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Abstract

We suggest that the interaction of a Globally Coupled Map (GCM) with an
individual element inside the system is, from a computational point of view, indis-
tinguishable of a (yu,€)-dependent noise in the turbulent region of the phase space.
Therefore, we can use the framework of Computational Mechanics to give a mea-
sure that clearly separates the ordered from the turbulent phases. Furthermore,
our procedure is able to detect a small ordered domain inside the turbulent phase.
These results reinforce the view of GCMs as properly defined mean field models of

complex nonlinear networks.
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There are a plethora of systems in nature that compute, at last in a naive sense of
computation. Ant colonies and brains are some unquestionable examples: they store,
transmit and manipulate information. However, research on these systems has usually
emphasized pattern formation and dynamical behaviour, leaving aside their computa-
tional properties and how dynamics and computation are mutually involved. Of course,
this bias in interests is a consequence of a lack of an adequate general theory of computa-
tion in dynamical systems, though some recent proposals, such as that of Computational
Mechanics [1], aim to fill that gap. The purpose of the new field of computational mechan-
ics 1s to uncover the implicit manipulation of information embedded in natural systems
(also called intrinsic computation), connecting pattern discovering and pattern formation
with the computational capabilities of the system [2].

The study of computation in physical /biological systems cannot be accomplished with-
out a thorough understanding of the interplay between dynamics and computation in a
more formal, and therefore more manageable, setting. Up to now, computational mechan-
ics has been applied to formal dynamical systems (but see [3]), leading to a determination
of computational features of cellular automata [4], transitions at the period-doubling route
to chaos [5] and one-dimensional spin systems [2], revealing some new properties of these
systems not accounted for by classical measures such as entropies and algorithmic def-
initions of complexity [6]. Computational mechanics has also been applied to globally
coupled maps, which were taken as models of collectives of dynamical complex agents in
order to speculate about the possible trade-off between collective complexity and indi-
vidual complexity observed in social insects [7]. The work we introduce here aims to go
further into the study of the above mentioned trade-off, through a quantitative measure
of the interaction of the collective with an individual of the system. This measure will

allow us to characterize properly the turbulent phase of GCMs, that is, the same region



of the phase space that was found turbulent using either Kaneko’s cluster distribution
function Q(k) [8], which is defined as the basin volume ratio for a k-cluster attractor (see
below), or the mutual information between two randomly chosen elements of the system
[7].

Let us recall that globally coupled maps are systems of N coupled maps. In this paper

we will work with the logistic map

Tnpr = fulzn) =1— Mwi

interacting with a sort of mean state of the system (mean field)

1 l.
hy = N;fu(wn) (1)

by means of the “interaction parameter” e, that is

Tnpr = (1 =€) fulwy,) + ehy, (2)

This apparently simple system has indeed a very complicated dynamics with a phase
space (where 0 < € < 0.4 and 1.4 < p < 2, though for € > 0.4 interesting phenomena
can be observed [9]) displaying turbulent, ordered and even glassy behaviour. These
diverse dynamics are due to the interplay between p and e, that is, to the interaction of
the tendency of the system to disorder because of individual chaotic behaviour with the
tendency to synchronize due to global averaging. After the GCM falls on an attractor
the N elements of the system split into & clusters. This allows one to define a cluster
distribution function Q(k) and to characterize the different phases (see [8] for details).

It is also known that h,, behaves, below some (large) N. and in the turbulent region, as
a noise with a distribution P(h) close to a Gaussian form. This is not surprising, since h,,

is a sum of values that fluctuate randomly and (almost) independently. However, above



N, one can observe a deviation from the law of large numbers, which is due probably
to a hidden coherence [10]. Some analysis based on the Perron-Frobenius operator have
questioned this discrepance [11] by using the tent map instead of the logistic one (which
is non-mixing).

Kaneko [8] reported that at the turbulent phase all attractors have many (~ N)
clusters, and the following condition

> Q) =1

k>

holds. Specifically, the average cluster number R = Eivzl EQ(k) gives R ~ N in the
turbulent phase, so that it would be reasonable to expect that any (randomly chosen)
element of a GCM in the turbulent phase would not be computationally different from a
logistic map perturbed by a noise with a distribution function P(h) (see below).

In order to get a computational measure of an individual belonging to a certain GCM,
we must get a long enough orbit of that individual and discretize it with the generating
partition [5]

I={a) €[-1,0)= 5/ =0;2) €[0,1] = &/ =1}

where :L'f is the state of the j-th individual at the time step ¢ and SfS% will be the dis-
cretized orbit of the j-th individual. It is possible to build a stochastic finite automaton,
from this bit sequence, that will give us the computational counterpart of the original
dynamics and its associated statistical complerity C, that is, roughly, the Shannon en-
tropy of the stationary probability distribution of the stochastic automaton, if viewed as
a Markov chain (see [5] for details). C will quantify the above mentioned intrinsic com-

putation, provided that the automaton was a feasible model of the dynamical behaviour

of the i-th individual [1].



Now, for a given GCM, that is, given N, € and p we can choose randomly an individual
from the GCM and, after a long enough transient, get a bit sequence (using the partition
IT) with which to compute its complexity Cyer,. Besides, we can easily obtain a histogram
of h,, (given a partition of the interval [—1,1] with some resolution Az, see fig. 1), that
is, an approximation of the distribution P(h), with which we build the following noisy

logistic map

Tt = (1 =€) fulwn) + ea (3)

where ¢, are independent and identically distributed random variables (with distribution
P(£)). From 3 we generate another bit sequence and compute its associated complexity
Ce.

Once we have Cye, and C¢ we can argue as follows: As we have seen above, h,
behaves as a noise term in the turbulent region, so that we should expect Cye = Ce.
However, in the ordered region, the system splits in a number of synchronized clusters
where each cluster displays quite ordered behaviour [8], therefore one should observe the
following inequality Cye, < Cp, since a noisy perturbation such as that of 3 is expected
to cause certain disorder on the deterministic dynamics, though not enough to “mask”
the deterministic contribution. In fact, P(h) will be, in the ordered phase, a discrete

distribution with P(h*) > 0 for a finite set of h* values (fig. 1, B). So
o Turbulent GCM = Cy, = Ck
o Ordered GCM = Cyer < Ce

We have verified numerically our hypothesis using a “grid” over the phase space 0 <
€ <0.2and 1.4 < p <2 with Ae = 0.02 and Ap = 0.06. We have computed Cyp, and

C¢ for each (i, €) (both complexities were computed with the e-machine reconstruction



algorithm [5] from a bit sequence of length 10°) and we have classified the point as
“ordered” or “turbulent” according to the relation between the two complexities, as stated
above (we have not found any (u,€) pair in which Cye, > C¢), see figs 2 and 3. Our
resulting phase space (see fig. 4) is identical to that found by Kaneko (see also [7]) using
the cluster distribution function Q(k), but a small domain of ordered behaviour has been
found inside the turbulent phase.

To sum up, in this paper we have explored the logistic GCM from a computational
mechanics point of view, by means of a generating partition II and the corresponding bi-
nary time series. We have particularly analyzed the turbulent phase, where nonstatistical
behavior due to statistical dependence of different lattice sites has been reported. It is

not difficult to show that the fluctuations of the field & are given by [12]

(i) = <{% <xi>>}}2>

S D R g 4)
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where o7 is the variance for the single map f,(z') and ay; is the covariance between f,(z*)
and f,(2?). The non-statistical behaviour comes from the last term in the right hand
side, which is zero only in some cases (such as the tent map [11,12]). Clearly there is
a relevant difference between both systems: for the single noisy map the random field
¢ obtained by randomly sampling P(h) is uncorrelated in time and this is not the case
in the GCM. So we might suspect that some relevant structure should be present at the
turbulent phase. However, in terms of computational mechanics, no real difference arises
between the GCM at the turbulent phase and a single map with a noise term with the
same statistical structure. In spite of the presence of a hidden coherence in the GCM, this

underlying structure does not contribute to the statistical complexity (approximated with



the reconstructed e-machines), implying that the system lacks any information processing
capability [2] beyond the “trivial” one associated to the noisy map.

In this context, it has been suggested that GCMs are a formal model of neural-network-
like structures [8]. Real neural ensembles do show complex dynamics and spatiotemporal
patterns [13] and it has been conjectured that chaos would play a key role in brain
dynamics. If the GCM analogy is appropriate the present study suggests that neural
networks should avoid highly-dimensional chaotic phases in order to retain their basic

information-processing features, which would not be supported by the hidden coherence.
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Figure Captions

[1] Probability distributions P(h) for a GCM in the turbulent phase (A, u = 1.76, € =
0.04) and in the ordered phase (B, ¢ = 1.58, ¢ = 0.08). Insets: in each case we show
the dynamics of a single element in the GCM (above) and the corresponding single noisy

logistic map (below, see text).

[2] Cyern and C¢ computed for two (y, €) pairs belonging to the turbulent phase, according

to [8]. As we can see, Cyem =~ Ce.

[3] Cyem and C¢ computed for two (y, €) pairs belonging to the ordered phase [8]. In these

cases Cyem < Ce.

[4]. Phase space of GCM (N = 500). Cyen and C¢ were computed for 90 (u, €)-pairs (44
belonging to Kaneko’s turbulent phase, 46 to the ordered phase) and classified according
to either Cyer = C¢ (“turbulent”) or Cyepy < Ce¢ (“ordered”). The resulting phase space is
almost identical to that computed by Kaneko [8] (see text). Cyen was computed choosing

at random one element of the GCM (after a transient of 10* steps).
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