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Abstract

This paper describes a multiresolution method for implicit curves and surfaces� The

method is based on wavelets� and is able to simplify the topology� The implicit curves and

surfaces are de�ned as the zero�valued algebraic isosurface of a tensor�product uniform

cubic Bspline� A wavelet multiresolution method that deals with uniform cubic Bsplines

on bounded domains has been constructed� Further� the report explains how to set the

unknown coe�cients to produce the most compact object� how to recover the initial

object� a suitable data structure and� �nally� points out several improvements that might

produce better results�
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� Introduction

In this paper a curve and surface multiresolution method that simpli�es the topology is pre�
sented� We will work with algebraic curves and surfaces de�ned as the zero�valued algebraic
isosurface of a tensor�product uniform cubic Bspline� Thus� the cubic Bspline has one dimen�
sion more than the space where we are representing the objects� The Bspline approximation
will produce the simpli�cation of the objects and the change of their topology in a simple
way�

There are a lot of e�orts around the solid multiresolution or simpli�cation� due to the interest
of interacting with simpli�ed versions for complex models� However� because of the complexity
of the topological relations inside the classical models used in CAD �triangular meshes� BReps�
CSGs� it is actually di	cult to make changes directly in their topology�

Many algorithms simplify triangular meshes doing edge collapses� for example 
HDD����
Hop��� Some also make topological changes joining the nearest vertices of di�erent triangles

RB��� RR�� PH��� GH���� Although they do topological simpli�cation� they produce non�
regular surfaces �isolate edges and vertices appear� or non�manifold objects �not every surface
point has a neighbourhood topologically equivalent to a disk��

The algorithms that get topological changes keeping the solid correctness are bases in space
decomposition models� usually voxels and octrees� It is the case of 
HHK���� with voxels
and 
AAB��� with octrees� Nevertheless� they have several drawbacks� they must do two
conversion steps to and from the space decomposition model� the second one is very hard
if we want to compress the large number of generated faces and it is complicated to save
information needed for the reconstruction of the initial object�

In our multiresolution algorithm we use a very powerful tool� the wavelets� The wavelet
methods allow doing a fast decomposition that minimizes the error and� later� we can recon�
struct the original solid� Furthermore� the decomposed solid plus the error data use the same
storage space as the original solid�

Other curve and surface multiresolution methods based on wavelets exist� but they do not
use algebraic curves�surfaces and they cannot simplify the topology either� 
Rei�� imple�
ments a parametric curves�surfaces multiresolution with a type of wavelets called coi�ets�
The method works over the co�ordinates of the surface points and the approximations are
only linear interpolations of the scaling coe	cients� Frequently� the wavelets multiresolution
methods have been applied over Bspline surfaces �see section ��� Using the ideas on 
LM����

KE��� exposes a multiresolution over a parametric surface de�ned as a tensor�product of
non�uniform Bsplines� 
FS��� does the same over tensor�products of end�interpolating uni�
form cubic Bsplines� In 
LDW��� the wavelets are applied over recursive subdivision surfaces
with any topology� although they cannot simplify this topology�

In 
VNB���� a conversion method from a voxel or octree representation to an algebraic surface
de�ned as the zero�valued algebraic isosurface of a tensor�product uniform cubic Bspline
is described� The multiresolution is based on an octree level selection and a subsequent
conversion to the algebraic surface� However� this conversion has an important cost� The
goal of our implementation is a quick multiresolution thanks to directly handling the Bspline
coe	cients that de�ne the algebraic surface� Furthermore� our algorithm produces better
approximations due to the use of wavelet methods�
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In the next section we present the formal de�nition of the algebraic curves and surfaces
used in the application� In section � we discuss how to �t the wavelet multiresolution to
decompose�reconstruct any dimensional object� Section � exposes the particularities of our
algorithm� how to set the unknown coe	cients in the decomposition and how we can do the
reconstruction process� Also� it describes a convenient data structure for the model� Section
� includes several examples in �D and �D domains� Finally� we point out some conclusions
and possible improvements of our work�

� Algebraic curves�surfaces in terms of Bsplines

For simplicity� we consider a scalar function de�ned on a rectangular grid and consider the
intersection of its graph with the zero�valued plane as the curve �the boundary of the area��
Because of the nature of the domain� we set out to construct this function as a tensor�
product uniform cubic Bspline� The curve obtained is the zero�valued algebraic isosurface
of the functional Bspline� See �gure �� It is a smooth� C�� piecewise algebraic curve� To
model a surface� we de�ne the scalar function on a �D regular grid and its intersection with
the zero�valued hiperplane produces the boundary of the solid� The rectangular domain also
allows straightforward conversion algorithms from voxel and octree models 
VNB����

Figure �� The intersection of the �D Bspline function with the zero�valued plane de�nes a
curve or area

It is only necessary to de�ne the algebraic object on the nodes �cells of the grid� stabbed
by the isosurface� This will form a set of nodes named Node�Collection� Let us now de�ne G
as the set of spatial indexes of the nodes of the Node�Collection

G � f�i� j�� Nij � fNode�Collectiongg

Nij represents a unit cube with the vertices �i � ��� j � ���� with ��� �� being either � or ��
Observe that the cardinality of G grows in the same manner as the size of the object does
�quadratically if we are modeling a surface��

On the other hand� let us de�ne I as the set of spatial indexes of the nodes in the immediate
vicinity of the Node�Collection�
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Figure �� The Node�Collection is the set of shaded nodes

I � f�i� j� with �i� ��� j � ��� � G� ��� �� � f��� �������gg

The cardinality of I is of the order of � times the cardinality of G� Let us now consider the
uniform� tensor�product Bspline function F de�ned on the regular grid� F is an integral�
functional spline and we are only interested to evaluate it on the Node�Collection� to �nd its
zero�isosurface�

F �x� y� �
X

�i�j��I

wij Ni�x� Nj�y� � �

� Wavelet multiresolution

Wavelets are a mathematical tool with a wide variety of applications in several �elds� A lot
of Bspline wavelet methods exist due to the variety of Bspline functions� In 
FS��� there is a
method for end�interpolating uniform cubic Bsplines� 
Chu��� contains a study of the uniform
Bspline wavelets on unbounded domains� In 
LM��� and� later� in 
KE��� the use of wavelets
with non�uniform Bsplines is described�

In our case� due to the kind of algebraic surface to decompose� we will use uniform cubic
Bsplines on bounded domains� We want to develop a wavelet multiresolution method� similar
to the end�interpolating Bsplines in 
FS���� implemented with pre�calculated band matrixes�
This will allow us to do the analysis and synthesis processes with linear cost� Our method
produces similar results as 
Chu��� does� but uses wavelets de�ned on bounded domains� In

Chu��� the same �lter is applied to all coe	cients in the analysis�synthesis process �a moving
average algorithm�� The disadvantage of 
Chu��� is that the analysis �lters are in�nite and
we must truncate them causing precision errors�

Appendix A discusses the wavelet method for uniform cubic Bsplines on bounded domains�
The direct use of this multiresolution has an important restriction� It can only work on
uniform cubic Bsplines that have �i�� control points� Our application will usually deal with
Bsplines that have any number of control points and we would also want to decompose and
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reconstruct them� Section ��� explains how we do it�

� The proposed algorithm

We have adapted the wavelet multiresolution to our application� since the Bspline function
is not de�ned on the whole domain� It is de�ned on the nodes of the �D grid that belong to
the �Node�Collection�� These are the contributions of our algorithm�

�� To decompose the Bspline functions we must de�ne them on a domain more general
than domains having �i intervals� We restrict the Bsplines to have an even number of
intervals� Thus� we have extended the family of used analysis and synthesis matrices�
This generalizes the usual analysis�synthesis process�

�� We must set some unknown coe	cients �coe	cients whose indexes do not belong to the
set I� before decomposing the Bspline� The reasons are�

� It is necessary that the Bsplines have an even number of intervals to decompose
them� as per the previous observation�

� Intervals which are close together can be joined in the decomposition� In this case�
we must set the coe	cients in between�

� We are interested that the decomposed Bspline plus the produced detail use the
least space possible �ideally the same as the original Bspline��

�� In the reconstruction we must recover the control points whose indexes belonged to the
set I using the least information possible and keeping a linear time cost� We will also
reject the coe	cients that we have assigned before�

Figure � shows the changes in the Node�Collection during the analysis process� The area
that is occupied by the Node�Collection grows� We must take into account the unknown
coe	cients around these new areas of the Node�Collection�

��� Wavelet multiresolution on domains of even length

The single condition we will impose to the multiresolution is that the Bspline must have an
even number of intervals where it is de�ned �the number of control points must be odd�� In
the decomposition process� the number of intervals will be divided by ��

We change the indexes used in the equations of the analysis and synthesis process described
in the appendix A to represent the decomposition of a Bspline de�ned on �n intervals C�n in
one de�ned on n intervals Cn and its detail Dn and the inverse reconstruction� So�

Cn � AnC�n

Dn � BnC�n

C�n � P nCn �QnDn





�a� Level �n �b� Level n

Figure �� Changes in the Node�Collection

and the relations between the scaling functions and wavelet functions will be

�i�u� � ��i�u�P i

�i�u� � ��i�u�Qi

In the iterative application of the analysis process we can obtain a Bspline with an odd
number of intervals� Then� we must set additional control points on the Bspline endpoints to
return to an even interval Bspline and� in this way� continue the decomposition� Therefore�
we need to add an assignment process between the decomposition steps� Also� between the
reconstruction phases we must reject some unnecessary control points�

Analysis C�n Cn C�m Cm � � �

Dn Dm � � �

�An

H
H
H
HjBn

�set �Am

H
H
HHjBm

Synthesis C�n Cn C�m Cm � � �

Dn Dm � � �

� Pn �
reject

�P
m

H
H

H
HY

Qn H
H
HHY

Qm

Appendix B explains how to achieve the decomposition process in linear time despite that
the analysis matrices An and Bn are not band matrices� This can be achieved using the inner
product matrices of the scaling and wavelet functions Ii and J i and solving a band linear
system�

Appendix C lists all the synthesis matrices P i and Qi and the inner product matrices Ii and
J i for the uniform cubic Bsplines de�ned on a domain with an even number of intervals�
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��� Analysis process and the assignment of extra coe�cients

As previously discussed� before applying the analysis process we must set the value of some
unknown control points� Hence� we must decide which control points must be assigned and
which will be their value� We have studied several alternatives about how to set the coe	�
cients� Our purpose is to do the decomposition over the several sets of known control points
separately�

For example� in the next case we decompose the ��th row �we work on unidimensional exam�
ples that represent the decomposition�reconstruction in one speci�c direction of the tensorial
product��

X X X X X X X X X X X X X X XX

X XXX X X XX X X
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Figure �� Horizontal Decomposition
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X X X X X X X XX X

X X X
i

D

Figure �� ��th row decomposition

First �see �gure ��� the Bspline functional C�i is de�ned on the intervals 
�� �� and 
��� ����
We have only assigned control points with odd indexes to get the Bspline de�ned on several
domains with even indexes �
�� �� and 
��� ����� Then we can apply the decomposition process
described in the previous section to obtain Ci�
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However� there is a problem� when working with a tensorial product of the basis functions on
quadratic or cubic domains� after several steps of decomposition artifacts do appear �empty
space inside the solid and�or solid inside the empty space�� The reason is the basis functions
of the uniform cubic Bsplines on a bounded domain are similar except on the endpoints�
which are truncated� To minimize the error produced� the wavelet decomposition plays with
the endpoint basis functions� that have less energy than the others� giving them high weights
and sign changed with respect to the neighbours basis functions� The endpoint control points
in one direction can become inside control points in the other directions since we are working
with a tensorial product of the basis functions and frequently changing the direction of the
decomposition process� In short� the value of the control points are weights of basis functions
with di�erent energy depending on the direction we are decomposing�

Thus� our implementation sets � additional coe	cients at both sides of each set of known
coe	cients� In fact� � additional coe	cients at both sides are enough because the uniform
cubic Bsplines on bounded domains have � truncated basis functions on each end�

We will keep only the coe	cients of Ci and Di needed to reconstruct the initial Bspline�
Thanks to P i being a band matrix �the middle columns have � non�zero coe	cients� we can
reject � coe	cients at both sides of each interval of Ci� We can not do the same with Di

because Qi has the middle columns wider than P i �Qi has �� non�zero coe	cients in the
middle columns��

Therefore� each interval decomposition produces � additional coe	cients in Ci plus Di than
the initials in C�i� This problem can be avoided if in the reconstruction process we know the
values assigned to the unknown coe	cients of C�i during the decomposition process� In the
present work we set the unknown coe	cients of C�i in the following way� they can be �K or
�K �K is a model constant whose value is in the same order of magnitude as the control points�
and� further� all correlative coe	cients have the same sign and they coincide to the sign of
the functional Bspline on the endpoints of the domain where it is de�ned� This is consistent
with the semantics of our model� negative values correspond to the interior whereas positive
values correspond to the exterior� In this way� we don�t need keep so many coe	cients of Di

in the decomposition� because we take advantage of knowing several fragments of C�i� As it
can be seen in �gure � we achieve that the number of coe	cients stored in Ci plus Di are
the same as the initial number in C�i�

Note� in the analysis process� if two intervals of known coe	cients of C�i are very close�
they can be converted in one interval in Ci� This happens when the distance of the nearest
endpoint coe	cients of two intervals �situated on odd positions� is lower or equal than � �see
�gure ���

��� Synthesis process and the recovery of coe�cients

Let us see how to do the reconstruction C�i � P i Ci � Qi Di under these conditions� We
start by knowing the previous assigned coe	cients of C�i �with value �K or �K� and those
stored in Ci and Di� From the reconstruction point of view the known coe	cients of C�i� Ci

and Di of the second last example are marked in �gure ��

Splitting the known and unknown coe	cients and applying the synthesis �lter�
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Figure � ��th row decomposition� � additional coe	cients at both sides are assigned to C�i

and� later� � coe	cients at both sides are rejected from Ci and Di
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Figure �� �th row decomposition� Joining of � close intervals

C�i � C�i
k � C�i

u

Ci � Ci
k � Ci

u

Di � Di
k �Di

u

I�C�i
k � C�i

u � � P i�Ci
k � Ci

u� �Qi�Di
k �Di

u�

IC�i
k � P iCi

k �QiDi
k � P iCi

u �QiDi
u � IC�i

u

The left term in the last equation can be evaluated� it is the independent term V of the linear
equation system� The right term can be expressed with a single matrix and a single vector
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Figure �� ��th row reconstruction� Known coe	cients of C�i� Ci and Di

of unknown coe	cients if we eliminate the matrix columns that are multiplied by zero �the
vectors and matrices simpli�ed are marked with ��

V � 
P �ijQ�ij � I ��
C �i
u jD

�i
u jC

��i
u �

T

Reordering the columns of matrix 
P �ijQ�ij�I ��� we transform it to a band matrix� So� we have
a diagonal�band linear system that can be solved in linear time doing a LU decomposition

PFTF����

In the reconstruction process we must reject the coe	cients of C�i that have been assigned�
So� we must store additional information about which control points are assigned during the
analysis process �in the present implementation we store the intervals where there are de�ned
coe	cients� see next section��

��� Data structure

Because our model only works with the control points that de�ne the Node�Collection �the
control points with spatial indexes contained in I� a set usually lower than the possible control
points that can be de�ned inside the domain�s grid� we think it is suitable to store the control
points in a hashing table� We also keep some additional data about the intervals where
the control points are de�ned in one direction �a vector of interval lists in �D and a matrix
of interval lists in �D�� The hashing table enables the storage of the known coe	cients in a
compact way and to consult them in an almost constant time� The interval information about
where the de�ned coe	cients are� avoids searching for unknown coe	cients in the hashing
table� Thus� it will be feasible to do fast computations in the direction of the interval data
in the analysis and synthesis process� Furthermore� this information will be very useful in
the reconstruction process since it will allow us� in one multiresolution level� to distinguish
between the known coe	cients and the assigned ones�

Due to the alternation of the direction of the evaluations in both the analysis and the synthesis
processes we must calculate the interval information where there are the known coe	cients
in one direction from the same information in other direction� To do so costs O�n� in �D and
O�n�� in �D �it is a run of the interval vector�matrix� we assume the same n dimension in
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all directions of the data domain and the number of intervals in a row is lower than n�� This
cost has the same order of magnitude as each decomposition and reconstruction step�

� Examples and discussion

We have tested the proposed algorithm over several curves and surfaces� Figure � shows a
multiresolution of the African continent� �gure �� of the American continent� �gure �� of a
cinema camera� �gure �� of a skeleton and �gure �� of a tiger� The initial curve is obtained
from a bitmap image� We have developed a simple algorithm for that conversion� Table �
lists the dimensions of the domain� the number of coe	cients stored �spatial indexes of I�
and the number of de�ned nodes �same order of magnitud as the Node�Collection G� for each
resolution level�

Table �� Curve multiresolution
Africa Tiger

Resolution Domain  de�ned  de�ned Domain  de�ned  de�ned
level dimension coe�� �I� nodes �� �G� dimension coe�� �I� nodes �� �G�

� ��x��� ����� ����� ���x��� ������ ������
�a ���x�� ����� ���� ���x��� ���� ����

� ���x��� ��� ��� ���x��� ���� �����
�a ��x��� ���� ��� ���x��� ��� �����

� ��x�� ���� ���� ���x��� ����� �����
�a �x�� ���� ���� x��� ��� ����

� ��x� ���� ��� ���x �� ����
�a ��x�� ��� ��� ��x��� ���� ����

� �x�� ��� ��� ��x�� ���� ���
�a ��x� ��� ��� ��x�� �� ���

 ��x�� ��� �� ��x�� ��� ���
a �x�� ��� �� ��x�� ��� ���

� �x� � �� �x�� ��� ��
�a x� �� � �x� ��� ��

� x �� � ��x�  ��
�a �x ��  �x�� �� ��

� �x� �� � �x� �� �
�a �x� �� � �x� �� �

�� �x� � � �x� �� �
��a � � � �x� �� �

�� � � � �x� � �

Figure �� shows a multiresolution of a mechanical part�s boundary� The initial surface is
obtained from an octree and using the conversion algorithm explained in 
VNB���� Finally�
�gure �� shows a multiresolution of a medical model �an image of the voxelization of a skull
from a computerized tomography�� Table � lists the same parameters as the previous table�
but here for the surface models�
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Table �� Surface multiresolution

Mechanical part Skull
Resolution Domain  de�ned  de�ned Domain  de�ned  de�ned
level dimension coe�� �I� nodes �� �G� dimension coe�� �I� nodes �� �G�

� ���x���x��� ����� ����� ��x��x�� ����� ���
�a ���xx��� ���� ��� ��x��x�� ���� �����
�b xx��� ����� ���� ��x��x�� ���� �����

� xx ����� ���� ��x��x�� ����� �����
�a x��x ��� ���� ��x��x�� ����� ���
�b ��x��x ���� ��� ��x��x�� ����� ����

� ��x��x�� �� ��� ��x��x�� ���� ����
�a ��x��x�� ��� ��� ��x��x�� ��� ����
�b ��x��x�� ���� ��� ��x��x�� ���� ���

� ��x��x�� ��� ��� ��x��x�� ���� ���
�a ��x��x�� ��� ��� ��x�x�� ���� ���
�b ��x��x�� ��� � �x�x�� ��� ���

� ��x��x�� �� �� �x�x� ��� ���
�a ��x�x�� ��� �� �xx� ��� ��
�b �x�x�� �� �� xx� ��� �

 �x�x� ��� � xx ��� ��
a �x�x� ��� � x�x ��� �
b �x�x� ��� � �x�x ��� 

� �x�x� �� � �x�x� ��� �
�a �x�x� � � �x�x� ��� �
�b �x�x� � � �x�x� �� �

� �x�x� � � �x�x� � �

In the lowest resolutions the whole object disappears �there is only empty space�� We think
the reason is the solid space is smaller than the empty space in the highest resolution level
�there is more empty space than solid space and on average the empty space wins��

Because of the little thickness of the skull� the surface topology becomes more complicated
�holes and solid fragmentation� in the intermediate resolutions� However� in lower resolutions
the topology is drastically simpli�ed�

Figure � shows the same mechanical surface as �gure ��� but now the simpli�cation is
achieved pruning one or more levels of the octree structure and using the conversion algorithm�
From the images we realize that wavelets multiresolution produces results closer to the initial
object than pruning the octree� due to the error minimization property of wavelet analysis�

Note that in the �rst simpli�cation steps we get objects very similar to the originals along with
an important data reduction �if the detail data is thrown out�� In fact� we can use the wavelet
method as a compression algorithm if we only preserve the most simpli�ed solid along with
the signi�cant detail coe	cients� Due to the linear time cost of the one dimensional analysis�
the multiresolution is calculated quickly�
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� Conclusions and future work

We have presented a multiresolution method to simplify the geometry and also the topology
of curves and surfaces�

By raising the problem�s dimension and viewing the object as a level curve�surface of a
function in one more dimension� we allow topological changes in the object when we analyse
this function� The algorithm proposed calculates the simpli�cation and reconstruction directly
over the known control points of the function using wavelet multiresolution methods� This
allows obtaining an object decomposition �the lowest resolution version plus several detail
at di�erent levels� that needs almost the same space as the initial object� Further� the
detailed data �error� is minimized according to the inner function product � f�u�� g�u� ��R
f�u� g�u� du�

We are currently studying another type of inner product that� instead of evaluating the
function in the whole domain� gives more importance around their zeroes� Thus� we could
get zero�valued isosurfaces �the objects� closer to the initials ones�

To avoid the solid disappearance in the lowest resolution levels we are exploring the possibility
to change the isosurface value or� on the other hand� to start with a initial object that has
been modi�ed with the same energy where the Bspline function is positive �solid� as where
the Bspline function is negative �empty space��

It is interesting in complex models to save memory space� Thus� we are comparing several
compression techniques to reduce the amount of detail or error� We are also studying other
ways to set the unknown coe	cients that� generating correct simpli�cations� could reduce the
total error�

In the future� we will work on the multiresolution edition of the curves and surfaces de�ned
by this model� This is a very useful tool in multiresolution environments� we can edit in one
multiresolution level and� later� add the other levels to get the object with local or global
changes�
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A Wavelets for uniform cubic B�splines on bounded domains

In the next sections we will describe the basic ideas about multiresolution analysis on wavelets
and we will apply them it in the speci�c case of uniform cubic B�splines on bounded domains�
Rather than showing the classical multiresolution analysis developed by Mallat 
Mal���� we
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will work on a more generic multiresolution analysis following 
LDW��� and 
FS��� where
it doesn�t matter that the basis functions are constructed translating and scaling a single
function� This is more convenient for our application� because the purpose is working on
bounded domains of scaling and wavelet functions�

A�� Wavelets multiresolution on bounded domains

We will deal with B�spline functions fn�u� de�ned as a column vector of m control points Cn�
The B�spline functions can be evaluated weighting upm basis functions with the values of the
control points Cn� Let �n�u� be the row vector of B�spline basis functions with parameter u�
the function fn�u� can be expressed as

fn�u� � �n�u�Cn

Our goal is to approximate the B�spline fn�u� with another function of lower resolution
fn���u�� This second B�spline will depend on fewer base functions �n���u�� It will be
de�ned as a vector of m� control points Cn��� with m� � m�

fn���u� � �n���u�Cn��

Let�s assume that our approximation of fn�u� with fn���u� is linear� That is� the approxi�
mation process can be represented as an m� �m matrix An

Cn�� � AnCn

If the matrix An is of maximal rank� we can capture the details lost in the �ltering process
in another vector Dn��� computed by an �m�m���m matrix Bn

Dn�� � BnCn

The process of splitting the B�spline Cn into a low resolution version Cn�� and detail Dn��

is called analysis or decomposition� An and Bn are the analysis �lters� If they are chosen so
that their columns are linearly independent� the original B�spline Cn can be recovered from
Cn�� and Dn�� by the synthesis �lters P n and Qn in this following way�

Cn � P nCn�� �QnDn��

This process is called synthesis or reconstruction�

The analysis process can be applied recursively to the B�spline Cn�� and thus obtain a set of
lower resolution B�splines Cn��� ���� C� and details Dn��� ����D��

Analysis Cn Cn�� � � � C� C�

Dn�� � � � D�

�An

Q
Q
QQsBn

�A�

Q
Q
QQsB�

�



We can also recover the higher resolution B�spline Cn from the lower resolution C� and the
details Dn��� � � � �D�� We have a multiresolution of the original B�spline Cn�

Synthesis Cn Cn�� � � � C� C�

Dn�� � � � D�

�P
n

�P �

Q
Q

QQk

Qn Q
Q
QQk

Q�

The information C�� D�� ����Dn�� is the wavelet transform of the B�spline Cn� We don�t need
additional storage to save the wavelet transform �the total size of the C��D�� ����Dn�� is the
same as the size of the original B�spline Cn��

To compute the wavelet transform we need an appropriate set of analysis and synthesis �lters
An� Bn� P n and Qn� To this end� let us look at the space of B�splines� As stated� each
vector Cn represents a B�spline function as a linear combination of a set of basis functions
also called scaling functions� fn�u� � �n�u�Cn� The scaling functions are re�nable� that is�
each scaling function at level i � � �lower resolution function� is a linear combination of
scaling functions at level i�higher resolution functions� because the higher resolution levels
are obtained via knot insertion� So� for i � 
�� n� we may set P i so that

�i���u� � �i�u�P i�

This relation de�nes our synthesis �lters P i�

Let V i be the B�spline function space spanned by the set of scaling functions at level i�
�i�u�� The fact that the scaling functions are re�nable implies that these spaces are nested�
V � � V � � � � � � V n� If we choose an inner product in the space V i��� we can de�ne the
space W i as the orthogonal complement of V i in V i��� The elements of a basis �i�u� for W i

are called wavelet functions� The basis functions �i���u� can also be expressed as a linear
combination of the scaling functions �i�u�� Thus we de�ne �for a certain choice of basis in
W i� the synthesis matrix Qi as that satisfying

�i���u� � �i�u�Qi

The last two equations can be expressed as a single equation joining the matrices together


�i���u�j�i���u�� � �i�u�
P ijQi�

The analysis matrices can be calculated as the matrices that satisfy the inverse relation


�i���u�j�i���u��

�
Ai

Bi

�
� �i�u�

In fact� the matrices 
P ijQi� and
h
Ai

Bi

i
are square matrices� So

�
Ai

Bi

�
� 
P ijQi���
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A�� Wavelet multiresolution for uniform cubic B�splines

As previously discussed� we want to work with multiresolutions of uniform cubic B�splines
that will permit us to de�ne a family of implicit curves and surfaces� Thus� we will handle
B�splines that have their knot sequence uniformly spaced and with all knots of multiplicity
�� For a deeper analysis of B�splines� see for instance 
Far����

First� we must choose the scaling functions �i�u� for i � 
�� n� to determine the synthesis �lters
P i� We will select the basis functions of the uniform cubic B�splines de�ned with �i interior
segments� There are �i � � scaling functions at each level i � 
�� n�� In one level� all basis
functions are translations of the same basis function� except at the endpoints where the basis
functions are truncated� The matrix P i can easily be derived from the Cox�de Boor recursion
formula which shows how a B�spline can be expressed as a linear combination of B�splines
whose knot intervals are half as wide� In the case of the uniform cubic B�splines� each scaling
function of V i is a combination of � scaling functions of V i�� with weights ���� ���� ��� ���
and ��� �except for the endpoints�� Thus� the matrix P i has only non�zero coe	cients around
the main diagonal �it is a band matrix��

Next� to determine the orthogonal complement spaces W i of V i� we must de�ne the in�
ner product for any two functions f�u� and g�u�� We will select the L� inner product�
� f�u�� g�u� ��

R
f�u� g�u� du� To achieve an e	cient reconstruction process we want the

Qi matrices to be band matrices as the P i are� This means that we want the �i wavelet
functions of the W i space to have minimal support� The Qi matrix can be calculated in the
following way

Let 
� F �u�jG�u� �� denote the matrix of inner products � fj�u�� gk�u� � �j� k� Since scaling
functions and wavelet functions at the same level i� � are orthogonal� we have


� �i���u�j�i�u� ��Qi � 
� �i���u�j�i���u� �� � �

Hence the columns of Qi are a basis of the null space of 
� �i���u�j�i�u� ��� We construct
this basis by selecting the columns of Qi that have the shortest number of successive non�
zero coe	cients� This is equivalent to having minimal support wavelet functions �since in
the relation �i���u� � �i�u�Qi� the scaling functions �i�u� of the uniform cubic B�splines
have minimal support and each function is a translation of the previous one�� Qi has �i��

columns� which is the dimension of the null space of matrix 
� �i���u�j�i�u� �� �the rank
of this �i�� � � � �i � � matrix is always �i�� � � because of the properties of the scaling
functions discussed before��

In appendix C we list the synthesis matrices P i and Qi for the uniform cubic B�splines�
Due to a change in the matrix numeration described in section �� the synthesis matrices for
uniform cubic B�splines on �i intervals are the ones that have powers of � �P �� P �� P �� � � � $
Q�� Q�� Q�� � � ��

B linear time decomposition

The reconstruction has a linear cost since the matrices P i and Qi are band matrices� Rather�
the matrices Ai and Bi� calculated as the inverse of the previous ones� are dense� So� if we
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use directly the matrices Ai and Bi� the decomposition has a quadratic cost� To avoid it� we
can rewrite the analysis equations as

IiCi � 
P i�T I�iC�i

J iDi � 
Qi�T I�iC�i

being Ii and J i the inner product diagonal�band matrices of the scaling and wavelet functions
respectively

Ii � 
� �i�u�j�i�u� �� � 
�i�u��T�i�u�

J i � 
� �i�u�j�i�u� �� � 
�i�u��T�i�u�

Since P i� Qi and Ii are band matrices� the right term can be calculated in linear time� To get
Cn and Dn we must solve two diagonal�band linear systems� It can be done in linear time
through a LU decomposition 
PFTF����

Proof�

If the function f�i�u� described by the C�i coe	cients or by the approximation Ci and detail
Di

f�i�u� � ��i�u�C�i � ��i�u�P iCi ���i�u�QiDi � �i�u�Ci ��i�u�Di

is multiplied by 
�i�u��T


�i�u��T��i�u�C�i � 
�i�u��T�i�u�Ci � 
�i�u��T�i�u�Di

we get the �rst equation �since the basis �i�u� and �i�u� are orthogonal and the �i�u� basis
can be represented by the ��i�u� basis and the P i matrix��


P i�T 
��i�u��T��i�u�C�i � 
�i�u��T�i�u�Ci


P i�T I�iC�i � IiCi

The second equation can be obtained in a similar way� multiplying the function f�i�u� by

�i�u��T �

C Multiresolution matrices

Following are listed the synthesis matrices P i and Qi for uniform cubic Bsplines that allow
reconstruction of the initial Bspline doubling the number of intervals where it is de�ned� P i

is a ��i���� �i��� matrix whose central columns� for i 	 �� are vertical translations of the
third column� shifted down by � places for each column� Qi is a ��i � �� � i matrix whose
middle columns� for i 	 �� are vertical translations of the fourth column� shifted down by �
places also�
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The matrices Ii and J i used in the linear system to do the analysis in linear time are symmetric
band�diagonal matrices� Ii is a �i� ��� �i� �� matrix whose central columns� for i 	 �� are
vertical translations of the fourth column� shifted down by � place for each column� Further�
each Ii matrix is multiplied by the ��������i� factor� The matrices Ii for i � � and the
matrices J i �matrices with dimensions i� i� can be found with the following relations

Ii � 
P i�T I�iP i

J i � 
Qi�T I�iQi

The matrices J i� i 	 ��� may be also calculated from J�� matrix� the middle columns are
similar� each one shifted down by � place and the whole matrix must be multiplied by a
scaling factor�

Thanks to these repetitions� all matrices needed for the analysis and synthesis of any di�
mensional uniform cubic Bspline are precalculated and the memory space to store them is
small�
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Figure �� Africa multiresolution

��



Figure ��� America multiresolution

��



Figure ��� Cinema camera multiresolution
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Figure ��� Tiger multiresolution
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�a� Level � �b� Level � �c� Level �

�d� Level � �e� Level � �f� Level �

Figure ��� Mechanical part multiresolution
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�a� Level � �b� Level � �c� Level �

�d� Level � �e� Level �

Figure ��� Skull multiresolution
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�a� Level � �b� Level � �c� Level �

�d� Level �

Figure �� Mechanical part multiresolution pruning the octree levels
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