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Abstract

We suggest that the interaction of a Globally Coupled Map �GCM� with an

individual element inside the system is� from a computational point of view� indis�

tinguishable of a ������dependent noise in the turbulent region of the phase space�

Therefore� we can use the framework of Computational Mechanics to give a mea�

sure that clearly separates the ordered from the turbulent phases� Furthermore�

our procedure is able to detect a small ordered domain inside the turbulent phase�

These results reinforce the view of GCMs as properly de�ned mean �eld models of

complex nonlinear networks�
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There are a plethora of systems in nature that compute� at last in a na��ve sense of

computation� Ant colonies and brains are some unquestionable examples� they store�

transmit and manipulate information� However� research on these systems has usually

emphasized pattern formation and dynamical behaviour� leaving aside their computa	

tional properties and how dynamics and computation are mutually involved� Of course�

this bias in interests is a consequence of a lack of an adequate general theory of computa	

tion in dynamical systems� though some recent proposals� such as that of Computational

Mechanics 
��� aim to �ll that gap� The purpose of the new �eld of computational mechan	

ics is to uncover the implicit manipulation of information embedded in natural systems

also called intrinsic computation�� connecting pattern discovering and pattern formation

with the computational capabilities of the system 
���

The study of computation in physical�biological systems cannot be accomplished with	

out a thorough understanding of the interplay between dynamics and computation in a

more formal� and therefore more manageable� setting� Up to now� computational mechan	

ics has been applied to formal dynamical systems but see 
���� leading to a determination

of computational features of cellular automata 
��� transitions at the period	doubling route

to chaos 
�� and one	dimensional spin systems 
��� revealing some new properties of these

systems not accounted for by classical measures such as entropies and algorithmic def	

initions of complexity 
��� Computational mechanics has also been applied to globally

coupled maps� which were taken as models of collectives of dynamical complex agents in

order to speculate about the possible trade	o� between collective complexity and indi	

vidual complexity observed in social insects 
��� The work we introduce here aims to go

further into the study of the above mentioned trade	o�� through a quantitative measure

of the interaction of the collective with an individual of the system� This measure will

allow us to characterize properly the turbulent phase of GCMs� that is� the same region
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of the phase space that was found turbulent using either Kaneko�s cluster distribution

function Qk� 
��� which is de�ned as the basin volume ratio for a k	cluster attractor see

below�� or the mutual information between two randomly chosen elements of the system


���

Let us recall that globally coupled maps are systems of N coupled maps� In this paper

we will work with the logistic map

xn�� � f�xn� � �� �x�n

interacting with a sort of mean state of the system mean �eld�

hn �
�

N

NX
i��

f�x
i
n� ��

by means of the �interaction parameter� �� that is

xin�� � � � ��f�x
i
n� � �hn ��

This apparently simple system has indeed a very complicated dynamics with a phase

space where � � � � ��� and ��� � � � �� though for � � ��� interesting phenomena

can be observed 
��� displaying turbulent� ordered and even glassy behaviour� These

diverse dynamics are due to the interplay between � and �� that is� to the interaction of

the tendency of the system to disorder because of individual chaotic behaviour with the

tendency to synchronize due to global averaging� After the GCM falls on an attractor

the N elements of the system split into k clusters� This allows one to de�ne a cluster

distribution function Qk� and to characterize the di�erent phases see 
�� for details��

It is also known that hn behaves� below some large� Nc and in the turbulent region� as

a noise with a distribution P h� close to a Gaussian form� This is not surprising� since hn

is a sum of values that �uctuate randomly and almost� independently� However� above
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Nc one can observe a deviation from the law of large numbers� which is due probably

to a hidden coherence 
���� Some analysis based on the Perron	Frobenius operator have

questioned this discrepance 
��� by using the tent map instead of the logistic one which

is non	mixing��

Kaneko 
�� reported that at the turbulent phase all attractors have many � N�

clusters� and the following condition

X
k�N

�

Qk� � �

holds� Speci�cally� the average cluster number R �
PN

k�� kQk� gives R � N in the

turbulent phase� so that it would be reasonable to expect that any randomly chosen�

element of a GCM in the turbulent phase would not be computationally di�erent from a

logistic map perturbed by a noise with a distribution function P h� see below��

In order to get a computational measure of an individual belonging to a certain GCM�

we must get a long enough orbit of that individual and discretize it with the generating

partition 
��

� � fxji � 
��� ��� S
j
i � ��x

j
i � 
�� ��� S

j
i � �g

where xji is the state of the j	th individual at the time step i and S
j
�S

j
���� will be the dis	

cretized orbit of the j	th individual� It is possible to build a stochastic �nite automaton�

from this bit sequence� that will give us the computational counterpart of the original

dynamics and its associated statistical complexity C� that is� roughly� the Shannon en	

tropy of the stationary probability distribution of the stochastic automaton� if viewed as

a Markov chain see 
�� for details�� C will quantify the above mentioned intrinsic com�

putation� provided that the automaton was a feasible model of the dynamical behaviour

of the i	th individual 
���
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Now� for a given GCM� that is� given N � � and � we can choose randomly an individual

from the GCM and� after a long enough transient� get a bit sequence using the partition

�� with which to compute its complexity Cgcm� Besides� we can easily obtain a histogram

of hn given a partition of the interval 
��� �� with some resolution  x� see �g� ��� that

is� an approximation of the distribution P h�� with which we build the following noisy

logistic map

xn�� � �� ��f�xn� � ��n ��

where �n are independent and identically distributed random variables with distribution

P ���� From � we generate another bit sequence and compute its associated complexity

C��

Once we have Cgcm and C� we can argue as follows� As we have seen above� hn

behaves as a noise term in the turbulent region� so that we should expect Cgcm � C��

However� in the ordered region� the system splits in a number of synchronized clusters

where each cluster displays quite ordered behaviour 
��� therefore one should observe the

following inequality Cgcm � C�� since a noisy perturbation such as that of � is expected

to cause certain disorder on the deterministic dynamics� though not enough to �mask�

the deterministic contribution� In fact� P h� will be� in the ordered phase� a discrete

distribution with P h�� � � for a �nite set of h� values �g� �� B�� So

� Turbulent GCM � Cgcm � C�

� Ordered GCM � Cgcm � C�

We have veri�ed numerically our hypothesis using a �grid� over the phase space � �

� � ��� and ��� � � � � with  � � ���� and  � � ����� We have computed Cgcm and

C� for each �� �� both complexities were computed with the �	machine reconstruction
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algorithm 
�� from a bit sequence of length ���� and we have classi�ed the point as

�ordered� or �turbulent� according to the relation between the two complexities� as stated

above we have not found any �� �� pair in which Cgcm � C��� see �gs � and �� Our

resulting phase space see �g� �� is identical to that found by Kaneko see also 
��� using

the cluster distribution function Qk�� but a small domain of ordered behaviour has been

found inside the turbulent phase�

To sum up� in this paper we have explored the logistic GCM from a computational

mechanics point of view� by means of a generating partition � and the corresponding bi	

nary time series� We have particularly analyzed the turbulent phase� where nonstatistical

behavior due to statistical dependence of di�erent lattice sites has been reported� It is

not di!cult to show that the �uctuations of the �eld h are given by 
���

�
h� hhi��

�
�

��
�

N

NX
i��

�
f�x

i��
�
f�x

i�
����	

�
�

N�

NX
i��

��i �
�

N�

X
i��j

	ij ��

where ��i is the variance for the single map f�x
i� and 	ij is the covariance between f�xi�

and f�xj�� The non	statistical behaviour comes from the last term in the right hand

side� which is zero only in some cases such as the tent map 
�������� Clearly there is

a relevant di�erence between both systems� for the single noisy map the random �eld

� obtained by randomly sampling P h� is uncorrelated in time and this is not the case

in the GCM� So we might suspect that some relevant structure should be present at the

turbulent phase� However� in terms of computational mechanics� no real di�erence arises

between the GCM at the turbulent phase and a single map with a noise term with the

same statistical structure� In spite of the presence of a hidden coherence in the GCM� this

underlying structure does not contribute to the statistical complexity approximated with
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the reconstructed �	machines�� implying that the system lacks any information processing

capability 
�� beyond the �trivial� one associated to the noisy map�

In this context� it has been suggested that GCMs are a formal model of neural	network	

like structures 
��� Real neural ensembles do show complex dynamics and spatiotemporal

patterns 
��� and it has been conjectured that chaos would play a key role in brain

dynamics� If the GCM analogy is appropriate the present study suggests that neural

networks should avoid highly	dimensional chaotic phases in order to retain their basic

information	processing features� which would not be supported by the hidden coherence�
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Figure Captions

��� Probability distributions P h� for a GCM in the turbulent phase A� � � ����� � �

����� and in the ordered phase B� � � ����� � � ������ Insets� in each case we show

the dynamics of a single element in the GCM above� and the corresponding single noisy

logistic map below� see text��

��� Cgcm and C� computed for two �� �� pairs belonging to the turbulent phase� according

to 
��� As we can see� Cgcm � C��

�	� Cgcm and C� computed for two �� �� pairs belonging to the ordered phase 
��� In these

cases Cgcm � C��

���� Phase space of GCM N � ����� Cgcm and C� were computed for �� �� ��	pairs ��

belonging to Kaneko�s turbulent phase� �� to the ordered phase� and classi�ed according

to either Cgcm � C� �turbulent�� or Cgcm � C� �ordered��� The resulting phase space is

almost identical to that computed by Kaneko 
�� see text�� Cgcm was computed choosing

at random one element of the GCM after a transient of ��� steps��
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