
A role of constraint in self�organization

Carlos Domingo �

Department de LSI� Universitat Polit�ecnica de Catalunya
Campus Nord� M�odul C�� �����	Barcelona� Spain

carlos
lsi�upc�es

Osamu Watanabe and Tadashi Yamazaki

Dept� of Mathematical and Computing Sciences
Tokyo Institute of Technology� Tokyo ��	���� Japan

fwatanabe� tyamg
is�titech�ac�jp

July �� ����

Abstract

In this paper we introduce a neural network model of self�organization� This

model uses a variation of Hebb rule for updating its synaptic weights� and surely

converges to the equilibrium status� The key point of the convergence is the update

rule that constrains the total synaptic weight and this seems to make the model

stable� We investigate the role of the constraint and show that it is the constraint

that makes the model stable� For analyzing this setting� we propose a simple prob�

abilistic game that models the neural network and the self�organization process�

Then� we investigate the characteristics of this game� namely� the probability that

the game becomes stable and the number of the steps it takes�
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�� Introduction

How does the brain establish connections between neurons� This question has been

one of the important issues in Neuroscience� and theoretical researchers have proposed

various models for self�organization mechanisms of the brain� In many of these models�

competitive learning� or more speci�cally� competitive variants of Hebb�s rule have been

used as a key principle� In this paper� we study one property of such competitive Hebb

rules�

As one typical example of self�organization� �orientation selectivity	 
WH�� has been

studied intensively� In the primary visual cortex �area��� of cats� there is some group of

neurons that strongly reacts to the presentation of light bars of a certain orientation�

which we call orientation selectivity� An interesting point is that in a very early stage

after birth� every neuron reacts to all bars of every orientation� This indicates that

orientation selectivity is obtained after birth� that is� each neuron selects one preferred

orientation among all orientations� To explain the development of orientation selectivity�

a considerable number of mathematical models have been investigated� see� e�g�� 
Swi���

Although these models may look quite di�erent� most of them use� as a principal rule for

modifying synaptic strength� a competitive variant of Hebb rule� which is essentially the

same as the rule proposed in the pioneer paper of von der Malsburg 
Mal��� the paper

that �rst gave a mathematical model for the development of orientation selectivity�

A Hebb rule is a simple rule for updating� e�g�� the weight of connection between two

neurons� The rule just says that the connection between two neurons is strengthened

if they both become active simultaneously� This rule has been used widely for neural

network learning� Von der Malsburg constrained this updating rule so that the total

connection weight of one neuron are kept under some bound� In this paper� we call this

variation of Hebb rule a constrained Hebb rule� He showed through computer experiments

that orientation selectivity is surely developed with his constrained Hebb rule�

Since the work of von der Malsburg� many models have been proposed� and some have

been theoretically analyzed in depth� see� e�g�� 
Tan��� For example� a feature of various

constrained Hebb rules as a learning mechanism has been discussed in 
MM��� Yet� the

question of why orientation selectivity is obtained by following a constrained Hebb rule

has not been addressed� Note that the development of orientation selectivity is di�erent

from ordinary learning in the sense that a neuron �or� a group of neurons� establishes

a preference to one particular orientation from given �more or less� uniformly random

orientation stimuli� In this paper� we discuss why and how one feature from equally good

features is selected with a constrained Hebb rule�

In order to simplify our analysis� we propose a simple probabilistic game called �mo�

nopolist game	 for abstracting Hebb rules� In monopolist game� an updating rule cor�
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responds to game�s rule� and the selectivity is interpreted as that a single winner of a

game � monopolist � emerges� Then we prove that a monopolist emerges with prob�

ability one in games following a von der Malsburg type rule� On the other hand� we

showed theoretical evidence supporting that �i� the chance of having a monopolist is low

without any constraint� and �ii� a monopolist emerges even under a rule with a weaker

constraint� These results indicates that the importance of constraint in Hebb rules �or�

more generally� competition in learning� to select one feature from equally good features�

We also analyzed how fast the monopolist emerges in games following a von der

Malsburg type rule� This analysis can be used� in future� to estimate the convergence

speed of constrained Hebb rules� �In this extended abstract� most of the proofs are given

in Appendix��

�� Von der Malsburg�s Model and Monopolist Game

Here we �rst explain brie�y the model considered by von der Malsburg� �Von der Malsburg

studied the selectivity for a set of neurons� but here we only consider its basic component��

Neural Network Structure

We consider two layer neural network� In particular� we discuss here the orientation

selectivity for one neuron� and thus� we assume that there is only one output cell� On the

other hand� the input layer consists of �� input cells that are �supposed to be� arranged

in a hexagon like the ones in Figure �� We use i for indicating the ith input cell� and IN

for the set of all input cells�

Stimuli and Firing Rule

We use � stimuli with di�erent orientations �Figure ��� which are given to the network

randomly� Here � indicates an input cell that gets input �� and � indicates an input cell

that gets input ��

output

inputs

Figure �� Neural network model�

Figure �� Nine stimuli�
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We use ai to denote input value �either � or �� to the ith input cell� Then output

value V is computed as V � Thp �
P

i�IN wiai�� where wi is the current synaptic strength

between the output cell and the ith input cell� Thp�x� is a threshold function that gives

x� p if x � p and � otherwise� where p is given as a parameter�

Updating Rule

Initially� each weight wi is set to some random number between � to some constant� Then

weights are updated each time according to the following variation of Hebb�s rule� which

we call the constrained Hebb rule �of von der Malsburg��

w�
i � wi � cincaiV� and wi � w�

i �

��W��
X
k�I

w�
k

�A �

Where cinc �which is called a growth rate� and W� �total weight bound� are constants given

as parameters� The �rst formula may be considered as the original Hebb�s rule� on the

other hand� the second one is introduced in order to keep the total weight within W�� �In

fact� it is kept as W���

With this setting� von der Malsburg demonstrated that the selectivity is developed

through computer simulations� Thus� it seems likely that some selection occurs even

from uniformly random examples� and that the constraint of the von der Malsburg�s rule

is a key for such a selection� In this paper we would like to study this feature of the

constrained Hebb rule� For this� we further simplify von der Malsburg�s computation

model� and propose the following simple probabilistic game�

Monopolist Game

Basic Rule� Consider a �nite number of players� Initially they are given the same

amount of money� The game goes step by step� and at each step� one of the players

wins with the same probability� The winner gets some amount of money� while the

other loses some�

Details� A player who loses all his money is said become bankrupt� Once a player

becomes bankrupt� he cannot get any amount of money� though he can still win with

the same probability� �See below for the motivation��

Goal� The game terminates if all but one player become bankrupt� If the survived

player keeps enough money at that point� then he is called a monopolist� We call a

situation where a monopolist appears monopoly�

Notations� We use n and n� to denote the number of players and that of remaining �not

being bankrupt� players� and use i� � � i � n� to denote players� indices� Throughout

this paper� each player�s wealth is simply called a weight� and let wi denote the player i�s
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current weight� Let I and W� respectively denote the initial weight of each player and

the total amount of initial weights� that is� W� � nI�

The connection of this game with von der Malsburg�s computation model is clear� each

player�s weight corresponds to total synaptic strength between the output cell and a set

of input cells corresponding to one type of stimulus� and the emergence of a monopolist

means that the network develops preference to one orientation� From this correspondence�

it is natural to require that even a bankrupt player can win with the same probability

��n� which re�ects the fact that the probability of a stimulus of each orientation appears

is the same no matter how neural connections are organized�

An updating rule of players� weights corresponds to a rule of changing synaptic

strength in the network� Here we can state updating rules in the following way� �In

the following� let i� denote the player who wins at the current step��

wi �

��� wi � finc � fdec� if i � i�� and

wi � fdec� otherwise�

Here finc and fdec are the amount of increment and decrement at each step respectively�

and one type of monopolist game is speci�ed by de�ning finc and fdec� In the following�

we assume that these values are determined from wi� wi�� n� and n�� From the relation

to von der Malsburg�s computation model� we require that both finc and fdec are � if

wi � �� that is� once a player loses all money� he stays forever in the � weight state� �In

the following� we will omit stating this requirement explicitly��

Now we consider the rule that corresponds to the constrained Hebb rule of von der

Malsburg�s rule� It is de�ned as follows with constant cinc�

finc � cinc� and fdec � cinc�n
�� ���

�Recall that n� is the number of currently remaining players��

Note that with this rule� the total amount of wealth is kept constant� Thus� in this

sense� it corresponds to von der Malsburg�s rule� and we call it constrained rule� Note that

we may also consider a similar rule such that finc is not constant but proportional to wi�

�Similarly� fdec is also proportional to wi�� This rule might be closer to the original von der

Malsburg�s rule� This di�erence is� however� not essential for discussing the probability

of having a monopolist� i�e�� for our discussion in Section �� On the other hand� there is a

signi�cant di�erence in convergence speed� but roughly speaking� the di�erence disappears

if we take the log of weight� Thus� we will discuss with the above simpler rule�

�� Importance of Competition

Here we compare three di�erent updating rules for monopolist game� and show that

constraint is important to derive a monopolist� From this� we could infer that some sort
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of constraint� �or� competition in more general� is important in learning rules for selecting

one among the others through random process�

In the following� we consider the following three updating rules� ��� constrained rule�

��� local rule� and ��� semi local rule� Below we de�ne these rules �except ��� that has

been de�ned in the previous section� and discuss the probability P� that a monopolist

emerges�

Constrained Rule

We show that under constrained rule� P� is �� that is� a monopolist emerges with proba�

bility ��

A monopolist game in general expressed by an one�dimensional random walk� More

precisely� for any i� we can express the player i�s wealth wi as the following random walk�

0w

incfdecf

0 W
i

Figure �� One�dimensional random walk�

Note that the particle �i�e�� the weight wi� moves to the left �resp�� to the right� with

probability � � ��n �resp�� ��n�� The left �resp�� right� end of the interval means that

the player i becomes bankrupt �resp�� a monopolist�� Thus� these two ends are absorbing

walls�

In a monopolist game under constrained rule with n � �� we have finc � cinc�� and

fdec � cinc��� Hence� the above random walk becomes standard one �see� e�g�� 
Fel����

and it is well�known that the particle in such a standard random walk goes to one of the

absorbing walls in �nite steps with probability �� This proves that P� � � when n � ��

Then by induction� we can prove P� � � when n � �� thus� we have the following theorem�

Theorem ���� Under constrained rule� a monopolist emerges �in �nite steps� with prob�

ability ��

Local Rule

In constrained rule� for computing fdec� we need the number of remaining players� that

is� weights cannot be updated locally� In general� in order to be competitive� an updating

rule must not be local� Thus� to see the importance of competition� we consider here the

following purely local updating rule�

finc � cinc� and fdec � cdec� ���
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Notice that for this local rule �and the next semi local rule�� the notion of monopolist

is less clear than constrained rule� because the notion of �enough amount of money	 is

not clear� Here we simply consider it as W���� a half of the total initial weight� That is�

we regard a single surviver as a monopolist if his weight is more than W���� hence� P�

is the probability that the game reaches to the state where wi� � W��� for some i� and

wi � � for the other i�

We �rst discuss one feature of this updating rule� In the following� let us �x cdec � ��

Our computer experiments show that the probability to have a single surviver �in a

reasonable amount of steps� drops rapidly when cinc � n � �� The reason is clear from

the following fact�

Theorem ���� Fix cdec to be one� and consider one player�s weight� For any t� it increases�

by t
�cinc
n

� �
	
on average� after t steps�

Thus� if cinc � n� then it is quite likely that all players increase their weights� and

thus no bankrupt appears in the game� On the other hand� if cinc � n� then every player

dies quickly� and hence� no monopolist occurs even though someone may become the last

player� This means that the most crucial case is the case cinc � n� Next we discuss P� for

such a case�

Recall that P� is the probability that� at some point in the game� all but one become

bankrupt and that the survived player has weight �W���� Since it is di�cult to estimate

P� directly� we analyze the following probability P �
� instead of P�� P �

� is the probability that

at least one player�s weight reaches to W��� and no more two players have weight larger

than su�ciently large value� say� kW� for some k � �� Notice that if a monopolist emerges

at some point� then clearly� someone needs to reach W��� in the game� Furthermore� it

is unlikely that two players reach to kW� and one of them become bankrupt afterwards�

Thus� we may regard P �
� as an upper bound of P�� For this P �

�� we have the following

bound�

Theorem ���� For any W� and su�ciently large W�� we have

P �
� �

�
� �

I

W� � n

	n
�

nI

W�

�
� �

I

W� � n

	n��
�
�
��

I

W�

	n
�

For example� by taking W� and W� as nI
�

and knI respectively� we have

P �
� � e�I��kI��� � e�I�n�����kI���n�k � e�� � �� � ��k�e���k � e���

which is less than ��� if k � �� On the other hand� our computer experiments show that

P� is less than ��� for various sets of parameters�
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Semi Local Rule

As a third updating rule� we consider somewhat mixture of the above two rules� It keeps a

certain amount of locality� but it still has some constraint� This rule is de�ned as follows�

finc � min�cinc�W� �
X
j

wj�� and fdec � cdec� ���

That is� we want to keep the total weight smaller than W�� where W� is the total initial

weight� Thus� a winner can gain cinc �in net� cinc � cdec� if there is some room to increase

its weight� In this case� only the winner needs to know the current total weight� or the

amount of room to the limit W�� and the other players can update its weight locally�

Our computer experiments show that the probability P� that a monopolist emerges

is fairly large if cinc is large enough� say cinc � �n� On the other hand� P� gets small when

cinc is small� which is explained in the same way as local rule� Although we have not been

able to prove that P� is large for su�ciently large cinc� we can give some analytical result

supporting it�

Here instead of analyzing P�� we estimate �i� the average number of steps until all but

one players become bankrupt� and �ii� the average number of steps until the total weight

�which is initiallyW�� becomes W���� Let Tn�� and TW��W��� denote the former and the

latter numbers respectively� We prove below that Tn�� is smaller than TW��W��� if W�

is large enough� This means that it is likely that at the time when all but one players

become bankrupt� the total weight� which is the same as the survivor�s weight� is larger

than W���� that is� the surviver is a monopolist�

Theorem ���� Fix again cdec to be one� If I � �ln ��n�n � �� and cinc � �n� then we

have TW��W��� � Tn���

�� E�ciency Analysis

In this section we discuss how fast a monopolist emerges in games with constrained

rule� We estimate an upper bound on the average number of steps needed for monopoly

to emerge� and we give some justi�cation �not a rigorous proof� supporting that it is

O�n��In�cinc����

We start with some de�nitions and notations that are used through the section� Here

we modify our monopolist game and de�ne a variant of monopolist game� Let game�
denote the original monopolist game� We will denote by game� a variant of game� in

which no bankrupt player can win� Thus� in game�� the winning probability of remaining

players is ��n� instead of ��n� As we will see game� is useful for induction and it is easier

to analyze�
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These two game types are de�ned on di�erent probability spaces� Let us de�ne them

more precisely� For all two game types� �the execution of� a game is speci�ed by a

game sequence� i�e�� a string from f�� � � � � ng� that de�nes a history of winners� �Precisely

speaking� we also need to consider in�nite strings� but as we see below� we may ignore

in�nite strings�� We say that a game sequence x kills a player i if wi becomes � �or�

negative� in the game following x just after the end of x� and we say that x derives a

monopolist if the second last player is killed and monopoly emerges just after x� We say

that a game sequence x is valid �resp�� strongly valid� if it derives a monopolist and no

pre�x of it derives a monopolist �resp�� x contains no indices of previously killed players��

Note that the meaning of these notions may vary depending on game types� Now for any

n� let Xn �resp�� Yn� be the set of game sequences for n player games that are strongly

valid w�r�t� game� �resp�� valid w�r�t� game��� For each x in Xn� its probability Prfxg is

n�jxj� On the other hand� the probability fPrfyg of y � Yn depends on the number of

remaining players� and it is rather complicated� �We omit specifying fPrfyg because it

is not important for our discussion�� Note that Xn and Yn are all pre�x free� Also it is

not hard to show that PrfXng and fPrfYng are one� �For example� PrfXng � � follows

from Theorem ����� Therefore� we may regard Xn and Yn as a probability space of the

corresponding game� and we do not have to worry about in�nite strings�

We denote by T �n� I�� � � � � In� �resp�� T��n� I�� � � � � In�� the number of steps needed un�

til monopoly emerges in game� �resp� game�� with n players and initial weight I�� � � � � In�

When all the weights are equal� we use the simpler notation T �n� I�� Our goal is to

get some upper bound on E
T �n� I�� But instead� we will analyze an upper bound on

E
T��n� I�� which gives us an upper bound on E
T �n� I�� as the following lemma guaran�

tees� �The proof is intuitively clear and it is omitted in this abstract��

Lemma ���� There exists c� such that for any su�ciently large n and any I� we have

E
T �n� I� � c�nE
T��n� I��

Now we analyze the convergence speed of game�� For our analysis� we split a game

execution into stages where each stage is a part of the game until some amount of play�

ers become bankrupt� More speci�cally� we denote by t��n� I�� � � � � In� the number of

steps needed in a game with n players and initial weights I�� � � � � In until at least �

player becomes bankrupt� The following lemma relates the two terms T��n� I�� � � � � In�

and t��n� I�� � � � � In��

Lemma ���� For any n and I�� � � � � In� there exists a constant c�� c� � �� and weights

I ��� � � � � I
�
n�c�

such that the following inequality holds�

E
T��n� I�� � � � � In� � E
t��n� I�� � � � � In� � E
T��n� c�� I
�
�� � � � � I

�
n�c�

��
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By this lemma we can use induction for bounding the expected value of T�� Recall that

when analyzing t��n� I�� � � � � In�� by the way it is de�ned� no player becomes bankrupt�

and thus� the amount of decrement is �xed to cinc�n� Thus� game� until at least one player

becomes bankrupt is regarded as a n�dimensional random walk� which is much easier to

analyze� In fact� we can use the following lemma�

Lemma ���� Let X be a random variable that is � with probability ��n and � with

probability ����n� and let S � X�� � � ��Xt� the sum of the outcomes of t random trials

of X� Then� for some constant � � �� the following holds for any t and n�

Pr

���S �
t

n
� �

s
t

n


�� � ����

Now we are now ready to make the following claim��

Claim�

E
T �n� I� � O


n�
�
In

cinc

���
�

Justi�cation� We start with estimating E
t��n� I�� � � � � In� by using the above lemma�

For a given t and for any i� Let ti be the number of times that player i wins within t

steps� Then wi� the weight of player i� in game� is expressed as follows�

wi � Ii � cincti � cdect � Ii � cinc

�
ti �

t

n

�
�

�For simplifying our notation� we use c to denote cinc in the following��

Moreover� since game� until at least one player becomes bankrupt is regarded as a

n�dimensional random walk� we can use Lemma ��� to show that the following event

happens with probability bigger than ����

wi � Ii � c
�
ti �

t

n

�
� Ii � c

�� t

n
� �

s
t

n
�

t

n

�A � Ii � c�

s
t

n
�

Therefore� with probability more than ���� the weight of player i becomes zero or

negative if c�
q
t�n � Ii� that is� t � �Ii�c���n� Now sort players by their initial weights�

and de�ne P to be the set of the �rst �i�e�� the smallest� n�� players� Since the total

weight is W� �at any step�� all players in P have weight at most �W��n and therefore�

Prfwi � � in t� � n
�
�W�

nc�

��
steps j i � P g �

�

�
�

�We do not have a rigorous proof for this result� and for this reason we stated it as a claim�
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Moreover� if we can assume that each player in P become bankrupt independently�

we also have the following probability�

PrfThere exists i � P � such that wi � � in t� steps g � � �
�
�

�

�n��

�

From this observation� it is reasonable to bound E
t��n� I�� � � � � In� by c�t� for some

constant c� since for most of the valid game sequences �a � � �����n�� fraction of them�

this bound holds�

Now combining the above lemmas and the obtained bound� we have

E
T��n� I� � E
t��n� I�� � � � � In� � E
T��n� c�� I
�
�� � � � � I

�
n�c�

�

� c�n
�
�W�

nc�

��
� E
T��n� c�� I

�
�� � � � � I

�
n�c�

�

� c�n
�
�W�

nc�

��
� c��n� ��


�W�

�n� ��c�

��

� E
T��n� c��� I
�
�� � � � � I

�
n�c��

� 	 	 	

� c�n
�
W�

c�

��
� c	n

�
In

c

��
� for some constant c	�

From this and Lemma ���� we obtain the desired bound� tu
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Appendix

Here we state the proofs of lemmas and theorems not stated in the body of the paper�

Section �

We begin with Theorem ���� To prove it� we �rst estimate� the probability PI�W that

one player� say player �� whose initial weight is I obtains weight W at some point in the

game� By using results in random work 
Fel��� we can easily analyze this probability and

obtain the following bounds�

Fact �� For any I and W � we have
I

W � n
� PI�W �

I

W
�

Theorem ��� Fix cdec to be one� and consider one player�s weight� For any t� it increases�

by t
�cinc
n

� �
	
on average� after t steps�

Proof� Consider P �
� with W� and su�ciently large W�� Note �rst that

Prfless than two players� weight reach to W�g � ��� PI�W��
n � nPI�W��� � PI�W��

n��

Prfno player�s wealth reaches to W�g � ��� PI�W��
n�

Then by de�nition of P �
�� we have

P �
� � ��� PI�W��

n � nPI�W��� � PI�W��
n�� � ��� PI�W��

n

�
�
��

I

W� � n

	n
�

nI

W�

�
��

I

W� � n

	n��
�
�
� �

I

W�

	n
�

tu

Next we prove Theorem ���� In the following� we only consider games with semi local

rule speci�ed in the theorem� that is� the game starts with n players� the bound is the

same as the total initial weight W� � nI� and cinc � �n�

Below� for a given k � n� we consider the situation that k players are left� and analyze

their total weight and the weight of the poorest player� For this� we use random walks

representing respectively� the total weight� a random walk for the total� and the weight

of currently the poorest player� a random walk for the poorest� These random walks are

expressed as follows�

��
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Figure �� Random walk for the total �above� and for the poorest �below�

Since the total weight is at most W�� the poorest player cannot have more than W��k�

Also as soon as the poorest player obtains W��k� he cannot be the poorest� and he �or�

his role� is replaced with some currently poorest player� whose weight is again less than

W��k� In any case� if we only consider the weight of the poorest player� we can assume

that the rightmost end is a re�ecting wall� On the other hand� by de�nition of semi local

rule� the rightmost end of a random walk for the total is a re�ecting wall� Thus� in both

random walks� the rightmost walls are re�ecting walls� hence� the particles are eventually

absorbed in the leftmost walls� Here we discuss the di�erence between the number of

steps until the particles are absorbed�

Theorem ��� Fix again cdec to be one� If I � �ln ��n�n � �� and cinc � �n� then we

have TW��W��� � Tn���

Proof� We �rst give an upper bound to Tn��� the average number of steps until all but

one players become bankrupt� For any k � n� consider the situation in the game that k

players are left� and let TP�k� be the average number of steps that some player becomes

bankrupt from this situation�

By Lemma A�� below� we have

Tn�� �
nX

k
�

TP�k�

� n�eW���n � eW���n � � � �� eW���n��� � neW���n � n�n� ��eW���n � �neW����

where the last inequality holds from our assumption W� � n�n� �� ln ��

Next consider TW��W���� the average number of steps needed until the total weight

becomes W��� from W�� Let TT�k� x� y� be the average number of steps until the total

��



weight becomes y from x under the condition that none of remaining k players become

bankrupt� Note �rst that for any k and k� such that k � k�� we have TT�k� x� y� �

TT�k�� x� y�� Then� for any x�� ���� xn��� we have

TT�n�W�� x�� � TT�n � �� x�� x�� � 	 	 	 � TT��� xn���W���� � TT���W��W�����

Hence� TW��W��� � TT���W��W����� On the other hand� TT���W��W���� is bounded

in the following way by using Lemma A�� below and the assumption that cinc � �n�

TT���W��W���� �
n� �

�

��
� �

�

n � �

	W�
� � �

	�
� � e��

	
�

n� �

�
	
�
e

W�
��n��� �� � e���

	
�

n� �

�
	 eW����n����

Comparing both bounds� we have TW��W��� � Tn�� if W� � n�n � �� ln �� tu

Lemma A��� Consider the situation in the game that k players are left� and let TP�k�

be the average number of steps that some player becomes bankrupt from this situation�

Then we have TP�k� � ne
W�
nk �

Proof� Consider a random walk for the poorest� As explained above� we may assume

that the random walk has a re�ecting wall at W��k and an absorbing wall at �� Here

for showing an upper bound� we assume� as the worst case� that the initial weight of the

poorest is W��k� that is� the random walk starts o� at W��k� Then TP�k� is bounded by

the average number of steps until the particle reaches to the absorbing wall at ��

Let tx be the random variable denoting the number of steps starting o� at x and

arriving at x� � for the �rst time� Then we can evaluate tx by

tx �

��� �� with probability � � ��n� and

� � tx�cinc�� � � � �� tx�� � tx� otherwise�

De�ne ex to be the expectation of tx� Then we have

ex �
n

n� �
�

�

n� �
�ex�cinc�� � � � �� ex����

Then by induction on x� we can show that eW��k�x � ������n� ���x� Thus� we have

TP�k� �
W��k��X
x
�

eW��k�x � �n� ��
�
� �

�

n � �

	W�
k � �n � ��e

W�
nk �

tu

Lemma A��� For any x and y� x � y� we have

TT��� x� y� �
n� �

�

��
� �

�

n� �

	W��y
� �

�
� �

�

n� �

	W��x
�
	
�� � e����

Proof� Consider a random walk for the total �see Figure ��� By dividing all parameters

by k � �� we can modify it to essentially the same random walks as Figure ��

��
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Figure �� A modi�cation of a random walk for the total

Note that this random walk is quite similar to a random walk for the poorest �see

Figure � below�� Thus� for ex� the average number of steps starting o� at x and arriving

at x� � for the �rst time� a similar argument derives that the following relation �here c

� cinc����

ex � � �
�

n� �
�ex�c�� � � � �� ex����

Then it is not so hard to see that

eW����x �
�
� �

�

n � �

	x
�
�
� �

�

n � �

	x�c��
�
�
� �

�

n� �

	x�
��

�
� �

�

n� �

	�c��	
�

Now by using our assumption that c � cinc�� � n� we can derive the following bound�

TT��� x� y� �
�W��y�����X
x
�W��x���

�
� �

�

n� �

	x�
��

�
� �

�

n� �

	�c��	
�

n� �

�

��
� �

�

n� �

	W��y
� �

�
� �

�

n� �

	W��x
�
	
�� � e����

tu

Section �

Lemma ��� For any n and I�� � � � � In� there exists a constant c�� c� � �� and weights

I ��� � � � � I
�
n�c�

such that the following inequality holds�

E
T��n� I�� � � � � In� � E
t��n� I�� � � � � In� � E
T��n� c�� I
�
�� � � � � I

�
n�c�

��

Proof� Let Y 
 Yn be the set of all valid game sequences y such that the number of

players becomes strictly smaller than n for the �rst time just after y� By de�nition of

E
T��n� I�� � � � � In�� we have the following equality�

��



E
T��n� I�� � � � � In� �
X
x�Yn

fPrfxg 	 jxj �
X

x�Yn�y�Y
x�yz

fPrfyzg�jyj� jzj��

Notice here that we can split fPrfyzg in two factors� fPrfyg and fPryfzg� where fPryfzg
determines the probability of z after the game follows y� Also note that the set Yy of

strongly valid z depends on y� Thus� we can rewrite the above expression as follows�

E
T��n� I�� � � � � In�

�
X
y�Y

X
z�Yz

fPrfygfPryfzg 	 jyj� X
y�Y

X
z�Yz

fPrfygfPryfzg 	 jzj
�

��X
y�Y

fPrfygjyj
�A X

z�Yz

fPryfzg� X
y�Y

fPrfyg
��X

z�Yz

fPryfzg 	 jzj
�A

� E
t��n� I�� ���� In�
X
z�Yz

fPryfzg� X
y�Y

fPrfygE
T��ny� Ii��y�� � � � � Iiny�y��

� E
t��n� I�� � � � � In� � E
T��n� c�� I ��� � � � � I
�
n�c���

where the values of ny and Ii��y�� � � � � Iiny�y� are determined by the result of the

game following y� On the other hand� c� and I �i are chosen so that the value of

E
T��ny� Ii��y�� � � � � Iiny �y�� is maximized� These values always exist since even if there

is an in�nite number of game sequences y that appear on the summation� there is only a

�nite number of possible values for ny �since ny must be between � and n � �� and Iij�y�

�since
P

j Iij�y� � In�� tu

Lemma ���� Let X be a random variable that is � with probability ��n and � with

probability ����n� and let S � X�� � � ��Xt� the sum of the outcomes of t random trials

of X� Then� for some constant � � �� the following holds for any t and n�

Pr

���S �
t

n
� �

s
t

n


�� � ����

Proof� We estimate the probability that the statement of the lemma is false and show

that it is less than � �� That is� we upper bound the following probability�

Pr

���S �
t

n
� �

s
t

n


�� � Pr
�
S �

t

n

�
� Pr

��� t

n
� S �

t

n
� �

s
t

n


�� �

The �rst term in the sum is bounded by ���� see� e�g�� 
JS��� Let s be the smallest

integer such that s � t�n� �
q
t�n� We calculate� by using Stirling�s approximation� the

second term of the above sum as follows�
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Also routine calculations show that
�
t�n���
n�t�i�

	t �
t�i

i�n���

	i
is always less than � for s � i �

t�n and that this factor is maximized when i � t�n� From this by simple calculation� we

obatain the desired bound with � �
q
�����
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