
SOLVING POINT AND PLANE VS. ORTHOGONAL POLYHEDRA
USING THE EXTREME VERTICES MODEL (EVM)

Antonio Aguilera. and Dolors Ayala.
Universidad de las Américas-Puebla. Universitat Politècnica de Catalunya.

Puebla, México. Barcelona, España.
antonio@mail.pue.udlap.mx ayala@lsi.upc.es

aguilera@lsi.upc.es

ABSTRACT

In a previous work, Orthogonal Polyhedra (OP) were proposed as geometric bounds in CSG. Primitives
in the CSG model were approximated by their respective bounding boxes. The polyhedrical bound for the
CSG object was obtained by applying the corresponding Boolean Algebra to those boxes. Also in that
paper, a specific and very concise model for representing and handling OP was presented: the Extreme
Vertices Model (EVM). The EVM allows simple and robust algorithms for performing the most usual and
demanding tasks. This paper deals with the classification of point, and plane vs. OP. These operations can
be done on the EVM in linear time. Furthermore, a very important feature of EVM algorithms is that, even
though their input data (i.e., vertices' coordinates) can be floating-point values, no time-consuming
floating-point arithmetic is ever performed (except when explicitly noted), so there are absolutely no
propagation errors due to partial results (which do not exist). All results are obtained by just classifying
and selecting vertices' coordinates of the initial data.

1 INTRODUCTION

The Extreme Vertices Model (EVM), first published
in [Aguil96], was introduced as a restricted model for
two-manifold Orthogonal Polyhedra (OP). Also in
that paper, a Boolean operations algorithm that works
for that model was presented. Moreover, in more
recent works [Aguil97, 98a], a natural domain exten-
sion for the EVM basics that now handles
Orthogonal Pseudo-Polyhedra (see a definition
below), is presented. All the theoretical foundations
for the EVM in its full domain can be found in
[Aguil98b].

This paper deals with three processes: (a) determin-
ing the set membership classification (IN, ON, or
OUT) of a point against an OP; (b) testing whether a
general plane intersects an OP; (c) splitting an OP
with a plane when it is perpendicular to a specific
coordinate axis. The cases when the splitting plane is
perpendicular to another coordinate axis, as well as
the classification of a line against an OP are problems
that can be easily handled by the EVM (see
[Aguil97, 98b]). However, they are not considered
here because they require a deeper exposition of the
EVM concepts and the space limitations for this
paper do not allow that.

Splitting an OP with a general plane is not consid-
ered because we want a closed operation in the EVM,
otherwise the results would not be OP and could not
be represented in our model.

This work is organized as follows: The next section
introduces some necessary concepts on orthogonal
and pseudo-polyhedra, then presents a vertex classifi-
cation for OP. Section 3 introduces the most basic
EVM concepts and its interface. Section 4 deals with
the Set Membership Classifications on the EVM, and
section 5 analyzes and compares the performance of
the proposed algorithms. Finally section 6 contains
our conclusions.

2 BACKGROUND

2.1 Terminology.

A pseudo-polyhedron is a finite collection of planar
faces such that (a) every edge has at least two
adjacent faces, and (b) if any two faces meet, they
meet at a common edge [Tang91]. A two-manifold
edge is adjacent to exactly two faces, and a two-
manifold vertex is the apex of only one cone of faces.
Conversely, a non-manifold edge is adjacent to more
than two faces, and a non-manifold vertex is the apex
of more than one cone of faces [Rossi91].

Polyhedra are two-manifold r-sets. Pseudo-polyhedra
(almost polyhedra) are pseudo-manifold r-sets, i.e., r-
sets with non-manifold boundary (edges or vertices).
Polyhedra are a subset of pseudo-polyhedra. Finally,
a non-regular polyhedron is a non homogeneously
three-dimensional object, i.e., it has "dangling" faces
or edges. [Rossi91, Tang91].

2.2 Orthogonal Polyhedra.

Orthogonal polyhedra (OP) are polyhedra with all
their edges and faces oriented in three orthogonal
directions [Prepa85]. Orthogonal Pseudo-Polyhedra
(OPP) is defined as regular and orthogonal polyhedra
that may have non-manifold boundary. In an OPP, a
non-manifold edge is adjacent to exactly for faces and
a non-manifold vertex is the apex of two cones of
faces (see Fig. 1).

a b c

Figure 1: a) An OP. b) An OPP. c) A non-regular
orthogonal polyhedron.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0 1

2

3

4

5

6

7 8

a b

c d e

f g h

i j k l m n

o p q

r s t

u v

Figure 2: Possible configurations with 0 to 8 surrounding boxes.

2.3 Vertex Classification for OPP.

In an OP the number of incident edges for any vertex
can be only three, four or six [Juan89]. In this sub-
section we characterize vertices of OPP. In [Aguil97,
98b], it is shown that, as an OPP can be understood
as the resulting B-Rep of an orthogonal spatial
enumeration model as a voxelization, then vertices of
an OPP can be characterized by studying vertices in a
voxelization. Moreover, the classification of these
vertices follows the same pattern as the classification
of nodes in the marching cubes algorithm [Loren87].
Considering the common vertex of eight octants,
which can be either full or empty, there are 28 = 256
possible combinations which, by applying rotational
symmetries, may be grouped into 22 equivalence
classes (configurations) [Sriha81], shown on Fig. 2.
Grouping complementaries leads to the 14 basic
patterns [Loren87], configurations a to n, also called
major cases [vGeld94].

Configurations o to v correspond to the complements
of those from a to n. Finally, configurations i to n are
self-complementaries. It is also shown that each
configuration represents a vertex for the final OPP,
except a, c, i, m, r, and v. These configurations are
special cases which represent a point outside the OPP
(a), on a two-manifold edge (c), on a face (i), on a
non-manifold edge(m), on a two-manifold edge (r),
and a point interior to the solid (v).

From the analysis of Fig. 2, vertices can be classified
into eight types depending on the number of two-
manifold and non-manifold edges incident to them.
Fig. 3 shows these types which will be referred as
V3, V4, V4N1, V4N2, V5N, V6, V6N1 and V6N2 (the
first digit shows the number of incident edges, the
"N" is present if at least one Non-manifold edge is
incident to it, and the second digit is included to
distinguish between two different types that
otherwise would receive the same name).

V3 V4 V4N1 V4N2 V5N V6 V6N1 V6N2

 V3 V4 V4N1 V4N2 V5N V6 V6N1 V6N2
Number of incident edges 3 4 4 4 5 6 6 6
Number of two-manifold edges 3 4 3 2 4 6 3 -
Number of non-manifold edges - - 1 2 1 - 3 6
Number of incident faces 3 4 5 6 6 6 9 12
Number of surrounding boxes 1,3,5,7 4 3, 5 4 2, 6 2, 4, 6 3, 5 4

 Corresponding configurations b,f,o,u j g, p k d, s e, l, t h, q n
Extreme Vertex Yes no Yes no no no Yes no

Figure 3: Vertex classification according to its number of incident edges
(dashed lines represent non-manifold edges).

3 THE EXTREME VERTICES MODEL (EVM)
FOR OPP

3.1 Brinks, Extreme Vertices, and Planes (Lines)
of Vertices.

A brink is the longest uninterrupted segment, built
out of a sequence of collinear and contiguous two-
manifold edges of an OPP, P.

Non-manifold edges do not belong to brinks. Every
two-manifold edge belongs to a brink, whereas every
brink consists of one or more edges and contains as
many vertices as the number of edges plus one (see
Fig. 4.a, and Fig. 4.b).

In a brink each ending vertex is V3, V4N1, or V6N1
and the remaining (interior) are V4, V4N2, V5N or
V6. Vertices V6N2 do not belong to any brink.
According to the above analysis, Vertices V3, V4N1,
and V6N1 have in common that they are the only
ones that have exactly three incident two-manifold
and linearly independent edges, regardless of the
number of incident non-manifold edges (if any),
therefore those vertices mark the end of brinks in all
three orthogonal directions. Any V4, V4N2, V5N or
V6 is the sole common point of two collinear edges
of a same brink, so they can not be ending vertices of
a brink. Finally all six incident edges of a V6N2 are
non-manifold edges, so none of them belongs to a
brink, and therefore this vertex does not belong to
any brink, either (see Fig. 3 and Fig. 4).

A B C D E F

G

a b

A B C D E F

c
G

X

Figure 4: a) An OPP with a brink having five edges and six vertices. Vertices A and F are V3, B and D
are V6 (configurations l & e), C is V4, and E & G are V5N. b) There are also seven other brinks of two
edges each. The non-manifold elements are vertex D and edge EG (dashed). c) Its EV set viewed as six
planes of vertices perpendicular to X (the shaded polygons).

We will call Extreme Vertices (EV) of an OPP to the
ending (or extreme) vertices of all the OPP brinks,
i.e., vertices V3, V4N1, and V6N1 of the OPP. We
define the Extreme Vertices Model (EVM) for OPP
as a model that only stores all their EV. Finally, an
ABC-sorted EVM is an EVM where its EV are sorted
first by coordinate A, then by B, and then by C. An
EVM can be sorted on six different ways: XYZ, XZY,
YXZ, YZX, ZXY, and ZYX. From now on, EVM(P)
will denote the ABC-sorted EVM of an OPP P, since
most of the definitions and results (although not all
of them) require of this ABC-ordering. Although the
EVM has been defined for 3D-OPP, it is also defined
for 2D-OPP and 1D-OPP [Aguil98b].

Theorem 1. The Extreme Vertices Model is a
complete B-Rep model for OPP.

Coordinate values for non-extreme vertices can be
directly obtained from coordinates of EV by inter-
secting brinks. Moreover, all remaining geometric and
topological information about an OPP can also be
obtained from its EVM. For a formal proof of this
theorem see [Aguil98b].

Let Vb = V2k−1 and Ve = V2k , for k = 1, 2,… be two
consecutive vertices within an ABC-sorted EVM(P),
then Vb and Ve are the beginning and ending

vertices of the kth C-brink defined in an ABC-sorted
EVM. (C-brinks refers to those brinks parallels to the
C axis.)

A plane of vertices of an OPP is the set of EV lying
on a plane perpendicular to a coordinate axis (i.e., the
2D-EVM of the faces on that plane, see Fig. 4.c). We
will also refer as line of vertices (within a plane of
vertices) to the set of EV lying on a line parallel to a
coordinate axis (i.e., the 1D-EVM of collinear
brinks). From now on, plv will refer to both planes
and lines of vertices for orthogonal polyhedra and
polygons), respectively.

3.2 The ABC-sorted Type, and Interface for the
EVM.

According to the above, the ABCsorted type can be
defined, along with the following primitive opera-
tions:

FUNCTION InitEVM() RETURN ABCsorted
{ Returns an empty ABC-sorted EVM }

PROCEDURE PutBrink(INPUT
Vb,Ve:Vertex; I/O P: ABCsorted)
{ Appends to an EVM a brink defined

by its Extreme Vertices Vb & Ve
(i.e., appends two consecutive
Extreme Vertices to the EVM P) }

PROCEDURE ReadBrink(INPUT
P:ABCsorted; OUTPUT Vb, Ve: Vertex)
{ Reads next brink (or pair of

Extreme Vertices) from an EVM P.}

FUNCTION ReadPlv(P: ABCsorted,
dim: INTEGER) RETURN ABCsorted
{ Extracts next plane (dim=2) or

line (dim=1) of vertices from an
EVM P. That is, the set of
Extreme Vertices with the same A
(or A & B) coordinate values. }

FUNCTION EndEVM(P: ABCsorted)
RETURN Boolean
{ Returns TRUE if the end of P has

been reached. }

FUNCTION GetCoord(P: ABCsorted,
dim: INTEGER) RETURN CoordType
{ Gets the common A (dim=2) or B

(dim=1) coordinate of a plane
(line) of vertices P. }

Where CoordType is the chosen type for the vertex
coordinates (INTEGER, REAL, DOUBLE, etc.).

4 SET MEMBERSHIP CLASSIFICATIONS
ON THE EVM

4.1 Point in Polyhedra.

The chosen method is an adaptation from the well-
known crossings test [Shimr62], also known as the
parity, or even-odd test [Prepa85, Mänty88]. This
test leads to the fastest algorithm without any prepro-
cessing [Haine94].

The adaptation consists in considering a semi-line
parallel to the A-axis (B-axis for the 2D case),
starting from -∞ and ending at the test point. Then a
sweep-plane(line)-like process is performed, which
starts with an OUT condition and updates it when-
ever the OPP boundary is crossed (or just touched).
All three (IN, ON, and OUT) conditions are handled.
When the semi-line goes through a plane of vertices
the process is similarly repeated for this plv, i.e., it is
a recursive process in the dimension. The trivial (or
base) case is for dim = 1, where the test is performed
for a line of vertices.

a c

f

a

a b c

d e

f

p

q

b

a b c

d e f

Pl1 Pl2 Pl3 Pl4

c

Figure 5: Two points p and q are to be tested against an OPP. A semi-line from -∞ and ending at p goes
through Pl1, Pl2 and Pl3 (the supporting planes of the OPP's faces) at points a, b, and c, respectively;
while a semi-line from -∞ and ending at q goes through those planes at d, e, and f. Points a to f are
recursively tested against the corresponding faces. In this example, points d and e are outside the corre-
sponding faces (OUT) so the OPP's boundary is not crossed at these two points. Any plv that is beyond
the test point (like Pl4) or is not perpendicular to the semi-line will not need to be processed at all.

The problem in the ON cases, when the semi-line
passes through one or more vertices and edges can be
ignored by considering the semi-line to be a half-
plane divider, with one of the half-planes including
the semi-line's points. In other words, whenever the
semi-line passes through a vertex, the vertex, and the
corresponding edge on the semi-line, are always clas-
sified as being infinitesimally above it. In this way,
no vertices or edges are considered lying on the semi-
line, and the resulting code is both simpler and faster.

Moreover, in order to handle the ON cases correctly,
the ON condition is further subdivided as ONIN and
ONOUT subconditions, which correspond to the ON
condition being infinitesimally IN or OUT, respec-
tively. Fig. 6 shows a 1D example (left) and some
2D examples (right) which include all possible tran-
sition cases. Finally, transition cases are sumarized in
Table 1.

Ve = V2k

Vb = V2k −1

OUT

ONOUT

IN

ONIN

OUT OUT & ONOUT IN & ONIN

Figure 6: Edges and vertices lying on the semi-line (ON cases) are further classified as ONIN or ONOUT
according to the classification (IN or OUT) of the corresponding point being infinitesimally above it.
Left) 1D example. Right) 2D examples.

 OUT ONOUT IN ONIN INresult ONresult Meaning

 OUT OUT ONOUT IN ONIN FALSE FALSE OUT
ONOUT ONOUT OUT ONIN IN FALSE TRUE ONOUT
 IN IN ONIN OUT ONOUT TRUE FALSE IN
ONIN ONIN IN ONOUT OUT TRUE TRUE ONIN

Table 1: The IN, OUT, ONIN and ONOUT transition rules. Table 2: Boolean values code.

Algorithm 1: Point in EVM.

This algorithm receives an ABC-point pt and an
ABC-sorted EVM P, and produces two Boolean
results: INresult and ONresult , whose
combined values produce all four possible results as
shown in Table 2.

It recursively testes whether the ray crosses any plv
previous to the test point. Since each EV is processed
at most three times (once at each recursive level),
then this algorithm runs in linear time. The corre-
sponding Point in EVM Algorithm can be stated as:

PROCEDURE PointInEVM(INPUT pt: ABCpoint; P: ABCsorted; dim: INTEGER;
OUTPUT INresult, ONresult:BOOLEAN);

VAR
plv: ABCsorted; { current plane (line) of vertices }
INflag, ONflag, { IN & ON flags returned by recursive call}
PtInPl: BOOLEAN; { TRUE if pt lies on the plv just read }
plvCoord: CoordType; { for saving the plv common coordinate }

ENDVAR

IF dim = 1 THEN PtInLine(pt, P, INresult, ONresult) {trivial case}
ELSE

dim := dim-1;
PtInPl := FALSE; { assume pt not lying on Pl }
INresult := FALSE; { initialize result as OUT }
ONresult := FALSE; { initialize result as OUT }
plv := ReadPlv(P, dim);
plvCoord := GetCoord(plv, dim);
WHILE NOT EndEVM(P) AND plvCoord ≤ PtCoord(pt, dim) DO

IF plvCoord = PtCoord(pt, dim) THEN PtInPl := TRUE ENDIF
PointInEVM(pt, plv, dim, INflag, ONflag); { recursive call }
IF INflag THEN INresult := NOT INresult ENDIF
IF ONflag THEN ONresult := NOT ONresult ENDIF
plv := ReadPlv(P, dim);

ENDWHILE

IF PtInPl AND INflag THEN ONresult := TRUE ENDIF

ENDIF
ENDPROCEDURE

Where procedure PtInLine returns:

• ONIN, if pt =Vb = V2k−1, (pt is the beginning vertex of the kth C-brink, for some k.)

• ONOUT, if pt = Ve = V2k , (pt is the ending vertex of the kth C-brink, for some k.)

• IN, if Vb < pt < Ve, (pt is in the interior of the kth C-brink, for some k.)
• OUT, otherwise,

as described in first column of Table 1, and the returned result is coded according to Table 2.

4.2 Testing a Plane against an OPP.

A test for determining whether a general plane
intersects an OPP P, can be developed for the EVM,
using the fact that a plane intersects P iff it

intersects any of the OPP brinks, i.e., if the Extreme
Vertices of a brink are at either side of the plane.
Moreover, C-brinks can be trivially tested for this
intersection in linear time, since they are defined by
two consecutive vertices Vb = V2k−1 and Ve = V2k .

Different ABC-sortings of the EVM can be used for
testing other brinks. Thus, an O(n Log n) preprocess
(the sort) is needed to test any number of different
planes against P, each in linear time.

Furthermore, the intersection of the plane with P
(i.e., the section) can be computed in the following
way. As each brink is tested, its intersection point
with the plane can be computed (this process requires
floating-point arithmetic), then the intersecting points
of any two brinks with a common EV can be joined
in a domino-like procedure, effectively obtaining the
contour of the section.

4.3 Splitting an OPP with a plane perpendicular
to the C axis.

This section presents an algorithm for the classi-
fication of an OPP P against splitting plane SP
perpendicular to the C axis. It computes two resulting
OPP: one of them Q, corresponding to the IN half-
space, and the other one R, corresponding to the
OUT half-space.

This algorithm is based on the fact that the Extreme
Vertices of each of the resulting objects Q and R
will be a subset of EVM(P), except for some new
Extreme Vertices that could be created, and they will
lie on SP. Also, since SP is perpendicular to the C
axis, then neither A-brinks nor B-brinks of P can
ever be split by SP, only some C-brinks (those
whose Extreme Vertices are at either side of SP).
Therefore, this splitting algorithm only considers
those brinks parallel to the C axis, and they appear as
consecutive couples of vertices in the ABC-sorted
model, so it runs in linear time.

If SP is perpendicular to other axis then a suitable
ABC-sorting must be applied to the model prior to
this process. See [Aguil97] for other splitting algo-
rithms that can be directly applied when SP is per-
pendicular to other axis.

Let Vb = V2k−1 and Ve = V2k be the beginning and

ending vertices of the kth C-brink defined in an
ABC-sorted EVM. Since both Vb and Ve have the
same A and B coordinates, while the C coordinate is
less in Vb than in Ve, then, it can easily be known,
for each of the vertices Vb and Ve, if it is IN, OUT
or ON with respect to the splitting plane SP (i.e., in
the negative or positive halfspaces of SP, or on SP
itself) by just comparing its C-coordinates with the
plane equation.

Then only two cases may occur:

a) Both vertices lie in the same halfspace of SP, or
one of them is ON the SP. Then both of them
will be assigned to the same Q or R resulting
object.

b) Each vertex belongs to a different halfspace. In
this case a new vertex Vi at the intersection be-
tween the brink and the splitting plane is ob-
tained. Then, Vb and Vi will be assigned to Q,
while Vi and Ve will be assigned to R.

According to these two cases, the corresponding
Splitting Algorithm can be stated as:

Algorithm 2: Splitting an ABC-sorted OPP P with a C-Splitting Plane SP.

PROCEDURE SplitC(INPUT P: ABCsorted, SP: plane; OUTPUT Q, R: ABCsorted)
{Splits object P by plane SP (perpendicular to the C axis) into objects Q

and R}

 VAR Vb, Ve, Vi: ABCpoint ENDVAR

 Q := InitEVM();
 R := InitEVM();

 ReadBrink(P, Vb, Ve);
 WHILE NOT EndEVM(P) DO
 IF IN(Vb) AND (IN(Ve) OR ON(Ve)) THEN PutBrink(Vb, Ve, Q) ENDIF
 IF (ON(Vb) OR OUT(Vb)) AND OUT(Ve) THEN PutBrink(Vb, Ve, R) ENDIF
 IF IN(Vb) AND OUT(Ve) THEN
 Intersect(Vb, Ve, SP, Vi);
 PutBrink(Vb, Vi, Q);
 PutBrink(Vi, Ve, R);
 ENDIF
 ReadBrink(P, Vb, Ve);
 ENDWHILE
ENDPROCEDURE

Note that the procedure Intersect obtains Vi

without any computation. Let for example, x = xp be

the plane equation, and also let Vb = (x1, y,z) and

Ve = (x2, y,z) be the beginning and ending vertices
of a brink in a ZYX or YZX-sorted model, then
Vi = (xp, y,z) .

Fig. 7.a shows an OP P that is to be split . Note that
only horizontal brinks (shown as solid lines) need to
be considered. Circles show the intersection points
between C-brinks and SP, each of them will generate
two Extreme Vertices, one for Q and one for R.

Also note that one of those circles corresponds to an
existing V4, and another one to a V6 (SP coincides
with a plane of vertices of P). The result is shown in
Fig. 7.b, where the dots correspond to the newly
generated Extreme Vertices.

C

A

B

Q R

SP

1
2

3 4
5 6

7 8 9

P

a b

Figure 7: (a) An OPP that is going to be split by plane SP perpendicular to the C-axis. .
(b) The resulting OPPs Q and R. (see text for more details).

5 PERFORMANCE COMPARISON

This section provides theoretical and some experi-
mental comparisons of known methods (of linear
complexity) vs. the proposed one. The performance of
the respective algorithms is better in the EVM than in
other methods mainly because of the following facts:
• The complexities of known methods are linear

with respect to the total number of vertices O(nV)
in the polyhedron, as opposed to the proposed
algorithms which are linear with respect to the
number of Extreme Vertices O(nEV). Obviously
nEV ≤ nV, but very often nEV << nV.

• No time-consuming floating-point arithmetic is
ever performed in the EVM algorithms.

Note that EVM algorithms are tailored (limited) to
handle OPPs only.

The worst case, when nEV = nV , the EVM algo-
rithms equal the performance of known methods. On
the other hand, the best cases correspond to a case
study, found in [Aguil98b], where a succession of
OPPs Wk , k≥2, is defined. Each OPP, Wk , is built
inside a cubic bounding box or orthogonal hull
OH Wk(), with side of k units of length, and com-
posed of the maximum number of unit-cubes joined
by edges, but with the minimum number of Extreme
Vertices. See Fig. 8.

Figure 8: Example of W5 and its EVM.

The set of Extreme Vertices for each Wk is con-

structed by dividing each edge of OH Wk() into k
segments, then these splitting points are all the
Extreme Vertex of Wk , when k is odd. When k is

even, four additional points are required and they
must be placed at corners of the bounding box
OH Wk() such that no edge of OH Wk() has Extreme

Vertices at both ends. So Wk has 12(k −1), or,
12(k −1) + 4 Extreme Vertices of type V3 (if k is odd

or even, respectively); 6(k −1)2 vertices of type V5N

on the faces of OH Wk(); and (k −1)3 vertices of

type V6N2 in the interior of OH Wk(). Therefore,

nEV = O(k) while nV = O(k3) , in fact it is shown

in [Aguil98b], that nEV= O nV3(), therefore

nEV << nV.

In Fig. 9, a graph shows the behavior of the Point-In-
Polyhedron algorithms testing 500 random points
generated inside the bounding box of each OPP. For
this test, random OPPs, with the desired number of
vertices were generated as the union of random boxes.

"Known methods" in Fig. 9 stands for the crossings
test, where a semi-line parallel to the x axis is sup-
posed to be tested against all the polyhedron faces.
This test, however, has been adapted to OPPs and
only those faces perpendicular to the semi-line were
tested, therefore, every vertex in the OPP is processed
exactly once. Also, the set of vertices is assumed to
be sorted in a sequence describing the polygonal
faces being perpendicular to the semi-line, thus the
algorithm runs in a time proportional to the total
number of vertices. Both "EVM (Average)" and
"EVM (Minimum)" in Fig. 9 stand for the behavior
of algorithm 1, where the set of vertices is assumed to
be XYZ-sorted. The first one represents the average
behavior of 50 random polyhedra for each number of
vertices, while the second is the result of applying it
to the succession of OPPs Wk described above.

6 CONCLUSIONS

The EVM is a highly concise model for OPP that
allows simpler and faster algorithms for Set
Membership Classification in linear time (some of
them may require an O(n log n) preprocess).

0
100
200
300
400
500
600
700
800
900

1000

0 100 200 300 400 500 600 700 800 900 1000

Known methods

EVM (Average)

EVM (Minimum)

Number of vertices in OPP ->

N
u

m
b

er
 o

f
p

ro
ce

ss
ed

 v
er

ti
ce

s
->

Figure 9: Experimental comparison of known methods with the proposed one.

The experimental results show that the average EVM
performance is quite better than other methods, and
not too far from the optimum (the Wk case study).

The above methods use the vertex list as their only
data structure. Faster O(log n) methods have been
developed elsewhere [Haine94], but they need to do a
preprocess to generate an alternate polyhedron
representation and/or additional efficiency structures.
Similarly in [Aguil98a], other OPP representation
and data structure are proposed, that allows us to do
most of the set membership classifications in time
O(log n).

7 ACKNOWLEDGMENTS

The present work has been partially supported by
CICYT grants TIC-95-630-C03.

8 REFERENCES

[Aguil96] Aguilera,A, Ayala,D: Orthogonal Poly-
hedra as Geometric Bounds in Constructive
Solid Geometry. In Hoffman,C, Bronsvort,W,
editors, Fourth ACM Siggraph Symposium on
Solid Modeling and Applications, Vol.4,
pp.56-67, 1997. Also as Technical Report LSI-
96-64-R. Universitat Politècnica de Catalunya,
1996.

[Aguil97] Aguilera,A, Ayala,D: El Modelo de
Vértices Extremos (EVM) para Poliedros
Ortogonales. VII Congreso Español de Infor-
mática Gráfica (CEIG '97), Memorias del
Congreso (written in Spanish), Vol.7, pp.111-
125, Barcelona, España, 1997. Also as The
Extreme Vertices Model for Orthogonal Poly-
hedra. (written in English) Technical Report
LSI-97-6-R. LSI-Universitat Politècnica de
Catalunya, 1997.

[Aguil98a] Aguilera,A, Ayala,D: Domain Extension
for the Extreme Vertices Model (EVM) and
Set Membership Classification. To appear in
the proceedings of the CSG '98, Information
Geometers Ltd., 1998.

[Aguil98b] Aguilera,A: Orthogonal Polyhedra:
Study and Application. Ph.D. Thesis. LSI-
Universitat Politècnica de Catalunya, 1998.

[Haine94] Haines,E: Point in Polygon Strategies. In
Heckbert,P, editor, Graphics Gems IV. pp.24-
46. Academic Press, Boston, 1994.

[Juan89] Juan-Arinyo,R: On Boundary to CSG and
Extended Octree to CSG Conversions. In
Strasser,W, editor, Theory and Practice of
Geometric Modeling, pp. 349-367. Springer-
Velarg, 1989.

[Loren87] Lorensen,W, Cline,H: Marching Cubes: A
High Resolution 3D Surface Construction
Algorithm. Computer Graphics, Vol.21, No.4,
pp.44-50, 1987

[Mänty88] Mäntylä,M: An Introduction to Solid
Modeling. Computer Scientific Press, 1988.

[Prepa85] Preparata,F, Shamos,M: Computational
Geometry: an Introduction. Springer-Velarg,
1985.

[Rossi91] Rossignac,J, Requicha,A: Constructive
Non-Regularized Geometry. Computer - Aided
Deign, Vol.23, No.1, pp. 21-32, 1991.

[Shimr62] Shimrat,M: Algorithm 112: Position of
point relative to polygon. Communications of
the ACM, Vol.5, p.434, 1962.

[Sriha81] Srihari,S: Representation of Three-Dimen-
sional Digital Images. ACM Computing
Surveys, Vol.13, No.1, pp.399-424, 1981

[Tang91] Tang,K, Woo,T: Algorithmic Aspects of
Alternating Sum of Volumes. Part 1: Data
Structure and Difference Operation.
Computer-Aided Deign, Vol.23, No.5, pp.357-
366, 1991.

[vGeld94] van Gelder,A, Wilhelms,J: Topological
Considerations in Isosurface Generation.
ACM Transactions on Graphics, 13 (4): 337-
375, 1994.

