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Abstract

We show that, with high probability, several layout problems are approximable
within a constant for random graphs drawn from the standard Gn,p model with p = c/n
for some constant c. Our results establish that, in fact, any algorithm that returns a
feasible solution will produce such an approximation for graphs with good expansion
properties.

1 Introduction

Linear arrangement problems play an important role in Computer Science [27, 1, 8]. A
linear layout (or linear arrangement or vertex ordering) of a graph G with n nodes is a
one-to-one mapping of the vertices of G to the set {1, . . . , n}. A layout π on G = (V,E)
determines in a unique way a nested sequence of vertex subsets containing those vertices
placed up to the i-th position. The layout also induces an assignment of lengths to
every edge in the graph: the length induced by a layout π for an edge e = uv ∈ E is
λ(π, e) = |π(u) − π(v)|. The complexity of a graph in terms of a linear layout is usually
obtained by measuring length, crossing edges or neighbors placement.

The bandwidth problem asks for a layout minimizing the maximum edge length. The
problem is NP-complete [28], even for trees with maximum degree 3 [14] or caterpillars
with hair length 3 [25]. It can be approximated within a constant for some restricted
classes of trees [18], but has no polynomial time approximation scheme for trees [4]. It has a
constant randomized approximation algorithm for dense instances [21], and no polynomial
time approximation algorithm for general graphs [20].

The minimum cut arrangement asks for a layout minimizing the maximum cut along
the nested sequence of vertex sets. The problem is NP-complete [17], even for planar
graphs with maximum degree 3 [26]. For trees the problem is in P [33] and even in
NC [9]. It can be approximated within any constant for dense graphs [3]. A variation
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of the problem in which the cut excludes edges touching the last vertex is known as
the minimum modified cut arrangement and is also NP-complete for planar graphs with
maximum degree 3 [26].

The minimum linear arrangement problem (also known as the minimum edge sum
[19] or the optimal linear ordering [1]) seeks a layout that minimizes the total edge length.
This problem is also NP-complete [16]. For trees the problem is in P [31] and in NC [9].
It can be approximated within a O(log2 n) factor using the approximate max flow-min
cut theorem [23]. A better approximation factor O(log n log log n) can be achieved using
spreading metrics [13]. This result has been improved recently to a O(log n) approximation
for general graphs and to a O(log log n) factor for planar graphs [30]. On the other hand,
the problem can be approximated within a 1+ǫ factor in time nO(1/ǫ) when restricted
to dense graphs using linear programming and random rounding [3]. Nothing is known
about the hardness of approximating the minimum linear arrangement problem, which is
not even known to be max-SNP-hard. In [29] some heuristics algorithms to approximate
this problem are empirically studied. The maximum linear arrangement problem that asks
for a layout maximizing the total edge length is not of practical interest, but it is worth
noting that its approximability properties are entirely understood: A greedy algorithm
can be used to obtain an approximation within a factor of 2 [11].

The vertex separation problem has the same formulation as the minimum cut ar-
rangement problem, but using as measure the number of vertices in the first partition
connected to the second one. This measure was first introduced in [7] as the δ-operator.
The problem is NP-complete [24], but in P for trees [12]. The global version in which one
looks for a layout minimizing the sum of all the separations is known as the minimal sum
cut problem [10] or the minimal profile problem [22]. The problem is equivalent to the
interval graph completion problem that is also NP-complete [15]. For trees the problem
is in P [22] and in NC [10]. An approximation factor O(log n log log n) can be obtained
using spreading metrics [13].

The above results establish the difficulty in dealing with sparse graphs. In general,
considering only dense instances makes a problem easier because such graphs inherit most
of the good properties of dense random graphs. In this paper we try to analyze the
difficulty of approximating some of the above problems for random sparse graphs (drawn
from the standard Gn,p model with p = c/n [5, 2]) and expanders.

A natural question is to ask whether there is any relation between the approx-
imability of the maximization version of the problems, and whether we can infer some
consequence for the minimization version from our understanding of these maximization
versions. It thus makes sense to introduce the gap between the maximum an the minimum
values, the ratio between the maximum and the minimum values, and to estimate this gap
value for interesting classes of graphs. Note that whenever we can bound the gap for a
certain constant r>1, it follows that any arrangement of G is r-approximate for both the
minimization and maximization problems.

For instance, in the case of the minimum linear arrangement problem, it is clear that
the gap is 1 for any complete graph G. Moreover, for a graph that has only one edge,
the gap is n (and this is the largest possible gap). Those extremal cases suggest that the
gap for this problem is related to the connectivity property of a graph, and thus it seems
unlikely that we can find a bounded degree graph with a small gap value, and one would
thing that, at least, almost all (in the probabilistic sense) sparse graphs have a large gap
value. We will show that the opposite results hold.
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2 Definitions and basic results

Consider an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges. We
denote by N(u) the set of neighbors of a vertex u including u. A layout for G is any
bijective function that associates to each vertex a number in the range {1, . . . , n} = [n].
Given a layout π for G, for any i ∈ [n] consider the sets L(i) = {v | π(v) ≤ i} and
R(i) = {v | π(v) > i}. For a given layout π, define

λ(e, π) = |π(u) − π(v)| e = uv ∈ E
cut(i, π) = |{uv ∈ E | u ∈ L(i) ∧ v ∈ R(i)}| i ∈ [n]

mod-cut(i, π) = |{uv ∈ E | u ∈ L(i) − {i} ∧ v ∈ R(i)}| i ∈ [n]
δ(i, π) = |{u ∈ L(i) | ∃w ∈ R(i) : (u,w) ∈ E}| i ∈ [n]

Definition 1. The formal definitions of the problems we study are the following:

• Minimum linear arrangement (minla). Given a graph G = (V,E), find a layout π
that minimizes

la(G,π) =

n−1
∑

i=1

cut(i, π) =
∑

e∈E

λ(e, π).

• Minimum sum modified cut (minmla). Given a graph G = (V,E), find a layout π
that maximizes

mla(G,π) =
n−1
∑

i=1

mod-cut(i, π).

• Minimum sum cut (minsc). Given a graph G = (V,E), find a layout π that minimizes

sc(G,π) =

n−1
∑

i=1

δ(i, π).

We will also consider the maximization versions of such problems, namely the max-
imum linear arrangement (maxla), the maximum sum modified cut (maxmla), and the
maximum sum cut (maxsc). For sake of simplicity, for a given measure F , we will use the
notations

maxF (G) = max
π

F (G,π)

minF (G) = min
π

F (G,π)

avF (G) =

∑

π F (G,π)

n!

to denote its maximum, minimum and average values.

Definition 2. For a measure F , we define the gap between the minimum and maximum
values as

gapF (G) =
maxF (G)

minF (G)
= 1 +

maxF (G) − minF (G)

minF (G)
.
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Definition 3. Given a constant r, an algorithm A is an r-approximation to a minimiza-
tion (maximization) problem for a function F when it holds that for any graph G

A(G)

minF (G)
≤ 1 + r

(

maxF (G)

A(G)
≤ 1 + r

)

.

Equivalently, the value ǫ = 1 − r is called the approximation ratio of the r-approximate
algorithm A [15]. Observe that any bound on the second expression in our definition gives
a bound on the approximation ratio of any algorithm that computes a layout for G.

Basic results. Given a graph G = (V,E) with n nodes and m edges, it is well known that
the average length of an edge e = uv is (n+1)/3. Taking into account that la(G,π) is the
sum of all edge lengths we have avla(G) ≥ m(n+1)/3. To bound the average modified cut
cost we use the following straightforward relationship: mla(G,π)+

∑

v∈V d(v) ≥ la(G,π).
The same relationship holds for the average value and we have that avmla(G) ≥ m(n −
5)/3.

To analyze the average sum cut cost we consider a simplified measure. Given a
graph G = (V,E) each vertex u selects a neighbor s(u) 6= u if any, for an isolated vertex
set s(u) = u. We will use an arbritary (but fixed) selection s. Given a layout π define
D(G,π) =

∑

v∈V max(0, π(v) − π(s(v))). Notice that for all π, sc(G,π) ≥ D(G,π).
Furthermore the expected contribution of the edge (v, s(v)) is 0 with probability 1/2 and
(n + 1)/3 with probability 1/2, that is (n + 1)/6. Adding up for all vertices we get
avsc(G) ≥ n(n + 1)/6.

3 The graphs

We introduce now two graph classes that capture the properties needed to bound the gap.

Definition 4 (Mixing graphs). Let 0 < γ, ǫ < 1 and c > 0. A graph G = (V,E) with
|V | = n and |E| = m is said to be (ǫ, γ, c)-mixing if for any two disjoint sets A,B ⊆ V
such that |A| ≥ ǫn, |B| ≥ ǫn, it is the case that

∣

∣

∣
θ(A,B) −

c

n
· |A||B|

∣

∣

∣
≤ γ

c

n
· |A||B|,

where θ(A,B) is the number of edges of G having one endpoint in A and another in B.

Definition 5 (Disperser graphs). Let 0 < ǫ < 1. A graph G = (V,E) with |V | = n
and |E| = m is said to be an ǫ-disperser if for any two disjoint sets A,B ⊆ V such that
|A| ≥ ǫn, and |B| ≥ ǫn there is at least an edge having an endpoint in A and an endpoint
in B.

It is known that explicit constructions of expander graphs imply efficient construction
of mixing graphs. In particular, the following result holds.

Theorem 1 (See e.g. [6]). A constant α exists such that for any ǫ, γ > 0, for any n
and any d ≥ α/(ǫ2γ2), an (ǫ, γ,m/n)-mixing graph with maximum degree at most d can
be constructed in poly(n) time.

Remark that from the definition of mixing and disperser graphs, it follows that,
any (ǫ, γ, c)-mixing graph is also an ǫ-disperser, and so Theorem 1 also gives an explicit
construction of disperser graphs.
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Theorem 2. A constant β exists such that for any ǫ > 0, for any n and any d ≥ β/ǫ2,
an ǫ-disperser graph with n vertices and maximum degree at most d can be constructed in
poly(n) time.

Definition 6 (Random sparse graphs [5, 2]). We consider the standard class of ran-
dom graphs Gn,p which have n nodes and each potential edge exists with probability p.

Although the random sparse graphs considered in this paper are expected to be non
connected, with high probability they have good mixing properties.

Lemma 1 (Chernoff bounds). Let X1, . . . ,Xn be independent random variables whose
range is {0, 1}. Let µ = E [

∑n
i=1 Xi]. Then for any 0 < γ < 1 it is the case that

Pr

[

(1 − γ)µ ≤

n
∑

i=1

Xi ≤ (1 + γ)µ

]

≥ 1 − 2 exp(−γ2µ/3).

Theorem 3 (Random graphs are mixing). For any ǫ, γ > 0, for any c ≥
3.296

ǫ2γ2
, ran-

dom graphs drawn from Gn,p with p = c/n are (ǫ, γ, c)-mixing with probability at least
1 − 2−Ω(n).

Proof. Consider any two sets A,B ⊆ V such that |A|, |B| ≥ ǫn. There are k = |A||B|
possible edges having an endpoint in A and an endpoint in B. Let us call Y1, . . . , Yk the
random variables such that Yi = 1 if the i-th (in lexicographical order) of such edges is in
the graph, and Yi = 0 otherwise. The average of

∑k
i=1 Yi is clearly µ = c|A||B|/n. Then

we have that

Pr

[

(1 − γ)µ ≤

k
∑

i=1

Yi ≤ (1 + γ)µ

]

≥ 1 − exp(
γ2µ

3
+ 1).

Since there are at most 3n choices for the sets A and B, it follows that the probability
that the graph is not mixing is at most

exp

(

(ln 3)n − γ2c
|A| |B|

n

1

3
− 1

)

.

Note that the term in the exponent is

n

(

ln 3 − cγ2ǫ2 1

3
− 1/n

)

≤ −Ω(n).

As mixing graphs are dispersers, we also have that random graphs are disperser
graphs with high probability.

4 Bounding the Gap

Now we bound the gap between the maximum and minimum costs for mixing graphs.
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Lemma 2. Let G = (V,E) be an (ǫ, γ, c)-mixing graph (with 0<ǫ, γ<1), then

gapla(G) ≤ 1 +
1

1 − γ

(

6ǫ

1 − 6ǫ
(1 + γ) + 2γ

)

= 1 + O(ǫ + γ).

Proof. Let π be any layout of G. We will bound its cost from above and from below:

la(G,π) =
n−1
∑

i=1

cut(i, π) ≥
n−ǫn
∑

i=ǫn

cut(i, π) ≥ (1 − γ)
c

n

n−ǫn
∑

i=ǫn

i(n − i).

For the lower bound,

la(G,π) =
n−1
∑

i=1

cut(i, π) ≤ 2ǫmn +
n−ǫn
∑

i=ǫn

cut(i, π) ≤ 2ǫmn + (1 + γ)
c

n

n−ǫn
∑

i=ǫn

i(n − i).

Therefore, letting S = c
n

∑n−ǫn
i=ǫn i(n − i), we have

maxla(G) ≤ 2ǫmn + (1 + γ)S,

minla(G) ≥ (1 − γ)S,

maxla(G) − minla(G) ≤ 2ǫmn + 2γS.

As avla ≥ m(n + 1)/3 there is a layout that gives at least this value so,

2ǫmn + (1 + γ)S ≥
m(n + 1)

3
>

mn

3

therefore 2ǫmn ≤ 6ǫ
1−6ǫ(1 + γ)S and we get

gapla(G) ≤ 1 +

(

6ǫ
1−6ǫ(1 + γ)S + 2γS

)

(1 − γ)S
.

A similar result holds for the minimum sum modified cut problem.

Lemma 3. Let G = (V,E) be an (ǫ, γ, c)-mixing graph (with 0 < ǫ, γ < 1) with |V | > 9.
Then

gapmla(G) ≤ 1 +
1

1 − γ

(

12ǫ

1 − 12ǫ
(1 + γ) + 2γ

)

= 1 + O(ǫ + γ).

Proof. Let π be any arrangement. We will bound its cost from above and from below:

mla(G,π) =
n−1
∑

i=1

mod-cut(i, π) ≥
n−ǫn−1

∑

i=ǫn+1

mod-cut(i, π) ≥ (1 − γ)
c

m

n−ǫn−1
∑

i=ǫn+1

(i − 1)(n − i).

For the lower bound,

mla(G,π) =
n−1
∑

i=1

cut(i, π) ≤ 2(ǫn + 1)m +
n−ǫn−1

∑

i=ǫn+1

mod-cut(i, π)

≤ 2ǫnm + (1 + γ)
c

n

n−ǫn−1
∑

i=ǫn+1

(i − 1)(n − i)

6



where the last inequality holds because mod-cut(1, π) = mod-cut(n, π) = 0 for any layout
π. Therefore, letting T = c

n

∑n−ǫn−1
i=ǫn+1 (i − 1)(n − i), we have

maxmla(G) ≤ 2ǫnm + (1 + γ)T,

minmla(G) ≥ (1 − γ)T,

maxmla(G) − minmla(G,π) ≤ 2ǫnm + 2γT.

As avmla = m(n − 5)/3 there is a layout that gives at least this value so,

2ǫnm + (1 + γ)T ≥
m(n − 5)

3

and as n > 9 it holds that n − 5 ≥ n/2. Therefore 2ǫnm + (1 + γ)T ≥ mn
6 and we get

2ǫnm ≤ 12ǫ
1−12ǫ(1 + γ)T.

A similar results holds for the minimum sum cut problem.

Lemma 4. Let G = (V,E) be an ǫ-disperser graph (with ǫ < 1), then

gapsc(G) ≤
1

1 − 4ǫ
.

Proof. We find lower and upper bounds for the value sc(G). We first notice that in an
ǫ-disperser graph it is the case that δ(π, i) ≥ i − ǫn for every ǫn < i < n − ǫn. This is
because there cannot be ǫn vertices on the left of i and ǫn vertices on the right of i without
any connection.

sc(G,π) =

n−1
∑

i=1

δ(π, i) ≥

n−ǫn
∑

i=ǫn

δ(π, i) ≥

n−ǫn
∑

i=1

(i − ǫn)

> (n − ǫn)2/2 − ǫn(n − ǫn) > n2/2 − 2ǫn2.

For the upper bound, we get

sc(G,π) =
n−1
∑

i=1

δ(π, i) ≤
n−1
∑

i=1

i = (n − 1)n/2 ≤ n2/2.

Thus, we have minsc(G) ≥ n2/2−2ǫn2 and maxsc(G) ≤ n2/2 and thus gapsc ≤ 1
1−4ǫ .

Consequently, we have established the following theorem:

Theorem 4. The problems minla and minmla can be approximated within a constant
on mixing graphs. The minsc problem can be approximated within a constant on disperser
graphs. Furthermore, there exists a constant c such that for any α > 0, for any n,

Pr[gapF (G) > 1 + α] ≤ 2−n

where G is a random graph from the Gn,p model with p = c
α4n

, and F is any of the three
measures la, mla, sc.
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5 Conclusions

Similar results can be achieved for the local problems such as bandwidth, mincut layout
and vertex separation. For the bandwidth problem fixing any layout and taking the sets
formed by the first ǫn vertices and the last ǫn vertices, in an (ǫ, γ, c)-mixing graph we have
at least one edge connecting both partitions, and therefore a lower bound for the layout
bandwidth of (1 − 2ǫ)n. In the case that ǫ < 1/3 we have a 3 approximation. A similar
result for the bandwidth minimization is given in [32].

In an (ǫ, γ, c)-mixing graph we have at least (1 − γ)cn/4 edges in the central cut.
This is a lower bound for the problem mincut. The bound also applies to the bisection

problem, because the central cut splits the graph into two equal sized sets. It also applies
to the max cut problem. Therefore we can approximate those problems within a constant,
for such graphs.

In an (ǫ)-disperser mixing graph we have at least (1/2− ǫ)n nodes in the central cut.
So, for n large enough we get a constant approximation for the vertex separation problem.

It is worth to remark that the obtained results give the approximation regardless
the connectivity of the graph. For this class of graphs, to get a constant approximation,
it is not necessary to finish off a connected component before starting a new one.

A standard way of evaluating the real efficiency (from a practical point of view) of
an algorithm is to evaluate its performance on random instances. Our results show that
any algorithm computing a layout, no matter how bad (or good), will perform very well
on random sparse graphs, pointing out that such evaluations may be unworthy for some
problems.
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