduce the stress of the 2-3 Trees.
The stress gives us information about the free space in-
side the data structure. When the stress increases some
internal part of the tree is restructured. This restructur-
ing process is close to an avalanche. Experimentally we
get a potential law.

In section 4 we study the jump points. When the tree
does not have more free place needs to grow up. The
sequence of jump points measure the moments where
data structure is globally full and needs to allocate new
space in order to continue the process. Experimentally
jump points have precise expectations.

Inside a 2-3 Tree we have other 2-3 Trees called
their subtrees. In section 5 we have studied experimen-
tally the distribution of the subtrees.

In section 6 we recall one of the few theoretical in-
struments introduced in order to study balanced trees.
This is the fringe analysis based on the evolution of the
bottom of the tree. In this section we also model the 2-3
Trees as a branching process.

Finally, in section 7 we justify the preceding experi-
mental results using fringe analysis, Markov and branch-
ing processes.

2 Sequences of random 2-3 Trees

Let us introduce the basic tree structure; the 2-3 Tree
balanced data structure [1, 9]. The figure 1 gives us an
example of such a tree. More accurately, a 2-3 Tree is
rooted directed acyclic graph such as:

(1) There are two kind of nodes. The internal nodes
having successors and the leaves with no successors.
Every internal node n stores two values, the left key
L�n� and the middle key M �n� such as L�n� � M �n�.
We identify n with its stored values and we write n �
�L�n��M ��n�� (for instance root � ���� ���). Every leaf
contains just one key, we identify a leaf with its key.

(2) Every internal node has 2 or 3 sons. Node ���� �	�
has three sons: a left son ��
� ���, a middle son ���� �	�
and a right son ���� ���. Node ���� ���has only two sons:
a left son �
�� ��� and a right son ��
� ���.

(3) The value of L�n� is the largest leaf in the left
subtree of n (the left subtree is the tree having as a
root the left son of n). For instance L���� ��� �
maxf�� �	� 
�� �
���g. The value of M �n� is the largest
leaf in the subtree having as a root the second son of n.
For instance L���� ��� � maxf�
� �
� ��� �
���g and
L���� �	� � maxf��� �	g.

(4) All the paths going from the root of the tree to a
leaf have the same length.

In a 2-3 Tree all the nodes have a well defined no-
tion of height. All the leaves have height 
, for in-
stance height��
� � 
. The parent of the leaf has
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(a) The 2-3 Tree T� corresponding to the sequence
97,89, 87, 53, 35, 63, 59, 21. The item K� � �� has
to be incorporated.
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(b) The key 62 has been attached. The node
[59,63] becomes unstable.
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(c) The node [59,63] has been splitted into [59,62],
[63,87]. The node [53,87] becomes unstable.

21 35

21 35 53 59 63 87 89 9762

59 63 89 97

97

87

876253

62

62 97

(d) The node [53,87] has been splitted. A new node has
been generated. This is the 2-3 Tree T� corresponding
to the sequence 97, 89, 87, 53, 35, 63, 59, 21, 62.

Figure 2. The figures (a),(b),(c) and (d) display the step corresponding to insertion of the key
62. In this step there are 2 splits and the height is increased by one.

height one, height��
� ��� � 	 and successively. The
height of the three is the height of the root, in this case
height�root� � �.

In a 2-3 Tree the set of leaves are sorted in increas-
ing order. For instance, in the preceding example the
ordered set of keys starts as �� �	� 
�� � � �.

We study the long term evolution of the 2-3 Trees.
To attack this problem, we grow up a 2-3 Tree from
a random sequence of keys written Kt, with t integer
t � 	. In order to figure out the process we will consider
the sequence Kt starting with the keys 97, 89, 87, 53,
35, 63, 59, 21, 62, 65, 75, 43, 49, 4, 99, 83, 60, 50, 70,
91. The process evolves constructing a sequence Tt of
2-3 Trees. The process behaves in discrete steps. In
the step t, the tree Tt�� is updated adding the leaf Kt

giving Tt. The figure 2 mimics the step � starting with
T� (constructed from the subsequence 97, 89, 87, 53,
35, 63, 59, 21) when the new key K� � �� arrives (see
figure 2(a)). In this step T� is rearranged in order to
incorporate 62, at the end of the step we have T� (see
figure 2(d)).

In the step t the tree Tt is built. To do this, Tt��

is updated with Kt. Some internal work is needed in
Tt�� to do this. This work can be organized in two main
phases (a precise description is given in [1]).

Attach phase. To insert Kt into Tt��, first Kt is linked
at the bottom of the tree to a node n having height 1.
For instance, in the figure 2(a), K� � �� is attached at
the node n � ���� �
�, see figure 2(b). The process Kt
is linked together with the smaller leaf having a value
greater than Kt. Moreover all the leaves have to remain
sorted, therefore �� is located at the left side of �
. The
new keys will be always located at “the left”. Now a
problem appears because n has 4 sons violating the con-
dition 2 of 2-3 Trees. To solve this situation a second
phase starts.

Reconstruction phase. This process reconstructs the
tree in a bottom up way. Any node with 4 sons becomes
“unstable” and splits into two other nodes (each one with
2 sons). The split process raises up while nodes with 4
sons exists. The split process always stops when it ar-
rives at a node with 2 sons (it will have 3 sons now). If
the root becomes unstable, a new node is generated and
the height of the tree increases by one. In the preced-
ing case, ���� �
� splits into nodes ���� ��� and ��
� ���,
see the figure 2(c). Now the problem appears with the
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root node ��
� ���. This node also splits into ��
� ���
and ���� ��� but to do this a new node ���� ��� is created.

Following the preceding algorithm we get T�� after
the insertion of K�� � �	 (figure 1). Of course the final
tree depends heavily on the order of the sequence. The
same set of values arriving in another order will give
a different final tree. However the basic parameters of
the tree, like the height, seem to have a well expected
behavior.

3 Stress in 2-3 Trees

Given a 2-3 Tree, we can see the inser-
tion/accumulation of keys as something like a slowly in-
creasing external stress field supported by the tree in all
their nodes. When the stress in a given node exceeds the
critical value (recall that a node accepts at most three
sons) the stress is shared up to its ancestors (the node
splits and the stress of the father increases). We define
the stress S of a node as the number of keys to be in-
serted through this node in order to split it. Given a 2-3
Tree every internal node n fixes a subtree (it is also a 2-3
Tree) having n as a root. Therefore the stress of n is the
number of keys accepted by this subtree before its root
n splits. We can see the stress of a (sub)tree measures
the “free space” or the “capacity” to accept new keys be-
fore the (sub)tree becomes crowded. Let us point several
facts about the stree S.

(1) The stress of a node is a statistical property. It de-
pends on the structure of its current subtree. It depends
also on the sequence of keys being inserted. Perhaps
some long sequences can be accepted but other short se-
quences (having other values) cannot be allocated inside
the subtree.

(2) The stress of a node n depends on the position of
n inside the tree. If n lies at the bottom of the tree, it has
a really small stress because its subtree is small. On the
other way, nodes near the root of the main tree should
accept more keys before splitting.

(3) It is necessary to decide when to start counting
the keys being inserted through a node n. We choose as
the start time the moment when the node n is created.
Recall that node n is created in one split. Just when the
node is created we start to count the keys being inserted
through it. We choose as the stop time the moment when
node n is splitted. In this way the stress of a node n is
the number of keys inserted thought it along its “life”.

(4) Now we are going to precise what is the “life of
a node n”. During its life the number of sons changes
from two to three, therefore the structure of n changes
along its life. Let us explain this fact: when created n
has just two sons (this is determined by the algorithm).
During some time n will continue to have two sons. At
some stage the current subtree determined by n becomes
full and a new son is added. In this moment node n has
three sons. During some time this node will continue
having three sons. Finally, no more keys can be allo-
cated inside the current tree and n splits. This is the end
of n’s life.
Computer simulations of the evolution of a 2-3 Trees
allow us to obtain a distribution of S, it follows a power
law with exponent ��, see figure 3.

D�S� � S���

Later on we will derive a theoretical explanation of this
fact based on very simple suppositions about when a
split does happen.

Special care has to be taken with experimental results
concerning large stress. Large stress corresponds to very
big 2-3 Trees. For this kind of trees it becomes quite
difficult to have faithful statistical estimations. In order
to get good results for this kind of stress we will need
to put these trees inside much greater trees, but this is
quite cumbersome and we will still have the problem
with bigger trees. Therefore, the experimental points at
the end of plot are not on the line because the experiment
gives us poor statistics of big trees. However we point
out that we have a power law over ten decades and this
is and important range of behavior.

From the preceding approach it has been seen that
the split operation appears as an important one. In the
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following section we study splits along the time.

4 Jump points

As we have seen, the “avalanche” phenomena (and
therefore the SOC behavior) in a 2-3 Tree is heavily re-
lated to the discontinuous process of the split of a node
with two sons. The best way in order to study this split-
ting is considering the evolution of the heights in a 2-3
Tree, Tt, let us we write Ht � height�Tt�. The evolu-
tion of Ht is far from being smooth. The sequence Ht

qualitatively verifies:
(1) The height Ht remains constant for very long in-

tervals of t. Therefore, the size of the intervals is a ran-
dom variable.

(2) The sequence Ht increases one unit between long
constant intervals. We call jump points Jh the points
where the height increases in one unit.

(3) The length of the constant height intervals in-
creases (from one to another) approximatively as an ex-
ponential.

We study experimentally Ht from two complemen-
tary points of view. First we analyze the sequence of
jump points Jh estimating E�Jh� and V ar�Jh�.

The evolution of Ht does not have a smooth behav-
ior. To study this fact we consider the sequence of points
Jt where the height increases. Given a sequence Kt,
the value Jh is the number of inserted keys when the
tree jumps into height h. Formally J� � 	 and for
h � 	, we have Jh � t if height�Tt��� � h � 	
but height�Tt� � h. The sequence Jh depends on the

sample Kt, for instance when Kt � ��� ��� � � � we have
Jh � 	� �� �� �
� � � �. The figure 4(a) plots Jh for a larger
sample, the continuous plot is the expected behavior (to
be precise we have plotted the inverse function).

The process Jh has a good probabilistic behavior. To
estimate it, we had done 50 different samples of Kt with
100 000 keys each one. The keys are taken from a uni-
form random variable in �
� 	�. The figure 4(b) give us
the behavior of Jh. If we fit lnE�Jh� versus h with a
linear regression we obtain lnE�Jh� � 
����h�
�

�.
From this

E�Jh� � 
��
�e�����h� (1)

By similar methods from figure 4(b) we get:

V ar�Jh� � ���

� 	
��e�����h (2)

5 Subtree distribution and lognormal laws

The preceding section gave us information about the
long term evolution of the sequence Tt. However we
would like to have some more information about the in-
ternal structure of the trees appearing in Tt.

Consider a very large 2-3 Tree, this tree contains
many different subtrees (any internal node determines
a subtree having this node as a root). Some of these sub-
trees seems to appear more frequently than others. The
distribution of the different “subtrees” seems to be a dif-
ficult topic. Therefore we will change “subtree” by “size
of the subtree”. By size we mean the number of leaves
and we will study such a distribution.

To do this we need to design a procedure allowing us
to locate for any new inserted key a subtree inside the
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whole tree, consider the following situation: We start
with the tree Tt�� built with the random sequence of
keys until the step t � 	 (assume t large). At step t a
new key Kt is introduced. This key generates a sequence
of splits until the perturbation stops updating a node so
called nt. This node is the root of a subtree Tnt. For
this tree Tnt count the number Nnt of leaves. If we per-
form this experiment for a large number of keys we can
see that some values Nnt appears more frequently than
others. In this way we get experimentally the probabil-
ity distribution D�N � of the possible values of N . The
figure 5 gives us such an experimental distribution.

This plot shows us that some subtrees are much more
probable than others. For instance the first maximum
appears when N � � and the first minimum is when
N � �. It means that subtrees with � leaves have
high probability and subtrees with � leaves have a really
small probability. The loglog plot given in the figure 5
seems to be a sequence of “mountains” having decreas-
ing height. Intuitively each mountain seems to describe
the distribution of 2-3 Tree for a fixed height. Evolving
from one mountain to the next one mimics the process
of increasing the height by one. Much more intriguing
is the concrete form of the mountains.

Sequence of log-normal laws. Each mountain seems
to be a parabola. The distribution of sizes given in the
figure 5 seems to be a sequence of parabolas. For every

parabola we have

logD�N � � a log�N � b logN � c

Using the experimental data we get the coefficients a, b,
c for the first 4 parabolas. The data describing the last
two parabolas are too confusing and we avoid them.

Parabola a b c

1 �


�

 �


�
 ��




2 ����	�� ����
� ��
����
3 �
�



 �
���	 �	��
��
4 �
�
	�� ���
	� �������

We have to guess a distribution function giving a
parabola in a log-log plot. We are looking for a distri-
bution appearing in processes described by many items
interferring between them. Under these two hypothesis
the log-normal law is a clear candidate. For instance, B.
A Huberman and R. M. Lukose [10] use the log-normal
in order to describe internet traffic. This law also ap-
pears to model the stock prices [11]. Let us develop this
point of view. For a fixed parabola the log-normal law is

D�N � �
	

�
p
��N

e
��ln N����

���

for N � 
 and zero otherwise. Taking logarithms,
lnD�N � is:

�	
���

ln�N �
� �

��
� 	

�
lnN �

�
ln�

p
�� �

��

���

�
�

We can express the expectation and variance in terms of
a and b getting:

�� � � 	

�a
and � � � 	

�a
�b� 	�

Using the experimental data we get

Parabola �� �
1 
�

	� 	��

	
2 
�
��� 
�����
3 	����� ���	��
4 
��
	� �	����

Let us consider briefly the sequence of the maxima and
the minima described by the sequence of parabolas.

Sequence of minima. The subtrees having a num-
ber of leaves close to �� �
� ��� 		�� ��
� � � � have small
probability. These numbers coincide quite well with
the expected jumping points (see equation 1) at heights
h � �� 
� �� ���� � � � Therefore the minima reflects the
moments when the trees do not have more room to store
keys.
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(a) The fringe corresponding to the preceding tree T�� build from the sequence Kt � f������ � � � � ��g containing 20 elements. An
example of x node is �	
�	��, the leaves 	
 and 	� are 1-type. An example of node y is �	����, the leaves 	, �� and 
� have 2-type. In
this case X�� � �	 and Y�� � � note that X�� 
 Y�� � ��.

(b) Update case: The new key hits an x node. The node
x is updated into a node y. The number of 1-type leaves
decrease by � and the number of 2-type leaves increases
by 
. When an update occurs at step t 
 � in a fringe
Xt,Yt we haveXt�� � Xt � � and Yt�� � Yt 
 
.

(c) Split case: The new key hits and y node. The node y

is splitted into � nodes x. The number of 1-type leaves in-
creases by 	 and the number of 2-type leaves decreases by 
.
When an split occurs at step t
 � in a fringe Xt,Yt we have
Xt�� � Xt 
 	 and Yt�� � Yt � 
.

Figure 6. The fringe analysis. In this model, the probability of an split is p � �
� . The probability

to have an update is q � 	
� .

Sequence of maxima. The subtrees with approxi-
mately �� 	�� 

� ���	�
 � � � leaves have high probabil-
ity. The distribution of maxima follows with a high ac-
curacy the exponential law

Nmax�h� �
	


�

�
�




�h

�

Moreover the distribution of the maxima is given by the
potential law:

D�Nmax� � N��
max

In the following two sections we introduce some theo-
retical developments to study the preceding experimen-
tal results.

6 Fringe analysis, Skip Tree and branch-
ing processes approximations

The evolution of the Tn is difficult to study. In order
to get some approximate knowledgement A. Yao [15]
introduced the fringe analysis. This approach has been
fully developed by B. Eisenbarth et alters [2]. Let us
recall the basics of the fringe analysis as is given in [2].
The fringe of a tree is composed by the subtrees on the
bottom part of a tree. Our fringe is composed by trees of
height one. A bottom node with two sons is called and

x node, and a bottom node with three sons is called an
y node. These nodes separate leaves into 1-type leaves
if their parents are x nodes and 2-type leaves if their
parents are y nodes. The figure 6(a) show us examples
of x, y nodes and X�� and Y�� for T��. Let us consider
the evolution of the fringe along the time. Let Xt and Yt
be the random variables associated to the number of 1-
type leaves and 2-type leaves respectively at the step t.
We assume that Xt � Yt � t being t the number of keys
of the tree. When a new key falls into a bottom node we
have two possibilities.

Update case. The key can hit a bottom node x. In
this case this node is updated into a node y. This case is
schemitized in the figure 6(b). When this case happens
at step t � 	 in a fringe Xt and Yt we have:

Xt
� � Xt � �

Yt
� � Yt � 


Split case. The new inserted key hits an y node. In case
the node y is splitted into � nodes x. The case is given
in the figure 6(c). When this case occurs at the step t�	
in a fringe Xt and Yt we have:

Xt
� � Xt � �

Yt
� � Yt � 
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The probability that a key hits a bottom node x is �
tXt

and for a node y is �
t
Yt. A split occurs when the key

hits a node y, therefore let us study the evolution of Yt.
In the step t � 	, the conditional expectations of Yt
�

verifies:

E�Yt
� j Xt� Yt�

�
Yt
t
�Yt � 
� �

Xt

t
�Yt � 
�

� Yt �



t
Xt � 


t
Yt

� Yt � �

t
Yt � 


As E�Yt
�� � E�E�Yt
� j Yt�� we rewrite as

E�Yt
�� � E�Yt� � �

t
E�Yt� � 


In the work of B. Eisenbarth et alters [2] this kind of
recurrent equations are solved exactly. Here we ap-
ply an easy approximated method. We can approach
d
dtE�Yt� � E�Yt
�� � E�Yt� and we get the follow-
ing equation

d E�Yt�

d t
�

�

t
E�Xt� � 


having as solution

E�Yt� �



�
t� O�t���

When a new key is inserted at step t, we call p�t� the
probability to have and split. This probability coincides
with the probability to hit a 2-type leave, that it:

p�t� �
	

t
E�Yt� �




�
�O�t���

If the key hits a node x this node, it will give an update
with probability

q�t� �
	

t
E�Xt� � 	� 	

t
E�Yt�

�
�

�
�O�t���

When t becomes large we have:

p � lim
t��

p�t� �



�

q � lim
t��

q�t� �
�

�

Using the fringe analysis we have computed the proba-
bility to have a split node as p � �

� . The probability to

have an update is q � 	 � p � 	
� . We would like to

emphasize that the p and q have been obtained only in
the fringe approximation. It is far from being obvious
that this result can be extended to all the internal nodes
of a 2-3 Tree. Even worse we think that such a proba-
bilities does not exist of a random 2-3 Tree. The fringe
analysis appears to us as something like a “first approx-
imation”. Intuitively speaking, the fringe analysis has
common points with the mean field approximations as it
is developed by H.J. Jensen in [12].

Skip tree approximation. Tree data structure where
a node has a constant probability to split or to update
has been recently studied by X. Messeguer [13]. It is
called the Skip Tree. In the following section we will
take the probability 
�� in order to explain qualitatively
the preceding experimental results. Therefore we will
approach 2-3 Trees as Skip Trees having a constant

�� split probability.

Branching processes approximation. Let us approxi-
mate a 2-3 Tree with a branching process [6]. To do this
we adopt a top down view of the tree. The construction
of the tree starts from the root and branches down down
to the leaves. We assume that any internal node has a
probability pthree to branch into 3 sons and a probabil-
ity ptwo � 	� pthree to branch into 2 sons.

Let us explain how to build a 2-3 Tree having height
h using a branching process. The construction starts at
the root (having height h) and has h steps. At the first
step of the construction, root branches, giving 3 sons
with probabilitypthree and 2 sons with probabilityptwo.
At the next step, all the internal node (having height h�
	) branch again. The construction stops after h steps. In
this way we obtain a tree having the “shape” of a 2-3
Tree. Let Nt the number of leaves obtained in such a
construction.

To develop this approximation, we need to estimate
pthree and ptwo. We can do it using fringe analysis.
Along the time the probability pthree�t� can be com-
puted as:

pthree�t� �
�
�E�Yt�

�
�
E�Xt� �

�
�
E�Yt�

�
�
�p�t�

�
�q�t� �

�
�p�t�

because E�Xt� and E�Yt� are the expected number of
leaves of 1-type and 2-type and we have to divide them
by � and 
 if we want to know the expected number of
nodes of type x and y respectively. When the time in-
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creases:

pthree � lim
t��

pthree�t� �
	




ptwo � lim
t��

ptwo�t� �
�




Let us study the statistics of Nh. The value E�Nh�
will approximate the expected number of leaves in a 2-3
Tree of height h. When h � 	

E�N�� � � � �


� 
 � 	



�

�




otherwise [6]:

E�Nh� � Eh�N�� �

�
�




�h

In the preceding section we have found experimentally
the sequence of maxims Nmax�h�. Note that E�Nh� �
Nmax�h�, therefore the branching process fits with some
accuracy the experimental results.

h-2 h-11 20
ppp

qx

px

qx

qx

qx

Figure 7. The Markov chain of the process.
A split has probability p while an update
has probability q � 	 � p. The variable x
is used in order to compute the generating
function.

7 A model for stress distribution, jump
points and maxima distribution

Let us study the distribution of stress S in a 2-3 Tree.
First of all we parameterize the stress in terms of the
height of the tree. The stress at height h written Sh can
be defined as the number of keys needed to jump from a
tree having height h into a tree having height h� 	, that
means:

Sh � Jh
� � Jh

For a fixed h, if the value of V ar�Sh� is not too impor-
tant, we can assume:

Sh � E�Sh� � E�Jh
��� E�Jh�

In this case the stress is just a function of the random
variable h written S�h�. The probabilityP as a function
of S is:

P �S� �
	

jd S�d hjP �h��

Therefore we need to compute (or at least have some
estimate) P �h� and S�h�. We do it under the Skip Tree
approximation induced by the fringe analysis.

First, let us studyP �h�. A new inserted key will pro-
duce a tree having height h if this key generates a se-
quence of h � 	 splits followed by one update. There-
fore, the probability to get a tree with height h when just
one key is inserted is:

P �h� � ph��q �
q

p
e�ln p�h (3)

Now let us deduce E�Jh� and V ar�Jh�. The number
of keys needed to produce a tree with height h can be
described as a Markov chain 7. Recall that, when a key
is inserted a perturbation raises up through a sequence
of splits until one update stops it. If a sequence of h� 	
splits occurs, the tree gets heighth and the process stops,
otherwise a new key is inserted and the process starts
again:

� The chain has h states numbered from 
 to h �
	. State 
 	 i 	 h � 	 models “the number of
consecutive splits is i”.

� When the perturbation raises up to the node i it has
two possible evolutions. It can follow up to the
state i�	 with probabilityp doing one split. Other-
wise one update stops it with probability 	�p � q.
In this second case the process needs to start again,
therefore there is a transition from the state i to the
state 
.

� Any loop describes the insertion of just one key
performed by the tree without changing the height.

� The straight path ending in the state h�	 describes
the insertion of the key augmenting the height in
one unit.

The expected number of keys [8] needed to reach the
height h can be computed using the generating func-
tion g�x� of the chain. Let us briefly explain the struc-
ture g�x�. Any insertion of a key ending with a failure
“counts” just one unit, therefore there is only one vari-
able x for any loop. For instance the loop representing 

splits and one update contributes with p�qx to the gener-
ating function. The sequence of h � 	 splits contributes
with ph��x. Unfolding the loops we get:

g�x� � qx� pqx� � � �hh��qx� ph��x

�
ph��x

	� �	� ph���x
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The expected number of keys needed to get a tree of
height h is given by

g��	� �
	

ph��

and its variance is

g��	� � g���	�� g��	�� �
	� ph��

p�h��
�

As the number of keys needed to jump into height h is
precisely Jh we have

E�Jh� � g��	� �
	

ph��
� pe�ln ��p�h

and

V ar�Jh� � g��	� � g���	� � g��	��

� 	

p��h���
� p�e��ln ��p�h

Finally we can study the stress. The stress correspond-
ing to a given height is given by

S�h� � E�Jh
��� E�Jh� �
q

ph
� qe�ln ��p�h�

and finally we get:

P �S� �
	

jd S�d hjP �h� � � 	

lnp
S���

Therefore D�S� � S��. Note that the exponent �� of
the distribution does not depend on the concrete values
of p and q.

As we have seen, it is possible to estimate the prob-
ability p of having a split with the fringe analysis [7]
and the experiments performed by [2]. Using the value
p � 
�� we obtain

E�Jh� �

�
�




�h��

�



�
e�ln ����h

� 
����e���	�h

and

V ar�Jh� �

�
�




���h���

�

�



�

��

e��ln ����h

� 
�	��e����	h

The coincidence with the experimental data is quite
good in the exponents but it is poor in the coefficient.

Finally let us give an explanation of the power law
D�Nmax� � N��

max describing the experimental results
about the maxima of the sequences of lognormal distri-
butions. Let us assume Nmax�h� � Eh�N��, recalling
that E�N�� �

�
� and p � �

� we get:

P �Nmax� �
	

jd Nmax�d hjP �h�

�
q

p

	

j lnE�N�� jN
ln p

lnE�N��
��

max

�
q

p

	

j lnE�N�� jN
��
max

therefore D�Nmax� � N��
max.

8 Conclusions

We have found a real system, in the sense that it lives
in real computers, used to manipulate real data having
a self-organized critical behavior. The 2-3 Tree are ef-
ficient dictionaries an we suspect that this efficiency is
related with the SOC behaviour. Moreover we guess
that his kind of phenomena will happen in all other self-
balanced data structures like AVL o Red-Black trees.

Moreover we have developed theoretical methods
based on fringe analysis, Skip Trees and branching pro-
cesses. These methods are close (at least in spirit) to the
mean field approximation theory used in self-organized
phenomena. In spite of their apparent simplicity these
methods help us understand some basic facts. For in-
stance, they give us quite an accurate explanation of the
potential laws.

Today the process of data by computers seems to take
enormous proportions. If this fact continues to grow up
computer science certainly will need to adapt the meth-
ods of physical sciences, specially those developed to
study the condensed matter.
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