View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by UPCommons. Portal del coneixement obert de la UPC

Data Structures and Algorithms for Navigation in
Highly Polygon-Populated Scenes

Carlos Saona-Vazquez! Isabel Navazo and Pere Brunet

Abstract

We present the visibility octree, a new data structure to accelerate 3D
navigation through very complex scenes. Our approach employs a conser-
vative visibility technique to compute an approximation to the visibility
space partition. This approximation is computed and stored hierarchically
at a preprocessing stage. We believe its main contribution to be its ability
to provide an effective control over the coarseness of the approximation.
A preliminary test with some randomly generated indoor scenes seems
to show that the visibility octree will perform well on densely occluded
scenes.

1 Introduction

This work is focused on the interactive navigation through polygonal models.
There is a wide range of applications nowadays whose requirements surpass even
the most expensive high-end graphics workstations. To name a few, ship design,
architectural design and virtual reality applications have hundreds of thousands
or even millions of polygons. Current graphics hardware is not able to cope
with this kind of scenes at interactive frame rates. In recent years, many 3D
navigation algorithms have been developed to lessen the limitations of current
workstations.

The problem can be specified as follows: given a set P of static polyhedrical
objects, we want to compute the set V of visible polygons from every possible
viewpoint. Moreover, we want this computation to be done quickly, in constant
or at least logarithmic time. As a matter of fact, the perfect algorithm would
take as an input the desired frame rate and would be able to guarantee it. No
such algorithm is known yet.

In section 2, we will sketch briefly the theoretical nature of the problem
and study its complexity. Next, in section 3 we will survey previous related
work and classify them according to various criteria. Section 4 describes our
contribution, the visibility octree, and shows some preliminary results. Finally,
section 5 analyzes them and ends with a plan of future work.

*This work has been supported by an FPI grant from the Ministerio de educacién y ciencia
(Spanish Ministry of Education and Science) and the TIC-95-630 project

https://core.ac.uk/display/41825811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Theoretical frame

Both the computer graphics and the computational geometry communities have
worked in the area of visibility for decades. The first problem they faced was
the visibility computation from a fixed viewpoint. It can be stated informally
as follows. Given a set of modeling primitives (usually polyhedral or polygonal)
and a viewing frustum that defines the observer position and its field of view,
compute the set of visible polygons. Note that polygons in this set need not
correspond to input polygons.

This problem was intensively addressed in the seventies, and many algo-
rithms were developed. There is a classic paper by Sutherland, Sproull and
Schumacker that not only describes all those early works but also introduces a
classification scheme [21]. There is a more recent survey in [8]. However, due to
the decreasing cost of memory and the development of VLSI technologies, the
visibility algorithm that became standard was the simple, memory intensive,
non-sophisticated z-buffer algorithm.

A further step is the computation of global visibility. The goal is an al-
gorithm that computes visibility from every possible viewpoint at once. This
concept naturally induces a visibility partition of space. Works in this field
study the complexity of this partition.

Before proceeding further, we need some theoretical background. For a
start, we will define an equivalence relation between images using the image
structure graph (see [12]). The edges and vertices in this graph correspond to
line segments and endpoints in the image. Besides, vertices are labeled with
the names of object edges whose projections meet at them; every graph edge
is labeled with the labels of its two adjacent vertices. We will say that to
images are topologically equivalent or that they have the same aspect iff their
corresponding image structure graphs are isomorphic.

Now we can define another equivalence relation but this time between points
of R?. Two (view) points v and w are equivalent iff there is a continuous curve
between them such that the images of each point in the curve (including v and
w) are topologically identical. This equivalence relation allows us to split R3
into regions of constant aspect!. This partition is called the Visibility Space
Partition, VSP hereafter. A boundary of a VSP regions is called a visual event
(VE for short) for it marks a change in visibility. The VSP is the dual of another
structure called the aspect graph, which the image recognition community has
studied throughly for two decades. The vertices of this graph correspond to
regions of the VSP and its edges connect vertices whose regions are adjacent.

Note that the regions of the VSP are not maximal regions but maximal
connected regions. Thus, it is possible for the VSP to contain non adjacent
regions whose images are topologically identical. Moreover, it is possible that
different regions exist such that their sets of visible polygons are equal.

LStrictly, this statement does not hold because a perspective view is usually defined with
more parameters than a single viewpoint (viewing direction, upward direction, etc.). But
this is a minor detail that can be fixed up by using spherical projection instead of planar
projection.

Anyway, it is clear that the set of visible primitives remains constant when
moving within a region of the VSP. Therefore, it is possible to build a data
structure that represents a map of R® that associates every viewpoint to the
set of its visible polygons. This data structure could be a labeled, enriched
version of the aspect graph. The label of each edge in the graph would store the
boundary that has to be crossed to pass from one region to another; on the other
hand, each vertex would keep the set of the visible primitives of its associated
VSP region. Thus, the computer could keep track of the user’s location and the
visible primitives very easily by checking this boundaries.

Unfortunately, this algorithm is not feasible due to the combinatorial com-
plexity of the VSP, in the first place, and to the computational complexity of
some of its boundaries, in the second place. It follows a brief description of the
boundaries of the VSP.

Visual events can be of three different types: vertex-edge (VE), edge-edge-
edge (EEE) and horizon (for a demonstration, see [17]). Vertex-edge events are
the locus of points p such that there is a line thru p that intersect a vertex and
a edge. It is clear that this boundary is a plane in R®. The EEE visual event is
the locus of all the lines that intersect the three edges. This boundary is a ruled
quadric surface. Finally, horizon events correspond to the supporting planes of
the polyhedra’s faces.

It can be proved (again, see [17]) that this boundaries yield a spatial complex-
ity of ©(n®) for the case of a VSP with non-convex polyhedra and perspective
projection, where n is the number of vertices in the scene. Table 1 shows other
cases; note that all the bounds are tight. It goes without saying that this size
makes infeasible the effective construction of the VSP, specially when the input
data has hundreds of thousands of polygons. Besides, the quadric nature of
some of its boundaries worsens the problem.

Of course, it could be possible that, even though the bounds are tight, the
normal case was much more simpler. But some empirical results seem to show
that the usual case is not simpler enough. Plantinga and Dyer proposed in [17]
a structure to represent the aspect graph they called the aspect representation
(asp). To our knowledge, it has not been implemented for the general case of
perspective projection and non-convex polyhedra. The 3D visibility complex
of Durand, Drettakis and Puech did not reach the implementation stage either
[9]. Only a later work of Durand, Drettakis and Puech, the visibility skeleton,
has the virtue of being fully implemented [10]. Though the visibility skeleton
is a simplified version of the aspect graph, it is powerful enough to allow for
straightforward computation of exact visibility. Its main drawback is that, as
reported by the authors, it used more than 400Mb for a visually common scene
of roughly 1500 polygons. This figure utterly discards the visibility skeleton if
scenes of thousands of polygons are involved. Moreover, it seems to point that
the VSP is too complex for scenes of that size.

3 Previous work

We can classify research on this area as pertaining to three main families;
namely, multiresolution algorithms, image-based rendering and visibility compu-

convex polyhedra non-convex polyhedra
orthographic projection 0(n?) 0(nb)
perspective projection 0(n?) 0(n?%)

Table 1: Spatial complexity of the Visual Space Partition

tation algorithms. As usual, each approach has both advantages and drawbacks.
Before analyzing them, though, we will introduce some standard terminology
and present some classification criteria. We will end the section with table 2
that shows each method’s highlights.

3.1 Classification criteria

From now on, we will refer to navigations algorithms as being static or dynamic,
image-space or object-space oriented, and as impostor oriented or not. As we
will see, neither of these three categories are mutually exclusive.

The first criterion refers to the moment when heavy computation is done.
Static algorithms do most of their calculations at a preprocessing stage and be-
fore the user actually navigates through the scene. Typically, this computation
will last many hours or even several days when state of the art hardware is used.
Nevertheless, this time-consuming preprocessing should not become a problem
when the scene is a final model that is not going to be altered but going to be
navigated many times. A computer-modeled building which is intended to be
shown to will-be buyers is a classical example of this kind of application. On
the other hand, dynamic algorithms have light preprocessing, if any, and their
main computations are performed on the fly, as the user walks thru the scene.

The second criterion reflects whether the work is done on the polyhedral,
analytical space, or on the discrete, rastered one. Algorithms in the second
group usually suffer from visual artifacts, while those in the former one do from
floating-point errors and have to deal with degeneracies in the model.

Last, many methods try to solve the problem by replacing some scene objects
with simpler ones, called impostors. These impostors are used instead of the
original objects when the algorithm decides that drawing the object in full
detail is not worth the effort. Typically, this decision will be made attending to
pixel contribution in the final image or to time-bucket restrictions. Moreover,
impostors need not be in one-to-one correspondence with original objects. In
fact, in many works not every original object has an impostor, and one impostor
may replace not just one object but many of them. Finally, impostors do not
have to share the polyhedral nature of their original model counterparts; as a
matter of fact, many authors employ non-polyhedral, bitmapped impostors.

3.2 Multiresolution algorithms

The standard way to define multiresolution models is to say that they are those
models that provide several representations for the objects in the scene but at

different resolutions or levels of detail (hence the alternative term LOD mod-
els). This multiplicity of representations can be achieved by using simplification
techniques on the original objects.

It has become a common practice not to consider image-based rendering as
a multiresolution model, although it fits the standard definition. Some authors
strengthen the concept by stating that the simplificated models must share the
representation scheme with the originals. This rules out image-based rendering
because the textured-models are not boundary representations.

Typically, multiresolution algorithms perform a lengthy preprocessing step
to compute coarser representations for objects in the scene. At execution time,
the computer has to decide about the resolution level it will employ to render
each object. Multiresolution algorithms are often classified according to the
simplification method they use and to their selection strategy. The reader can
find a thorough survey of multiresolution and simplification algorithms in a
report, from Anddjar [3].

The two main disadvantages of this kind of algorithms is connected with
their object-based nature. First, they cannot deal with polygons soups. Even if
the scene is object-structured, these algorithms do not decrease the total number
of objects. This is a bound on the degree of acceleration they can provide.

3.3 Image-based rendering

There are two key concepts to image-based rendering. The first one is the
the fact that final, bitmapped images usually differ very little from frame to
frame in a typical navigation. The second one is the increasing availability
of texture mapping hardware in nowadays graphic workstations. This kind
of techniques achieves significant frame-rate improvements by replacing part of
the scene’s geometry with one or more texture-mapped polygons whose textures
correspond somehow to the discarded geometry. This textures need not have
been generated from the same viewpoint as the current one. The computer will
be able to navigate noticeably faster if the algorithm chooses wisely which parts
of the geometry are replaced by textures. Existent algorithms can be classified
depending on their answers to the following questions:

e Are impostors associated to objects or to sets of objects?

Are the bitmaps generated off-line or on-line?

How does the computer measure the accuracy of a texture?
e How does the computer decide between geometry and images?
e What kind of data structure does the algorithm use to store the scene?
Maciel and Shirley in [15] build one bitmap for each one of the six faces
of every node of the object octree they use to store the scene. These textures

are computed off-line. Their accuracy is also computed off-line by taking sam-
ples at different viewpoints and comparing them with what the texture will

look like from those viewpoints. The computer performs this comparison with
image-processing techniques and stores the results into a table. The algorithm
computes a benefit/rendering-cost ratio to choose between geometry and im-
ages. The benefit is a custom function that takes as parameters the size of the
objects, their distance to the observer and their semantic relevance in the scene.

Schaufler’s algorithm ([19]) is the only one of the works we researched that
generates impostors only on a per-object basis. It does not use any special data
structure, computes impostors at navigation time and employs an angular dis-
tance metric to decide when to recompute texture and whether to use geometry
or images. Schaufler’s later work with Stiirzlinger (see [18]) does use a kd-tree,
and generates textures dynamically on a per node basis.

Aliaga’s 1996 algorithm in [1] divides the scene uniformly into voxels before
navigation takes place. It computes a texture for every voxel that is further
away from the current viewpoint than a user-defined threshold distance.

Sillion, Drettakis and Bodelet introduce in [20] a specific algorithm to navi-
gate thru cities. They take profit of the special nature of urban scenes by using
a graph to represent the scene. Its nodes are the city streets and its edges are
the city blocks. The computer generates off-line two impostors for each street
corresponding to the pair of possible vistas along the street. At execution time,
the algorithm only uses geometry to render the blocks adjacent to the street the
user is located; the rest of the scene is rendered with textures.

Finally, Aliaga and Lastra (see [2]) also present a specific algorithm, this time
for interiors of buildings. The scene has to be structured into rooms, doors and
windows. At the preprocessing stage, the computer associates several textures
to every door and window, each texture generated from a different viewpoint.
At running time the algorithm only draws geometry for the objects that are
inside the room where the user is.

Advantages

e Most of the works achieve significant speed improvements.

e Except for a few of them, image-based algorithms do not impose any
requirements on the scene. They are able to work with polygon soups
without any speed diminishment.

e They are able to cope with forest-like scenes very efficiently, unlike visi-

bility algorithms.

Drawbacks

e Very big memory requirements, specially when the images are not com-
puted dynamically.

e The change from geometry-based rendering to texture-based rendering
(and vice versa) causes noticeable visual artifacts.

e There is a problem inherent to image-based techniques authors call cracks.
This phenomenon occurs when two close objects are replaced by impostors;
if the user changes enough his position the visibility relation between them
will change but their impostors will not reflect the change and a hole (the
crack) will appear in the final image. Though some authors have presented
solutions to alleviate this problem (for instance, see [1] and [20]) there is
no method yet that prevents it utterly.

3.4 Weak Visibility Computation

Works in this field are characterized by a redefinition of the concept of visibility
that is weaker than the original one (hence the term weak visibility). Their
goal is to reduce the complexity of the visual space partition to an affordable
size. If this redefinition is done properly, the sets of visible polygons in the new
partition will be supersets of the sets in the exact visibility partition. In the
bibliography, this kind of superset is often called a Potentially Visible Set or
PVS for short. As all the elements in a PVS are visible but the contrary does
not usually hold, many authors employ the term conservative visibility.

Some authors consider hierarchical view frustum culling as a predecessor
of weak visibility computation. Indeed, we can say that view frustum culling
algorithms use the following visibility definition: a polygon (or object) is visible
iff it is inside the view frustum. In order to discard invisible polygons quickly
they use hierarchical data structures to store the scene: Clark in [5] a hierarchy
of bounding volumes and Garlick, Baum and Winget an octree in [11].

Besides the works described fully below, there are two that are restricted to
the 2.5D case. The first one, done by Teller and Sequin in [22], is restricted to
architectural interiors (just one floor) with axis aligned walls. It uses a BSP to
partition the scene and presents several algorithms to compute visibility between
rooms. The second one, by Yagel and Ray (see [23]), employs a uniform grid
whose cells are labeled as full, partially full and empty. It computes visibility
between the cells.

3.4.1 Coorg and Teller (1996)

To reduce the visibility space partition’s complexity, Coorg and Teller simplify
the visibility concept in two ways. In the first place, they constrain themselves to
convex objects, be those polygons or polyhedra. In the second place, occlusion
is computed individually on a occluder by occluder basis, so an object that is
fully occluded by combined action of several occluders, but not by either of them
individually will be classified as visible.

These constraints should not be too limiting for several types of scenes. For
instance, indoor scenes and city models are particularly well suited because of
walls, which are usually convex and are responsible for the vast majority of real
occlusions. On the other hand, we can expect that outdoor scenes will show
poorer performance because the occlusion is due to combined action of small
polyhedra (forests are a classical example).

Anyway, these restrictions pay because they severely diminish the number of
kinds of visual events. As a matter of fact, we just have to consider vertex-edge
events. Even better, VE events only generate planar visibility boundaries, so
we can forget about quadric surfaces.

A naive visibility algorithm can now be exposed. As a preprocess, the com-
puter calculates all the planes generated by every scene vertex and every scene
edge. Then, it associates to each cell of the induced space partition the set
of its visible polygons. At run-time, the computer first locates the initial cell
where the viewpoint is situated; as the user moves thru, the algorithm checks
the current cell’s boundary planes for visibility changes.

Unfortunately, this partition is still too large: in a scene of n vertices there
are ©(n?) planes and O(n®) cells, so further simplification is required. In order
to do so, we will introduce the concepts of supporting and separating planes
between two convex polyhedra. Planes generated by an edge of one polyhedron
and a vertex of the other are called separating if each polyhedron is in a different
side of the plane, and supporting if both polyhedron are in the same semi-space.
They are oriented towards the occluder. Also, we will say that a point satisfies
a plane if it is in the plane’s positive semi-space.

Say both polyhedra are completely visible from the viewpoint. Then only the
separating planes are relevant to track visibility changes, because the only event
that can occur is one polyhedron to become partially occluded. On the other
hand, if one polyhedron is fully occluded only supporting planes are relevant to
detect that the occludee has become partially visible, for partial visibility takes
place when the viewpoint satisfies all separating planes, but not all supporting
ones.

This set of planes is enough to determine visibility between two convex
polyhedra from a fixed viewpoint. But as our goal is to track visibility as the
viewpoint moves we will need additional information. This is so because this
set changes as the viewpoint moves. Supporting and separating change when
either silhouette changes, for they always correspond to silhouette edges. The
planes of faces adjacent to current silhouette edges track silhouette changes, so
we will have to add them to our set.

Finally, when the occludee is partially visible, we may want to know which
polygons are hidden, which are completely visible and which are neither. This
implies adding more planes to the set. In fact, we will need planes corresponding
to some non silhouette vertices of the occludee; concretely, all the [V E] planes
such vertex V is adjacent to an occludee edge that crosses an occluder silhouette
edge F in image-space. As happened before, viewpoint motion can modify this
subset, so we will need more information to track when edges begin or cease
to overlap in image-space. Indeed, we need all the [V E] planes such V is an
occluder silhouette vertex that is “inside” an occludee face F' in image-space,
and F is an edge adjacent to F.

Now, we can define the the relevant plane’s set between two convex polyhedra
A (the occluder) and B (the occludee) from a fixed viewpoint as

1. The planes of faces of either polyhedra that have a silhouette edge.

2. For each silhouette edge E of A

(a) Supporting and separating planes containing E.

(b) All the planes formed by E and a vertex V such as V is in a B edge
that overlaps E. (*)

3. For each silhouette vertex V of A

(a) Supporting and separating planes containing E.

(b) For each face F' of B such V is inside F when viewed from the
viewpoint, all the planes formed by V and each of the edges of F. (*)

Star-marked planes are only necessary if we want to compute visibility on
a polygon basis. Coorg and Teller demonstrate in [6] that the planes in this
set suffice to detect all visual events when the viewpoint moves - that is to
say, the set contains all the planes that form the viewpoint’s visibility cell.
Thus, we could dynamically compute visibility between two convex polyhedra by
calculating the relevant plane set at the initial viewpoint and its corresponding
set of visible polygons, and maintaining both of them accordingly as the user
moves thru. When a visual event takes place, that is, when the viewpoint crosses
a relevant plane, the computer has to update the set of relevant planes or the
set, of visible polygons or both, depending on the nature of the visual event. Let
n,m be the polyhedra’s sizes; the number of relevant planes is ©(n + m), which
is also the time complexity of the dynamic algorithm, for an event that causes
the silhouette to change can translate into ©(n + m) changes of the relevant
plane set. This is an improvement over the naive approach, that has to deal
with ©(nm) planes, and therefore has also ©(nm) worst case time complexity.

Nevertheless, this algorithm is still too costly when complex scenes are con-
sidered, because it will need all the ©(n?) pairwise visibility relations. The
authors cut the number of relevant plane sets by using a spatial subdivision
structure (a kd-tree or an octree) for occludees and by bounding the number of
occluders used at each viewpoint.

The implementation described in [6] is restricted to polygon occluders. Due
to the axis-oriented nature of nodes of octrees and kd-trees and to the easiness of
computing a polygon’s silhouette, maintenance of the relevant plane set becomes
rather simpler. In fact, the only planes that are necessary are the supporting
and separating ones. So, a navigation algorithm can now be sketched:

e At preprocessing stage, compute an object octree or kd-tree.
e At execution time, and for each viewpoint

— Select k occluders based on their approximate area on the image,
where k is a user-given constant (the paper does not give any clue
about how this selection is actually made).

— For each occluder, keep the relevant plane set of some nodes. For
wholly visible nodes, only supporting planes are necessary; for wholly
invisible nodes, only separating ones. Finally, for partially visible
nodes, both supporting and separating planes are relevant. Of course,
nodes wholly visible or wholly invisible whose parents are not par-
tially visible need not be taken into account.

— When the viewpoint changes, test all the relevant planes to know
whether it has crossed any of them.

Finally, the authors introduce two possible refinements in order to reduce
the time spent in checking plane crossing. The first one, to keep a subset of
planes corresponding to those planes in the relevant plane set that intersect an r
radius sphere centred at the viewpoint. As long as the viewpoint remains inside
the sphere, only the planes of the subset need to be checked. Of course, if the
user exits the sphere, the subset has to be recomputed. The radius parameter
is not a constant, but is computed dynamically, though the paper does not give
any details about how it is actually done.

The second alternative uses an octree that contains the current viewpoint
and whose nodes are associated with the relevant planes that intersect them.
Besides, the computer keeps the sequence of nodes that contain the current
viewpoint; in other words, the sequence of parents of the leaf where the view-
point is located. When the viewpoint exits the leaf node, the nearest common
ancestor between the old leaf node and the new one is computed, and a new
sequence of nodes is generated by climbing down the tree. As for the octree
dimension, the authors state that the best choice is a root node big enough to
intersect all the relevant planes.

Be that as it may, empirical results in the paper do not show any improve-
ment when this octree is used; on the contrary, the time needed to compute
visibility changes increases, due to the overhead of the octree structure. As for
the sphere, author’s tables show slight improvement over the original algorithm
if the user moves slowly, and a speed diminishment if not.

Advantages

e Empiric results show significant cullings: about 68% into a building’s
interior and 36% when walking across a city model.

o It takes advantage of the hierarchical nature of the kd-tree to cull at once
large portions of the scene.

Drawbacks

e The dynamic nature of the algorithm restricts the maximum number of
occluders that can be employed.

e The algorithm computes all visibility changes across the segment between
the old and new viewpoint. As the user moves faster, this segment in-
creases its length, so much computation time is wasted.

e It would not work well in scenes when occlusion is mainly due to many
tiny, not individually significant polygons (leaves in a forest, for instance).

e The parameters of the algorithm are not user-intuitive. They hardly relate
to the amount of desired culling.

10

3.4.2 Coorg and Teller (1997)

The 1997 paper of Coorg and Teller ([7]) is a variation of their previous 1996
work. The common points between the two papers are the kd-tree used to
group the occludees, the dynamic nature of the algorithm, the use of a set of
relevant planes to classify tree nodes according to their visibility properties and
the dynamic selection of occluders. However, some differences arise.

e In the first place, this algorithm uses a subset of the relevant planes’ set
employed by its predecessor. Instead of computing all the separating and
supporting planes between occluder and occludee, it only takes into con-
sideration those of them that are generated by and occluder edge and an
occludee vertex. Of course, this strategy reduces the size of the set. The
price is the loss of some visibility information. Indeed, this algorithm pro-
vides exact full visibility detection but only conservative partial visibility
detection.

e In the second place, visibility relationship is computed on a polyhedron-
versus-node basis. This is a significant improvement over the previous
algorithm whose occluders were restricted to polygonal nature. As a mat-
ter of fact, the authors give an algorithm to detect joint occlusion by a set
of edge connected polygons Ay, ..., Ar whose final silhouette is convex.
This set jointly occludes B if:

1. Every polygon A; of the set partially occludes B, and none occludes
it fully.

2. If A; and A; share and edge e, then they lie on opposite sides of e
when viewed from the viewpoint.

3. The viewpoint is in the positive semi-space of all the planes except
supporting ones of common edges.

e Next, this algorithm does not maintain the relevant planes’ set. When
the viewpoint moves thru, it does not compute the changes in the set
by checking which planes have been crossed. Instead, it re-computes the
set. It does take some profit from temporal coherence, though, as before
re-computing the set it tests actual planes for validity. This is possible
because every visited node (that is to say, every node whose ancestor is
neither fully visible nor fully invisible) has a cache with its supporting and
separating planes.

e The authors introduce a more efficient algorithm to compute supporting
and separating planes.

e In this paper the authors detail the dynamic occluder selection. They
measure polygon occlusion potential with the formula

A(N -V)
d2

where A stands for the polygon’s area, N for the polygon’s normal, V for
the viewing direction and d for the distance from the viewpoint to the

11

centre of the polygon. It is straightforward that this metric benefits large,
near polygons that face the user. It is unclear in the paper, though, how
does this polygon-based selection procedure relate with the polyhedral
nature of occluders.

Anyway, in a preprocessing step the computer traverses all kd-tree leaves
and samples all possible viewing directions. For each sample, it selects the
best k occluders using the above metric and associates them to the leaf and
the sampled viewing direction (k is a user-defined constant). At run time,
the algorithm selects the leaf where the user is located and the sampled
viewing direction closer to the current one to obtain a set of occluders.

¢ Finally, the paper introduces a technique to get rid of small detail objects,
even when they are not occluded by the big occluders close to the user. At
preprocessing time, the computer calculates a set of potential occluders
for each detail object: the objects in this set will be those which are large
when viewed from the centre of the detail object.

When the user is navigating through the scene, the algorithm uses these
sets to check for occlusion of detail objects that have not been culled by
the main procedure. However, it is obscure in the paper how does the
computer decide which objects are detail ones, how many detail objects
are in the scene and how many occluders should be associated to them.
These are important questions because wrong guesses will result in too
much overhead or in no speed gain.

Advantages

o The authors show really good figures in the scenes tested. View-frustum
culling and occlusion culling purged most of scenes’ polygons: 96.4% and
97.4% for a city and a building’s interior.

e The algorithm takes profit of spatial coherence by means of the kd-tree.
In fact, the author’s tests show that the computer just tests about a third
of the kd-tree nodes.

Drawbacks

e The dynamic nature of the algorithm restricts the maximum number of
occluders that can be employed.

e It would not work well in scenes when occlusion is mainly due to many
tiny, not individually significant polygons.

e The parameters of the algorithm are not user-intuitive. They hardly relate
to the amount of desired culling.

12

3.4.3 Hudson, Manocha et al.

The algorithm in [14] is, again, structured into a pre-processing stage and an
on-line stage. Before navigation, the computer selects potentially good occlud-
ers and arranges them into a voxel space. At navigation time, the algorithm
first builds shadow frusta for some of the occluders associated to the current
viewpoint’s voxel, and then culls the scene with them. As we want this culling
to be as fast as possible, the scene is structured into an axis-aligned bounding
box hierarchy.

The pre-process first selects all convex objects in the scene. Then, and for
every one of them, the computer estimates the region where its solid angle is
bigger than a fixed threshold.2 Were the occluder an ellipse, this region would
be an ellipsoid; if a sphere, a concentric sphere. To simplify calculations, the
computer approximates every occluder by a sphere or an ellipse. Anyway, once
this region is computed, its occluder is associated to every voxel that intersects
the region.

Besides, the authors describe another occluder goodness measure, though
they do not employ it in their tests. For each occluder and region, it would be
useful to estimate the amount of geometry that will be occluded. In order to do
so, the computer could sample some viewpoints in the voxel, build their shadow
frusta and count how many objects were shadowed by the occluder. The average
of the scene’s fraction that is actually occluded would serve as an estimation of
the occluder’s goodness, instead of the solid angle.

Be that as it may, when navigation takes place the algorithm first filters the
current list of potential occluders with the view-frustum and then sorts it using
the solid angle metric. Only the first k£ occluders will be used to cull the scene.

Finally, the computer traverses the scene’s hierarchy tree and tests each
node against each of the k + 1 shadows frusta (it does view-frustum culling and
occluder-culling simultaneously). Every node that is completely outside each
of the shadows will be rendered. On the contrary, nodes that are completely
inside any of the shadows will be discarded. Finally, partially contained nodes
will result in recursive classification of their sons. As this test’s speed is crucial to
the overall performance of the algorithm, the authors introduce a new algorithm
to classify axis-aligned and arbitrary-aligned bounding boxes against a shadow
frustum. Though not asymptotically better than previous ones, authors’ tests
show significant improvement.

Advantages

e Presents a new occluder selection algorithm and an also new, faster al-
gorithm to purge most of the current hierarchical data structures with a
shadow from an occluder (octrees,kd-trees, axis-aligned or not hierarchical
bounding boxes, etc.).

e Good empiric results. The author’s report culling of about 40% of the
scene.

e It uses a specialized data structure to store occluders.

2In fact, the algorithm uses Coorg and Teller’s estimation of the solid angle (see [7])

13

Drawbacks

e The new occluder selection algorithm has not been used in large models.
Tests were performed using only Coorg and Teller’s metric ([7]).

e As the computer does occlusion on-line, it cannot take into consideration
many occluders (the authors, though, state that their tests show that no
significant improvement would be achieved were the number of occluders
be increased).

3.5 Miscellaneous work

Last, we will sketch some papers that do not fall in any of the three former
categories. They have some common points, though. Mainly, that they all work
in image space and that are dynamic.

3.5.1 Hierarchical z-buffer

The work of Greene, Kass and Miller in [13] has several impressing features, but
is tampered with its inability to make profit of current graphics hardware.

As a preprocessing phase, the algorithm builds an object octree. Each node
has a list of the objects that: (a) are completely inside the node’s associated
cube, and (b) are not completely contained in either of its eight sons. The
number of primitives that are completely inside the node acts as the subdivision
criterion.

This octree alone would allow significant rendering speed improvement if
z-buffer hardware were able to quickly answer the question “Would this polygon
be visible if rendered?’ Indeed, instead of rendering by traversing the list of
scene objects, we could traverse the object octree and query the z-buffer for
each node’s cube visibility. A negative answer would mean that we could safely
skip all the node’s associated geometry, as well as its descendants’. On the other
hand, an affirmative answer will result in rendering of the node’s geometry and
in recursive handling of its sons. The algorithm uses the octree to rapidly reject
significant portions of the scene.

Furthermore, we could increase rendering speed if we were able to decide
quickly about a node’s visibility. In order to do so, the authors introduce a new
data structure they call the z-pyramid. The algorithm builds it from the classical
z-buffer in a recursive manner: every z-value of a i level buffer is computed as the
maximum of the z-values of a 4 x 4 block at i + 1 level. As a final improvement,
when inquiring about polygon visibility the algorithm does not scan-convert
the polygon and test each pixel separately; instead, it calculates the polygon’s
minimum z-value.

Finally, the algorithm exploits temporal coherence -that is to say, the fact
that visibility does not usually change abruptly from frame to frame- by main-
taining a list of previous frame visible nodes. This list is used to initialize the
z-pyramid and frame buffer before the octree-based rendering begins; besides,
all the nodes involved are marked as drawn and will be ignored when traversing

14

the octree. This procedure will reduce the time the computer spends in building
the z-pyramid, for most of the current frame visible geometry will have been
drawn already and negative answers are faster than affirmative ones.

Advantages

Affordable memory requirements.

Robustness, as in almost all image-space algorithms.

Null scene structure requirements.

The algorithm takes full profit of object-space spatial coherence, image-
space spatial coherence and time-coherence.

Drawbacks

e The fact that current graphics hardware does not allow for quick z-buffer
queries implies that polygon rendering and z-buffer have to be software
implemented.

3.5.2 Octree-based volume rendering

Chamberlain, DeRose, Lischinski, Salesin and Snyder present in [4] a simple
and easily implementable technique. It uses an object octree to structure the
scene and associates six pairs (color, opacity) to every node, one pair for each
of the six faces of the node’s corresponding cube. The first component is the
color that would be seen by an observer situated far away. They compute it
by rendering the node’s geometry at a coarse resolution (rather coarse, indeed,
for they use a 4 x 4 bitmap) and averaging the image. The second component
stands for the emptiness ratio of the node, calculated as the fraction of the
node’s face that is covered by its geometry. The algorithm builds the octree
as a preprocessing step. The subdivision criterion is the cost of rendering the
primitives (approximated by the number of triangles required) measured against
the cost of rendering the cubes of its children.

The dynamic phase is rather simple. It traverses the tree in a back-to-front
fashion. If a node’s projection in the final image is bigger than a fixed threshold
(say, one pixel), then its raw geometry is rendered. Otherwise, the node’s cube
is used instead.

Advantages

e The algorithm’s implementation is quite simple and straightforward.

e As almost every computation is done in space-image, the implementation
will be robust.

15

Drawbacks

e The authors themselves limit the usefulness of their method to scenes
with “suspension-like distributions of primitives that are uncorrelated and
small relative to the leaf cells of the octree.” Otherwise, noticeable visual
artifacts appear.

3.5.3 Hierarchical Occlusion Maps

Zhang, Manocha, Hudson and Hoff introduce in [24] a new approach to compute
visibility. Suppose an oracle is provided so for each point of view we have a set
of potential occluders. Then, they split the problem of knowing if a polygon is
occluded by such set in two simpler questions: Will the polygon wholly collide
with the occluders when rastered? And, if so, is it actually behind the occluders?
If answers to these two questions are both affirmative we can be positive that
the polygon will not be visible, so we do not have to render it.

Of course, this line of action would only be practical if we were able to solve
both sub-problems in less time that the hardware takes to render the polygon
by z-buffering. In order to do so, the authors introduce two new data structures
they call hierarchical occlusion map (HOM hereafter) and depth estimation
buffer.

Say the oracle has provided us with a set C' of potential occluders. A naive
way of testing whether a polygon P intersects C' in image space follows: first,
render all C' polygons in white on a black bitmap; second, simulate P’s ren-
dering. If any of P’s pixels was black then P cannot be fully occluded by C.
In this scheme, the bitmap plays the role of a opacity matrix. It goes without
saying that this method is quite slower than hardware z-buffering, but further
improvement can be achieved.

In the first place, as rendering a 2D isothetic box is quite faster than render-
ing an arbitrary 3D polygon, we will just consider the 2D bounding box of P’s
projected 3D bounding box. We can do still better if we employ some sort of
tree-like structure similar to that in the hierarchical z-buffer in [13]. Given an oc-
clusion map of our selected occluders, we can easily construct a coarser, smaller
one, by block-averaging the former, for instance in 2 x 2 pixel blocks. Moreover,
we can iterate this process so to obtain a hierarchy of occlusion maps. Then,
we can accelerate the overlap test in the following manner: first, a straight-
forward computation will let us know which level of the hierarchy has a pixel
size (almost) equal to the box size; then, beginning at this level, the algorithm
can check each one of the overlapping pixels not to be opaque. If all of them
are opaque, we can assert P fully overlaps with our occluder set. Otherwise,
the algorithm recursively descends the hierarchy and tests all the corresponding
sub-pixels. As a plus, this approach allows the user to do approximate culling,
just by changing what the algorithm takes as “opaque”: instead of requiring
opacity to be 1, we can consider that opaqueness starts at smaller values, as,
say, 0.95. This means that little holes in occluders will not be taken into account
when checking for occlusions.

As for the depth test, the authors offer two solutions. The simpler one is to
compute the maximum z-coordinate of the occluder set. This defines a z-plane

16

parallel to the near plane. An object is taken as occluded iff it overlaps and it is
beyond this z-plane. The second solution refines the former by computing the
maximum z-coordinate of each occluder in the set. The depth estimation buffer
is a z-buffer where the bounding rectangle of each occluder’s bounding box is
rendered with z-value the occluder’s maximum z-coordinate. Once constructed,
we can conservatively test if a polygon P is beyond the set of occluders by, again,
rendering the bounding rectangle of its bounding box on the depth estimation
buffer.

Now, the only pending problem is the occluder oracle. As a preprocessing
step, the algorithm filters the scene rejecting objects it thinks are too small,
and constructs a bounding box hierarchy with the remaining ones. Besides, in
order to perform view frustum culling more efficiently, it also builds a bounding
box hierarchy of the whole scene. Neither of these two preprocessing steps takes
significant time. At execution time, the algorithm first culls both scene and
occluder databases using the view frustum. Then, iteratively selects the nearest
occluder till a fixed threshold of occluder polygons is reached, so the HOM and
the depth estimation buffer can be built. Finally, it tests every non-culled object
in the scene database for occlusion.

Advantages

e The proposed algorithm has null scene structure requirements, for it is
able to work with polygon soups and all kind of degeneracies.

e Also due to its image-space nature, the algorithm is quite robust.

e When computing occlusion, occluders are taken as a whole and not indi-
vidually, so much more scene pruning is expected.

Drawbacks

e In order to achieve good frame-rates, neither the depth estimation buffer
nor the HOM are sampled at the same resolution as the final image. In
fact, the authors’ tests were done at resolutions of 1024 x 1024 for the
final image, 256 x 256 for the maximum-resolution level of the HOM and
64 x 64 for the depth estimation buffer. This difference in resolutions
causes aliasing problems.

e As the authors note, approximate culling can result in visual artifacts. No
matter how small is an occluder’s hole, the mix of a dark occluder and a
bright occludee will lead to noticeable popping when the users zooms in
and out.

e Nevertheless, the strongest objection to the algorithm deals with occluder
selection. Though the paper shows tests on three different scenes (a city
model, a dynamic model and a submarine machine room), the occluder
selection algorithm was manually tuned in each case. While in the first
two models the occluder database was identical to the scene database,
in the third one not only the algorithm pruned the smallest objects but

17

also applied simplification algorithms to occluders. At execution time, the
HOM was not constructed using the occluders’ originals models, but their
simplified versions, so to decrease HOM’s computation time. However,
there are currently no simplification techniques that ensure that the sim-
plified result is completely inside the original object, and therefore this
approach will cause errors in the visibility computation.

3.6 Summary

There are three different approaches to the problem of navigating thru very
complex, polygonal scenes. Multiresolution techniques create simplified polyg-
onal impostors of each scene’s object. The computer can use them instead of
originals for objects whose pixel contribution are low enough. Their main dis-
advantage lies in their object-oriented nature. Indeed, these algorithms render
all objects in the scene, so there is an upper bound on the amount of geometry
they can save the computer from render, because the number of rendered ob-
jects remains constant. There are some multiresolution algorithms that are able
to cope with scenes as a whole, but their results are yet not visually satisfactory
enough (see [3]).

On the other hand, image-based rendering techniques are able to melt big
clusters of objects into a simpler object that can be rendered quickly and that
represents the cluster faithfully enough. Unfortunately, they are burdened with
visual artifacts and huge memory requirements.

Algorithms in the weak visibility computation family perform occlusion
culling while navigating. This cull can be done quickly enough if the defini-
tion of visibility is weakened properly and scenes are stored hierarchically. If
the scene is densely occluded and occlusions are caused by the isolated action of
some objects then current algorithms are able to throw away significant parts
of the scene. But they perform poorly when occlusion is due to the joint action
of many small objects.

Finally, all the works exposed share their inability to be intuitively param-
etrized. In fact, many of them have input parameters to tune them, but, as
the relationship between the parameters and the final frame-rate is utterly ob-
scure, the tuning process becomes a trial-and-error procedure. This behaviour
is particularly annoying because it has to be suffered again and again for every
different scene.

4 Owur proposal

We have chose weak visibility to be our area of research. We think that there
is still room for improvement in this field. Besides, there is a wide range of
applications were we feel weak visibility is the best suited approach. For exam-
ple, architectural and ship-design environments, and, more generally, whatever
scene that, though populated by hundreds of thousand of polygons, is so densely
occluded that the number of visible polygons from every fixed viewpoint is much
lower; so low indeed that, were a visibility oracle be provided, nowadays graphic

18

Object or |Scene Data| Static or | Impostors | Occluder Scene

Image Structure | Dynamic Data Specific

Space Structure
CT:96 (0] kd-tree S+D No ? Interiors
CT:97 O kd-tree S+D No scene kd-tree| Interiors
HMC+:97 O HBB S+D No Voxels Interiors
GKM:93 I Octree D No - No
CDL+:96 I Octree D Yes - Yes
ZMH+:97 I HBB D No HBB No
MS:95 I Octree S Yes - No
Sch:95 I None D Yes - No
SS:96 I kd-tree D Yes - No
Ali:96 I Voxels D Yes - No
SDB:97 I Graph S Yes - Cities
AL:97 I Graph D Yes - Rooms

Table 2: Summarizing table. HBB stands for Hierarchy of Bounding Boxes

workstations could be able to render it at interactive frame-rates. Sadly, we
know that such an oracle is beyond the computation power of today’s hard-
ware, and will be for some time still. Thus, we will have to restrict ourselves to
non-exact oracles whose answers (i.e., sets of visible polygons) are oversized.

But it does not really matter how big the set of visible polygons is as long
as its size is within our hardware’s capabilities. As a matter of fact, a common
problem of all the algorithms to our knowledge of either of the three fami-
lies is that they are not easily parametrized, and in several cases cannot be
parametrized at all. There is no way the user can relate the user-defined vari-
ables to his desired frame rate, and the only procedure at his disposal is the
trial-and-error one.

Of course, the solution would be an algorithm that asked the user for his
desired maximum number of polygons per frame and tried to ensure that every
possible set it provided would be within that limit. This behaviour will allow the
user not only a better control over the final result, but could also be the way to
navigate very complex scenes in a wider range of computers. The computation
of the visibility data structure could be done in an expensive, state-of-the-art
machine but parametrized for another, cheaper, not so sophisticated computer,
provided the latter had enough memory to keep the visibility data. It goes
without saying that this behaviour cannot be utterly guaranteed even if a perfect
oracle were at our disposal. Nevertheless, an algorithm that took this into
account could spend most of its time into very complex zones, and less into
simpler ones.

Due to the complexity of the visibility spatial partition and to the fact that
we want fast access to our data structure, we could think of employing some kind
of hierarchical structure like octrees or kd-trees to store visibility information.
This kind of data structures have proved to be very efficient in many areas of
computing science. But in order to use an octree to compute and store this kind
of information in an efficient manner some requirements must be fulfilled

i) We must be able to compute visibility inside a node at a reasonable speed.

19

ii) The visibility information of a node should help the computation of its sons.

iii) Finally, visibility must be conservative if we want our octree not to grow
beyond current hardware’s memory capabilities.

Before we can give answers to this questions we have to introduce some
formal definitions and properties.

Definition 1 The shadow from a point p of a set A CTR"™ is

S(p,A)={geR" |pg[A#0 Ng¢ A}

where pq is the segment between p and q

It follows naturally the concept of shadow from a set of points.
Definition 2 The shadow from a set P CR™ of a set A CR" is

S(P,A)={qeR" |VpeP:pg(|A#0 Aq¢g A}
=) S, 4)

peP

If we restrict ourselves to convex occluders, a quite interesting property
arises: there are some observer sets whose shadow can be exactly computed
from the shadows of a few points of the set. In other words, we can compute
shadows by sampling. This property of shadows was first noticed by Nishita,
Okamura and Nakamae in [16], though they did not prove it.

Lemma 1 If A C R? is a convex set and there is a hyperplane that separates
A from the segment s = p1p2, then

S(s, A) = S(p1, A) [S(p2, A) (1)

Proof. If z € S(s, A), it follows immediately from the definition that z will
also be in both S(pi,A) and S(p2,A). So, we have to prove that if z is in
S(p1,A) and in S(ps, A), then it will also be in S(s, A).

If p1,po, x are collinear it holds trivially that Vp € s : € S(p, A), and the
proof is over. If they are not, say II is their supporting plane. From now on we
can restrict ourselves to R?, for A’ = AN 1I is also convex.

Now, consider two points z; € A'(\Zp; (see figure 1); their existence is
guaranteed by the fact that z is in S(p;1, A) and in S(p2, A). As A’ is convex,
the segment t = T173 lies completely inside of A’. Moreover, as z; and z3 are
in different edges of the triangle xp;p>, the supporting line of ¢ separates = from
s. Therefore, say p is a point of s; as the segment px is completely inside the
triangle and intersects ¢ at some point ¢, we can assure that € S(p, A), so the
proof is complete. O

20

Figure 1: Computing the shadow from a segment

Lemma 2 If A C R? is a convex set and there is a hyperplane that separates
A from the polyline P, = [p1,... ,pn], then

n

S(Pn, A) = (] S(pi, 4) (2)

i=1

Proof. We will prove it by induction on the number of points of the polyline.
If n > 2, then

S(Pn)A) = S(PnflyA) ﬂ S(M> A)

(n | S(pi,A)>) S®n-1,4) () S(Pn, A)

(3

Il
DL

1

.
Il

Now we are ready to introduce a fundamental theorem that will allow us
to compute visibility between a node and a single convex occluder taking into
consideration the shadows of the node’s vertices only.

Theorem 1 If A C R? is a convex set and there is a plane that separates A
from the closed and bounded polyhedron C C R3, then

n

S(C,A) = (1) S(pi, A) (3)

i=1
where p; are the n vertices of polyhedron C.
Proof. We just have to prove that (., S(p;, 4) C S(C, A), for the other

inclusion is trivial. That is to say, we want to see that if x is invisible from
every vertex p;, then it will also be invisible from every point p in C.

As C'is closed and bounded, the segment pZ intersects at least one face f of
C at some point ¢ (see figure 2), and z is invisible from p iff it is so from ¢. Say

21

r is one of the infinite lines on the supporting plane of f that are incident to q.
Then, there is a polyline P,, formed by f’s edges and segments interior to f such
that its two extreme segments e; and e, intersect r at points ¢;, g2 respectively
and such that point ¢ is in the segment gigz (in figure 2, this polyline could be
e1se2). Now,

ze(Swi,A) D res(P,A)=zeS(e,4)Y

z€5(gi,A) Yz e S A) = e SpA)

and the proof is complete. O

Figure 2: Computing the shadow from a polyhedron

With this results we can now sketch a first version of our algorithm. The

computer is provided with an arbitrary polyhedral scene and two parameters:
the maximum number of polygons our computer is able to render within our
desired frame-rate and the maximum depth of the visibility octree. This octree
can be constructed recursively in the following manner

i)

ii)

iii)

For each node’s vertex, select some convex occluders. This can be done
using the algorithm employed in [7], for instance.

Compute visibility of each node’s vertex by computing their shadows (con-
vex truncated pyramids) from each of its occluders and purging the scene
with them. Every scene object that is completely inside one of this pyra-
mids is added to the current vertex’ set of invisible objects corresponding
to the current occluder. The problem of computing the shadow of a convex
occluder from a fixed point p can be reduced to the problem of computing
the silhouette of the occluder from p. There are several algorithms to solve
this problem.

Say I;; are the sets of current node’s vertices, where ¢ runs from 1 to 8 and
j from 1 to the maximum number of selected occluders, and let N be the
set of objects that are inside the current node’s cube. Consider now the

22

sets
8
L =()I;\N
i=1
=r
J

The set I; contains all scene objects that are invisible from every viewpoint
inside the visibility node due to the single action of the occluder j. And
I is the set of objects invisible from every inner viewpoint due to some of
the selected occluders. We associate this set to the current visibility octree
node.

iv) If the number of polygons in this set is greater than the given threshold
and we have not yet reached the maximum tree depth, the algorithm splits
the node and computes each son’s visibility. If not, we associate the set I
to the node and are over.

We can do still better if we realize that every time the computer calculates
visibility from a point chances are it has computed it several times before.
Indeed, every time a node is subdivided the algorithm recomputes visibility of
each of its eight vertices when dealing with its sons. We can avoid this annoying
behaviour if we associate all the invisibility sets of each vertex to every leaf
instead of their intersection. Before computing a new node’s vertex visibility
from scratch, the computer ensures it has not been computed previously by
searching the point in the octree. If the leaf returned by the search procedure
is the current leaf, we know that the point’s visibility has not been computed
before. We can achieve this if we programme carefully the searching method.
If the searched point is a non-root vertex node, sooner or later the searching
procedure will have to choose between several nodes. We just have to ensure that
the selection follows the order in which the constructing procedure computes the
sons of a node: the node which would be computed first is the one the search
procedure must choose. The intersection and union steps are then performed
dynamically.

Step (i) can be enhanced also. The original procedure in [7] had to be care-
ful not to select too many occluders, because an excess of them would result in
too much overhead when navigating thru the scene. This is so for two reasons:
first, because occlusion computation is done dynamically; second, because the
computer cannot ever be positive about the goodness of an occluder and some of
them will not purge the scene significantly. But our algorithm performs almost
all its computations before user navigation, so it can test much more occlud-
ers. Those occluders whose occlusion effects are insignificant will be dismissed.
Moreover, it can select them incrementally, starting with a fixed number of oc-
cluders and adding new ones while the number of visible polygons is not good
enough.

Besides, we can enhance step (ii) severely if we use some kind of hierarchical
spatial subdivision data structure to store the scene. We can use an object
octree or a kd-tree, or whatever data structure that aids us to intersect our
truncated convex pyramids faster with the scene. Moreover, this structure will

23

[#objects/pipe’s size | Long pipes [Medium pipes [Small pipes

390 190/368/245 189/351/242 177/333/288
(40 pipes/room) 49/94/63 48/90/62 45/85/74
930 464/856 /577 453/844/567 413/789/551
(100 pipes/room) 50/92/62 149/91/61 14/85/59
1830 847/1665/1154 851/1641/1117 830/1554/1063
(200 pipes per room) 16/91/63 47/90/61 45/85/58
9030 4022/7568/5210
(1000 pipes/room) 45/84/58

Table 3: The visibility octree tested on different scenes and different viewpoints. Each cell
shows the number and ratio in % of visible objects at three qualitatively different viewpoints.
In x/y/z, the first number corresponds to a viewer located at the corner and facing a wall;
the second one, to a viewer at the centre facing a door; and the third one, to a viewer at the
centre facing a door.

save us memory space because it will reduce the size of the visibility octree if we
replace the sets of invisible objects with sets of invisible nodes. Note that after
the visibility octree is constructed we do not have to keep this data structure,
only the lists of objects in nodes that are referenced in our visibility octree
(though, it would probably be advisable to keep it to be able to do hierarchical
view frustum culling). Figure 3 shows a first version of the visibility octree
computation algorithm.

4.1 First results

In order to check the feasibility of our algorithm we implemented and tested it.
At this stage, our main purpose was not to get a fully optimized programme,
but rather some prototype that would allow us to test if the amount of memory
needed for the visibility octree was affordable or not.

The test was done on a Silicon Graphics Onyx workstation equipped with
128Mb of RAM and two 194MHz R10000 processors, although our implemen-
tation did not take any advantage of the second processor. The largest of the
scenes we used is shown in figure 4. There are nine rooms and one thousand
pipes per room, for a total of 54180 polygons. Every object in the scene is con-
vex. The computer took one day to build its visibility octree with the following
parameters: five levels of depth, ten polygons per leaf maximum and a source
object octree also five levels deep and with a maximum of one object per leaf.
As we chose extremely low maximums both octrees reached maximum depth, so
the algorithm was put under considerable stress. During the computation of the
visibility octree, the programme reached a memory usage peak of 500Mb. How-
ever, after the computation was finished the amount of memory used did not
surpass 50Mb. This quantity is rather low, as the code and the scene without
the octrees used almost 30Mb.

Once the visibility octree was computed, we requested visibility information
at three qualitatively different viewpoints. Table 3 shows the results for the
scenes we tested. All the scenes have nine rooms crowded with pipes. We
generated different scenes changing the sizes of the pipes and the number of
pipes per room. It is noteworthy that results were almost independent of the
scene used. The first viewpoint corresponds to an observer at the corner of the
scene and near a wall. The computer was able to cull about 50% per cent of

24

the geometry, as was to be expected. The second viewpoint is located at the
centre and facing a door. Not surprisingly, the computer could not throw away
but small parts of the scene. Finally, the third viewpoint was chosen to be and
intermediate between optimal and worst situations. It was located at the centre
of the scene, but close to a wall. The computer could get rid of the 40% of
the scene. Figure 5 shows the visible portion of the scene as reported by the
visibility octree at the first and third viewpoints. It is clean in the pictures
that culling could still be improved significantly, even in the optimum situation.
This is so because the object octree does not split objects that are in more than
one node, and thus an object can be culled away if and only if all the leaves it
intersects are completely inside a shadow. We could expect better results should
some tighter hierarchical data structure be used.

5 Conclusions and future work

Today’s graphics hardware is unable to satisfy current user’s requirements. To
solve this problem, the computer graphics community has developed many tech-
niques that can be grouped in three families: multiresolution algorithms, image-
based rendering and weak visibility computation.

We have introduced a new weak visibility algorithm that we believe has
several advantages over previous work. Namely,

i) Occlusions are computed at the preprocessing stage. The computer can
increase the number of occluders if the amount of culled geometry is not
enough. Previous weak visibility works performed occlusions at execution
time, so they had an unavoidable bound on the maximum number of oc-
cluders they could use.

ii) The visibility octree has two input parameters, maximum depth and max-
imum number of polygons per leaf. Both are directly related to the good-
ness of the result. The former controls the amount of memory used, and
the latter allows better control over the frame ratio if the graphics hard-
ware specifications are known -i.e., the maximum number of polygons it is
able to render in a second. Of course, this control is not perfect. Even
if we computed exact visibility, we could not guarantee that the number
of visible polygons at any viewpoint did not exceed the capabilities of the
hardware. But there are many environments where the complexity of vis-
ible geometry at any fixed viewpoint is low, whereas the total number of
polygons is extremely high (indoor scenes, for instance).

iii) Memory requirements are high when the visibility octree is being computed,
but reasonably low once the computation is over. Besides, CPU require-
ments at execution time are almost null. Thus, although the preprocessing
is limited to high-end, expensive, state of the art workstations, the dynamic
phase is not, so it is possible to preprocess in high-end workstations and
navigate in cheaper computers. Moreover, the preprocessing can be done
considering the graphics hardware of the target, low-end computer.

25

ComputeVisibilityOctree (scene:ObjectOctree, occluders:set, node:VisOctreeNode,
VAR vis:VisOctree)

for ::=1to 8 do

obs; :=GetVertexCoordinates(vis, node, 7)

I; :=Computelnvisibility At Vertex(vis, node, i, scene, occluders)
end for

8
I:= U M I;[0o] \ GetObjectsInsideNode(scene, vis, node)

o€occludersi=1
V=1

if NumPolygons(V) > MAX_POLS A Depth(node) < PROF_MAX then
SubdivideNode(vis, node)
for i:=1to 8 do
ComputeVisibililityOctree(V, occluders,Son(vis, node, i), vis)
end for
else
Setnode(vis, node, < V, I >)
end if

Computelnvisibility At Vertex(scene: ObjectOctree, vis: VisOctree, node: VisOctreeNode,
vertex: integer, occluders: set) returns vector of set

p :=GetVertexCoordinates(vis, node, vertex)
node’ := Locate3DPoint(vis, p)
HasNotBeenComputedBe fore := (node = node')
if HasNotBeenComputedBefore then
I=0
for all o € occluders do
s = ComputeShadowPyramid(p, o)
I[o] = InnerNodes(scene, s)
end for
else
< V,I >:=GetNodeltem(vis, node’)
end if
return [

Figure 3: Construction of the visibility octree in algorithmic notation

26

On the other hand, we are aware there is much work pending. In the first

place, the algorithm has not been tested enough, and there is room for several
optimizations in the code. In the second place, we feel that the occlusion field

has

i)

ii)

iii)

iv)

vi)

not been fully researched yet. We have scheduled our future work as follows

As pointed previously, the object octree is probably not the best hierarchical
structure to purge the scene. We think there are other structures (for
example, hierarchical bounding boxes) that supply tighter approximations
of objects.

The code has to be optimized. Actually, the code that classifies nodes
against volume shadows is rather naive.

The algorithm must be tested with real scenes. Moreover, it would be useful
to have statistic measures -mean, maximum and minimum, and variance-
of the number of reported visible polygons in all the leaves of the visibility
octree, as well as ratios between the number of reported visible polygons
and real visible polygons.

Currently, visibility is undefined when the user is located outside the octree.
We want to study if the visibility information can be used somehow when
the user is outside the scene’s bounding box.

The necessity of convexity, although shared by all previous work in the weak
visibility area, restricts severely the performance of the algorithm. Some
authors propose that the polyhedra should be decomposed into convex parts
before any processing. We think this approach is not the best one because it
increases considerably the size of the scene. Besides, many of the resultant
convex polyhedra will be too small to serve as occluders. An algorithm that,
given a polyhedron P, computed a family of convex polyhedra Pi,..., P,
such that every polyhedron P; is bounded by P but did not necessarily have
null intersection with the rest of polyhedra in the family would be better
suited.

In the same line, it would be interesting to develop some procedure to, given
a set S of small occluders, compute a single polyhedron P that does not
occlude more than S or perhaps to compute the union or their shadows.

27

28

Figure 4: Nine rooms with one thousand pipes each

Figure 5: The non-culled geometry at two different viewpoints. From the left
corner (left picture) and from the centre and to the left (right picture)

29

30

References

[1] Daniel G. Aliaga. Visualization of complex models using dynamic texture-
based simplification. In IEEE Visualization ’96. IEEE, October 1996.

[2] Daniel G. Aliaga and Anselmo A. Lastra. Architectural walkthroughs using
portal textures. In IFEFE Visualization 97, October 1997.

[3] Carlos Anddjar. Simplificacién de modelos poliédricos. Technical Report
LSI-98-1-T, Universitat Politéecnica de Catalunya, 1998. [This report is
written in Spanish].

[4] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David Salesin, and
John Snyder. Fast rendering of complex environments using a spatial hier-
archy. In Graphics Interface ’96, pages 132-141, May 1996.

[5] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM, 19(10):547-554, October 1976.

[6] Satyan Coorg and Seth Teller. Temporally coherent conservative visibil-
ity. In Proceedings of the Twelfth Annual Symposium On Computational
Geometry, pages 78-87, New York, May 1996. ACM Press.

[7] Satyan Coorg and Seth Teller. Real-time occlusion culling for models with
large occluders. In Proceedings of the Symposium on Interactive 3D Graph-
ics, pages 83-90. ACM Press, April 1997.

[8] S. E. Dorward. A survey of object-space hidden surface removal. Interna-
tional Journal of Computational Geometry & Applications, 4(3):325-362,
1994.

[9] Frédo Durand, George Drettakis, and Claude Puech. The 3D visibility com-
plex: a new approach to the problems of accurate visibility. In Xavier Pueyo
and Peter Schroder, editors, Eurographics Rendering Workshop 1996, pages
245-256. Eurographics, June 1996.

[10] Frédo Durand, George Drettakis, and Claude Puech. The visibility skele-
ton: A powerful and efficient multi-purpose global visibility tool. In Turner
Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Confer-
ence Series, pages 89-100. ACM SIGGRAPH, Addison Wesley, August
1997.

[11] B. Garlick, D. Baum, and J. Winget. Interactive viewing of large geomet-
ric data bases using multiprocessor graphics workstations. In Siggraph 90
Course Notes: Parallel Algorithms and Architectures for 3D Image Gener-
ation, volume 28, pages 239-245, 1990.

[12] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and
representing aspect graphs of polyhedral objects. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(6):542-551, 1991.

[13] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-buffer visibil-
ity. In Computer Graphics Proceedings, Annual Conference Series, 1993,
pages 231-240, 1993.

31

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Acceler-
ated occlusion culling using shadow frusta. In Proceedings of the Thirteenth
Annual Symposium on Computational Geometry, pages 1-10, June 1997.

Paulo W. C. Maciel and Peter Shirley. Visual navigation of large environ-
ments using textured clusters. In Pat Hanrahan and Jim Winget, editors,
1995 Symposium on Interactive 8D Graphics, pages 95-102. ACM SIG-
GRAPH, April 1995.

T. Nishita, I. Okamura, and E. Nakamae. Shading models for point and
linear sources. ACM Transactions on Graphics, 4(2):124-146, April 1985.

H. Plantinga and C. Dyer. Visibility, occlusion, and the aspect graph.
International Journal of Computer Vision, 5(2):137-160, 1990.

G. Schaufler and W. Stiirzlinger. A three dimensional image cache for
virtual reality. Computer Graphics Forum, 15(3):C227-C236, September
1996.

Gernot Schaufler. Dynamically generated impostors. In D. W. Fellner, ed-
itor, Modeling - virtual worlds - distributed graphics (MVD’95 Workshop),
pages 129-136, November 1995.

Francois Sillion, George Drettakis, and Benoit Bodelet. Efficient impos-
tor manipulation for real-time visualization of urban scenery. Computer
Graphics Forum, 16(3):C207-C218, 1997.

Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A char-
acterization of ten hidden-surface algorithms. ACM Computing Surveys,
6(1):1-55, March 1974.

Seth J. Teller and Carlo H. Sequin. Visibility preprocessing for inter-
ative walkthroughs. Computer Graphics (SIGGRAPH 91 Proceedings),
25(4):61-69, July 1991.

Roni Yagel and William Ray. Visibility computation for efficient walk-
through of complex environments. Presence, 5(1):1-16, 1996.

Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff III.
Visibility culling using hierarchical occlusion maps. In SIGGRAPH 97
Conference Proceedings, pages 77-88. ACM SIGGRAPH, Addison Wesley,
August 1997.

32

