-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by UPCommons. Portal del coneixement obert de la UPC

SOLVING POINT AND PLANE VS. ORTHOGONAL POLYHEDRA
USING THE EXTREME VERTICESMODEL (EVM)

Antonio Aguilera. and Dolors Ayala.
Universidad de las Américas-Puebla. Universitat Politecnica de Catalunya.
Puebla, México. Barcelona, Espafia.
antonio@mail.pue.udlap.mx ayala@lsi.upc.es

aguilera@lsi.upc.es
ABSTRACT

In a previous work, Orthogonal Polyhedra (OP) were proposed as geometric bounds in CSG. Primitives
in the CSG model were approximated by their respective bounding boxes. The polyhedrical bound for the
CSG object was obtained by applying the corresponding Boolean Algebra to those boxes. Also in that
paper, a specific and very concise model for representing and handling OP was presented: the Extreme
Vertices Model (EVM). The EVM allows simple and robust algorithms for performing the most usual and
demanding tasks. This paper deals with the classification of point, and plane vs. OP. These operations can
be done on the EVM in linear time. Furthermore, a very important feature of EVM algorithms is that, even
though their input data (i.e., vertices' coordinates) can be floating-point values, no time-consuming
floating-point arithmetic is ever performed (except when explicitly noted), so there are absolutely no
propagation errors due to partial results (which do not exist). All results are obtained by just classifying
and selecting vertices' coordinates of the initial data.

1 INTRODUCTION 2 BACKGROUND

The Extreme Vertices Model (EVM), first published 2.1 Terminology.
in [Aguil96], was introduced as a restricted model for
two-manifold Orthogonal PolyhedrgDOP). Also in A pseudo-polyhedrors a finite collection of planar
that paper, a Boolean operations algorithm that worksfaces such that (a) every edge has at least two
for that model was presented. Moreover, in more adjacent faces, and (b) if any two faces meet, they
recent works [Aguil97, 98a], a natural domain exten- meet at a common edge [Tang91]iwo-manifold
sion for the EVM basics that now handles edgeis adjacent to exactly two faces, andweo-
Orthogonal Pseudo-Polyhedrgsee a definition manifold vertexis the apex of only one cone of faces.
below), is presented. All the theoretical foundations Conversely, mon-manifold edgés adjacent to more
'EZ;&HSSE]VM in its full domain can be found in than two faces, andran-manifold vertexs the apex

' of more than one cone of faces [Rossi91].

This paper deals with three processes: (a) determin- .
ing the set membership classification (IN, ON, or Polyhedra are two-manifold r-sets. Pseudo-polyhedra

OUT) of a point against an OP; (b) testing whether a (@lmost polyhedra) are pseudo-manifold r-sets, i.e., r-
general plane intersects an OP; (c) splitting an opsets with non-manifold boundary (edges or vertices).
with a plane when it is perpendicular to a specific Polyhedra are a subset of pseudo-polyhedra. Finally,

coordinate axis. The cases when the splitting plane isi non(—jr_egula_r pollyhksdr?n_ is ‘.it ﬂon I%omolgerlefously
perpendicular to another coordinate axis, as well as reg- 'megs'on.glo_rlec ’9'-19-’ Ithas “dangling" faces
the classification of a line against an OP are problems2" €dges. [Rossi91, Tang91].
that can be easily handled by the EVM (see
[Aguilo7, 98b]). However, they are not considered 22 Orthogonal Polyhedra.

here because they require a deeper exposition of th .
EVM concepts and the space limitations for this Orthogonal polyhedra (ORyre polyhedra with all

their edges and faces oriented in three orthogonal
paper do not allow that. directions [Prepa85]0rthogonal Pseudo-Polyhedra
Splitting an OP with a general plane is not consid- (OPP)is defined as regular and orthogonal polyhedra
ered because we want a closed operation in the EVMthat may have non-manifold boundary. In an OPP, a
otherwise the results would not be OP and could notnon-manifold edge is adjacent to exactly for faces and
be represented in our model. a non-manifold vertex is the apex of two cones of
faces (see Fig. 1).
This work is organized as follows: The next section
introduces some necessary concepts on orthogonal
and pseudo-polyhedra, then presents a vertex classifi- |_‘-7 o
cation for OP. Section 3 introduces the most basic A a @ b | c
EVM concepts and its interface. Section 4 deals with :
the Set Membership Classifications on the EVM, and
section 5 analyzes and compares the performance of Figure 1: @) An OP.b) An OPPc) A non-regular
the proposed algorithms. Finally section 6 contains orthogonal polyhedron.
our conclusions.

https://core.ac.uk/display/41825784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 ! m

Figure 2: Possible configurations with 0 to 8 surrounding boxes.

2.3 Vertex Classification for OPP. Configurationso to v correspond to the complements
of those froma to n. Finally, configurations to n are
In an OP the number of incident edges for any vertexself-complementaries. It is also shown that each
can be only three, four or six [Juan89]. In this sub- configuration represents a vertex for the final OPP,
section we characterize vertices of OPP. In [Aguil97, excepta, c, i, m, r, andv. These configurations are
98b], it is shown that, as an OPP can be understoodpecial cases which represent a point outside the OPP
as the resulting B-Rep of an orthogonal spatial (a), on a two-manifold edgec), on a faceif, on a
enumeration model as a voxelization, then vertices ofnon-manifold edget), on a two-manifold edge’)
an OPP can be characterized by studying vertices in @and a point interior to the solid)(
voxelization. Moreover, the classification of these
vertices follows the same pattern as the classificationFrom the analysis of Fig. 2, vertices can be classified
of nodes in the marching cubes algorithm [Loren87]. into eight types depending on the number of two-
Considering the common vertex of eight octants, manifold and non-manifold edges incident to them.
which can be either full or empty, there afe=2256 Fig. 3 shows these types which will be referred as
possible combinations which, by applying rotational V3, V4, VAN1, VAN2, V5N, V6, VEN1 and VEN2 (the
symmetries, may be grouped into 22 equivalencefirst digit shows the number of incident edges, the
classes (configurations) [Sriha81], shown on Fig. 2. "N" is present if at least one Non-manifold edge is
Grouping Comp|ementaries leads to the 14 basiclnCIdent to it, and the second dlglt is included to

patterns [Loren87], configuratiorssto n, also called ~ distinguish between two different types that
major cases [vGeld94]. otherwise would receive the same name).

V3 V4 V5N Vo6

V6N1 V6N2

V4N1 V4N2

V3 V4 VAN1VAN2 V5N V6 V6NI1 V6N2
Number of incident edges 3 4 4 4 5 6 6 6
Number of two-manifold edges 3 4 3 2 4 6 3 -
Number of non-manifold edges - - 1 2 1 - 3 6
Number of incident faces 3 4 5 6 6 6 9 12
Number of surrounding boxes 1357 4 3,5 4 2,6 2,4,6 3,5 4
Corresponding configurations bfou j a.p kK ds elthg n
Extreme Vertex Yes no Yes no no no Yes no

Figure 3: Vertex classification according to its number of incident edges
(dashed lines represent non-manifold edges).

3 THEEXTREME VERTICESMODEL (EVM) In a brink each ending vertex is V3, V4N1, or V6N1
FOR OPP and the remaining (interior) are V4, VAN2, V5N or
V6. Vertices V6N2 do not belong to any brink.
3.1 Brinks, Extreme Vertices, and Planes (Lines) According to the above analysis, Vertices V3, V4N1,
of Vertices. and V6N1 have in common that they are the only
ones that have exactly three incident two-manifold
A brink is the longest uninterrupted segment, built and linearly independent edges, regardless of the
out of a sequence of collinear and contiguous two-number of incident non-manifold edges (if any),
manifold edges of an OPP, therefore those vertices mark the end of brinks in all
three orthogonal directions. Any V4, V4AN2, V5N or
Non-manifold edgeslo notbelong to brinks. Every V6 is the sole common point of two collinear edges
two-manifold edge belongs to a brink, whereas every©of a same brink, so they can not be ending vertices of
brink consists of one or more edges and contains a& brink. Finally all six incident edges of a V6N2 are

many vertices as the number of edges plus one (segon-manifold edges, so none of them belongs to a
Fig. 4.a, and Fig. 4.b). brink, and therefore this vertex does not belong to

any brink, either (see Fig. 3 and Fig. 4).

Figure 4: a) An OPP with a brink having five edges and six vertices. VerficasdF are V3,B andD
are V6 (configurationt & €), C is V4, andE & G are V5N.b) There are also seven other brinks of two

edges each. The non-manifold elements are vernd edgeEG (dashed)c) Its EV set viewed as six
planes of vertices perpendicular to X (the shaded polygons).

We will call Extreme Vertices (EVdf an OPP to the A plane of verticeof an OPP is the set of EV lying
ending (or extreme) vertices of all the OPP brinks, on a plane perpendicular to a coordinate axis (i.e., the
i.e., vertices V3, V4N1, and V6N1 of the OPP. We 2D-EVM of the faces on that plane, see Fig. 4.c). We
define theExtreme Vertices Model (EVMjor OPP will also refer adine of vertices(within a plane of
as a model that only stores all their EV. Finally, an vertices) to the set of EV lying on a line parallel to a
ABC-sorted EVMis an EVM where its EV are sorted coordinate axis (i.e., the 1D-EVM of collinear
first by coordinateA, then byB, and then byC. An brinks). From now on, plv will refer to bothlanes
EVM can be sorted on six different way§YZzZ XZY, andlines ofvertices for orthogonal polyhedra and
YXZ YZX ZXY, andZYX From now onEVM(P) polygons), respectively.

will denote the ABC-sorted EVM of an O since

most of the definitions and results (although not all

of them) require of this ABC-ordering. Although the

EVM has been defined for 3D-OPP, it is also defined 3.2 The ABC-sorted Type, and Interface for the

for 2D-OPP and 1D-OPP [Aguil98b]. EVM.
According to the above, the ABCsorted type can be
Theorem 1. The Extreme Vertices Model is a defined, along with the following primitive opera-
complete B-Rep model for OPP. tions:

)) FUNCTI ON | nit EVM) RETURN ABCsort ed
Coordinate values for non-extreme vertices can be{ Returns an enpty ABC-sorted EVM }
directly obtained from coordinates of EV by inter-
secting brinks. Moreover, all remaining geometric and prcEDURE Put Br i nk(1 NPUT
topological information about an OPP can also be . . .
obtained from its EVM. For a formal proof of this E/b',ﬁ\\p!?).e\rfjrst ?)é' aln/ gvf\)/l aAErCiscr)ﬁ(t 32)“ ned

th Aguilosgb].
eorem see [Agui] by its Extrene Vertices Vb & Ve

Let V, =V,,_; andV, =V,,, fork = 1, 2,... be two (i.e., appends two consecutive
consecutive vertices within an ABC-sorted EVM(P), ~ EXtreme Vertices to the EVM P) }

hen V, Y, h inni i
then V, and V, are the beginning and ending P DURE ReadBr i nk(| NPUT

vertices of thek™ C-brink defined in an ABC-sorted p- ABCsorted; OUTPUT Vb, Ve: Vertex)
EVM. (C-brinks refers to those brinks parallels to the { Reads next brink (or pair of

C axis.) Extreme Vertices) froman EVMP.}

FUNCTI ON ReadPl v(P: ABCsorted,

dim | NTEGER) RETURN ABCsorted

{ Extracts next plane (dinm=2) or
line (dimrl) of vertices froman
EVM P. That is, the set of
Extrene Vertices with the sane A
(or A & B) coordi nate val ues. }

FUNCTI ON EndEVM P: ABCsort ed)

RETURN Bool ean

{ Returns TRUE if the end of P has
been reached. }

4 SET MEMBERSHIP CLASSIFICATIONS
ON THE EVM

4.1 Point in Polyhedra.

The chosen method is an adaptation from the well-
known crossings tesfShimr62], also known as the
parity, or even-odd tesfPrepa85, Manty88]. This
test leads to the fastest algorithm without any prepro-
cessing [Haine94].

The adaptation consists in considering a semi-line
parallel to theA-axis B-axis for the 2D case),

starting from e« and ending at the test point. Then a
sweep-plane(line)-like process is performed, which
starts with an OUT condition and updates it when-
ever the OPP boundary is crossed (or just touched).
All three (IN, ON, and OUT) conditions are handled.
When the semi-line goes through a plane of vertices
the process is similarly repeated for this plv, i.e., it is
) a recursive process in the dimension. The trivial (or
WhereCoor dType is the chosen type for the vertex base) case is for dim = 1, where the test is performed
coordinates|(NTEGER, REAL, DOUBLE, etc.). for a line of vertices.

FUNCTI ON Get Coord(P: ABCsort ed,

dim | NTEGER) RETURN Coor dType

{ Gets the comon A (dinmr2) or B
(di mrl) coordi nate of a plane
(line) of vertices P. }

N N N
d e

> % * |-® AN d\ N

f £l 9 N f
— — 1A t|-o
a c VA RERNEERNCRIRN Al LNB [N€©
Pl1 Pl k I%
a b C

Figure 5: Two pointsp andg are to be tested against an OPP. A semi-line frorand ending ap goes

through Pl;, Pl, and Pl; (the supporting planes of the OPP's faces) at paintsandc, respectively;

while a semi-line fromoe and ending ayj goes through those planesdate,andf. Pointsa to f are
recursively tested against the corresponding faces. In this example, ¢paimie are outside the corre-
sponding faces (OUT) so the OPP's boundary is not crossed at these two points. Any plv that is beyond
the test point (likePl,) or is not perpendicular to the semi-line will not need to be processed at all.

The problem in the ON cases, when the semi-lineMoreover, in order to handle the ON cases correctly,
passes through one or more vertices and edges can like ON condition is further subdivided as ONIN and
ignored by considering the semi-line to be a half- ONOUT subconditions, which correspond to the ON
plane divider, with one of the half-planes including condition being infinitesimally IN or OUT, respec-
the semi-line's points. In other words, whenever thetively. Fig. 6 shows a 1D example (left) and some
semi-line passes through a vertex, the vertex, and thD examples (right) which include all possible tran-
corresponding edge on the semi-line, are always classition cases. Finally, transition cases are sumarized in
sified as being infinitesimally above it. In this way, Table 1.

no vertices or edges are considered lying on the semi-

line, and the resulting code is both simpler and faster.

ouT = o o o o o O o o o o
ONOUT Ve = Vok | 0@t 0 @0+ @O -+ @+ OOt v+ ——O—
IN —
ONIN -8V, = Voys| ° ° o o e o o o o o o
OUT = — OUT&ONOUT eeeeeenns IN & ONIN

Figure 6: Edges and vertices lying on the semi-line (ON cases) are further classified as ONIN or ONOUT
according to the classification (IN or OUT) of the corresponding point being infinitesimally above it.
Left) 1D exampleRight) 2D examples.

QUT | ONoUT | . IN. | ONIN . I Nresult | ONresul t |Meani ng
QuT QuT ONQUT I N ONI N FALSE FALSE QuT
o ONOUT OoNQUT ouT ONI'N I N FALSE TRUE ONOUT
I'N I'N ONI N QuT ONOUT TRUE FALSE I N
® ONI N ONI N I N ONQUT QuT TRUE TRUE ONI N
Table1: The IN, OUT, ONIN and ONOUT transition rules. Table 2: Boolean values code.

Algorithm 1: Point in EVM.

This algorithm receives an ABC-poimpit and an It recursively testes whether the ray crossesm@ny
ABC-sorted EVM P, and produces two Boolean previous to the test point. Since each EV is processed
results: | Nresul t andONr esul t, whose at most three times (once at each recursive level),

combined values produce all four possible results asthen this algorithm runs in linear time. The corre-
shown in Table 2. spondingPoint in EVMAIgorithm can be stated as:

PROCEDURE Poi nt I nEVM | NPUT pt: ABCpoint; P: ABCsorted; dim |NTEGER
QUTPUT | Nresult, ONresult:BOOLEAN);
VAR
pl v: ABCsorted;
I Nfl ag, ONfI ag,
Pt I nPl : BOOLEAN;
pl vCoord: CoordType;
ENDVAR

current plane (line) of vertices

IN & ON flags returned by recursive call}
TRUE if pt lies on the plv just read }
for saving the plv common coordi nate }

It Yo Yann Yol

IF dim=1 THEN PtInLine(pt, P, INresult, ONresult) {trivial case}
ELSE
dim:=dim1;

PtInPl := FALSE; { assune pt not lying on Pl }
I Nresult := FALSE; { initialize result as OQUT }
ONresult := FALSE; { initialize result as OQUT }

plv := ReadPlv(P, dim;

pl vCoord : = Get Coord(plv, dim;

VWHI LE NOT EndEVM P) AND pl vCoord < Pt Coord(pt, dim DO
I F plvCoord = PtCoord(pt, din) THEN PtInPl := TRUE ENDI F
PointInEVM pt, plv, dim INflag, ONflag); { recursive call }
IF INflag THEN I Nresult := NOT I Nresult ENDIF
IF ONflag THEN ONresult := NOT ONresult ENDIF
plv := ReadPlv(P, dim;

ENDWHI LE

IF PtInPl AND INflag THEN ONresult := TRUE ENDI F

ENDI F
ENDPROCEDURE
Where procedur®t | nLi ne returns:
¢ ONIN, if pt =V, =V,_1, (ptis the beginning vertex of thie”" C-brink, for somek.)
e ONOUT, if pt=V,=Vy,, (pt is the ending vertex of thie!" C-brink, for somek.)
< 1IN, if V, <pt<V,, (ptis in the interior of thek™ C-brink, for somek.)
« OUT, otherwise,

as described in first column of Table 1, and the returned result is coded according to Table 2.

4.2 Testing a Plane against an OPP. intersects any of the OPP brinks, i.e., if the Extreme
Vertices of a brink are at either side of the plane.
A test for determining whether a general plane Moreover, C-brinks can be trivially tested for this
intersects an OPP, can be developed for the EVM, intersection in linear time, since they are defined by
using the fact that a plane intersed®s iff it two consecutive vertice¥y, = V,,_; and V, = V.

Different ABC-sortings of the EVM can be used for If SP is perpendicular to other axis then a suitable

testing other brinks. Thus, an O(n Log n) preprocessABC-sorting must be applied to the model prior to

(the sort) is needed to test any number of differentthis process. See [Aguil97] for other splitting algo-

planes againsP, each in linear time. rithms that can be directly applied wh&¥ is per-
pendicular to other axis.

Furthermore, the intersection of the plane wkh

(i.e., the section) can be computed in the following Let V, =V,,_; and V, =V,, be the beginning and

way. As each brink is tested, its intersection point . . th . . .

with the plane can be computed (this process require€nding vertices of the™ C-brink defined in an

floating-point arithmetic), then the intersecting points ABC-sorted EVM. Since bottv,, and V, have the

of any two brinks with a common EV can be joined sameA andB coordinates, while th€ coordinate is

in a domino-like procedure, effectively obtaining the less inV, than inV,, then, it can easily be known,

contour of the section. for each of the vertice¥, and V,, if it is IN, OUT

or ON with respect to the splitting plargF (i.e., in
the negative or positive halfspaces®®, or on SF
itself) by just comparing it€-coordinates with the
This section presents an algorithm for the classi-Plane equation.

fication of an OPPP against splitting planeSF

perpendicular to th€ axis. It computes two resulting 1hen only two cases may occur:

OPP: one of thenQ, corresponding to the IN half-
space, and the other orfe, corresponding to the
OUT half-space.

4.3 Splitting an OPP with a plane perpendicular
to the C axis.

a) Both vertices lie in the same halfspaceSH, or
one of them is ON th&P. Then both of them
will be assigned to the sam@ or R resulting

This algorithm is based on the fact that the Extreme object.
Vertices of each of the resulting objed®s and R

will be a subset oEVM(P), except for some new
Extreme Vertices that could be created, and they will

b) Each vertex belongs to a different halfspace. In
this case a new verte¥, at the intersection be-

lie on SP. Also, sinceSF is perpendicular to th€
axis, then neitheA-brinks norB-brinks of P can
ever be split bySP, only someC-brinks (those

tween the brink and the splitting plane is ob-
tained. ThenV, andV; will be assigned taQ,

while V; and V, will be assigned tcR.

whose Extreme Vertices are at either sideS).

Therefore, this splitting algorithm only considers According to these two cases, the corresponding
those brinks parallel to the axis, and they appear as Splitting Algorithm can be stated as:

consecutive couples of vertices in the ABC-sorted

model, so it runs in linear time.

Algorithm 2: Splitting an ABC-sorted OPP with aC-Splitting Plane SF.

PROCEDURE SplitC(I NPUT P: ABCsorted, SP: plane; OQUTPUT Q R ABCsorted)
{Splits object P by plane SP (perpendicular to the C axis) into objects Q
and R}

VAR Vb, Ve, Vi:

Q:
R :

ABCpoi nt ENDVAR

InitEVM);
InitEVM);

ReadBri nk(P, Vb, Ve);

VWH LE NOT EndEVM P) DO
IF IN(Vb) AND (I N(Ve)
IF (ON(Vb) OR OQUT(Vb)) AND OQUT(Ve)
IF IN(Vb) AND QUT(Ve) THEN

Intersect(Vb, Ve, SP, Vi);
Put Bri nk(Vb, Vi, Q;
Put Brink(Vi, Ve, R);
ENDI F
ReadBri nk(P, Vb, Ve);
ENDWHI LE
ENDPROCEDURE

OR ON(Ve)) THEN PutBrink(Vb, Ve, Q ENDIF
THEN Put Brink(Vb, Ve, R) ENDIF

Note that the procedurent er sect obtainsV,
without any computation. Let for example= x, be
the plane equation, and also Mf =(x;,Y,z) and

V. =(X,,Y,2) be the beginning and ending vertices
of a brink in a ZYX or YZX-sorted model, then
Vi =(%p,Y,2).

Fig. 7.a shows an OP that is to be split . Note that

Also note that one of those circles corresponds to an

only horizontal brinks (shown as solid lines) need to existing V4, and another one to a V8K coincides
be considered. Circles show the intersection pointswith a plane of vertices oP). The result is shown in

betweenC-brinks andSF, each of them will generate
two Extreme Vertices, one f@ and one forR.

—_———
SpP i
LA A
i i P
il EE B
—_ 00—
a 1—-—;6—— 2
5 —f;'3—4

Fig. 7.b, where the dots correspond to the newly
generated Extreme Vertices.

Figure 7: (&) An OPP that is going to be split by pla®&B perpendicular to th€-axis. .
(b) The resulting OPP® andR. (see text for more details).

5 PERFORMANCE COMPARISON

This section provides theoretical and some experi-
mental comparisons of known methods (of linear

even, four additional points are required and they
must be placed at corners of the bounding box

OH(W,) such that no edge @®H(W,) has Extreme

complexity) vs. the proposed one. The performance ofvertices at both ends. Sw/, has 12(k-1), or,
the respective algorithms is better in the EVM than in 12(k —1) + 4 Extreme Vertices of type V3 (Kis odd

other methods mainly because of the following facts:
e The complexities of known methods are linear
with respect to the total number of vertic®egnV)

or even, respectively)(k —1) vertices of type V5N
on the faces ofOH(W,); and (k-1)° vertices of

in the polyhedron, as opposed to the proposedyy e veN2 in the interior ofOH(W,). Therefore,

algorithms which are linear with respect to the
number of Extreme Vertice®(nEV). Obviously
nEV < nV, but very oftennEV << nV.

« No time-consuming floating-point arithmetic is
ever performed in the EVM algorithms.

Note that EVM algorithms are tailored (limited) to
handle OPPs only.

The worst case, whenEV=nV, the EVM algo-

nEV=0(k) while nvV=0(k®), in fact it is shown
in [Aguil98b], that nEV= O(%W) therefore
nEV<<nV.

In Fig. 9, a graph shows the behavior of Bwnt-In-
Polyhedronalgorithms testing 500 random points

generated inside the bounding box of each OPP. For
this test, random OPPs, with the desired number of

rithms equal the performance of known methods. Onvertices were generated as the union of random boxes.
the other hand, the best cases correspond to a case

study, found in [Aguil98b], where a succession of
OPPsW,, k=2, is defined. Each OPRY,, is built

"Known methods" in Fig. 9 stands for theossings
test,where a semi-line parallel to thxeaxis is sup-
posed to be tested against all the polyhedron faces.

inside a cgb|c .boundlng.box or orthogonal hull This test, however, has been adapted to OPPs and
OH(W,), with side ofk units of length, and com- gnly those faces perpendicular to the semi-line were
posed of the maximum number of unit-cubes joined tested, therefore, every vertex in the OPP is processed
by edges, but with the minimum number of Extreme exactly once. Also, the set of vertices is assumed to

Vertices. See Fig. 8.

Figure 8: Example ofW; and its EVM.

The set of Extreme Vertices for eadM, is con-
structed by dividing each edge &H(W,) into k

be sorted in a sequence describing the polygonal
faces being perpendicular to the semi-line, thus the
algorithm runs in a time proportional to the total
number of vertices. Both "EVM (Average)" and
"EVM (Minimum)" in Fig. 9 stand for the behavior
of algorithm 1, where the set of vertices is assumed to
be XYZ-sorted. The first one represents the average
behavior of 50 random polyhedra for each number of
vertices, while the second is the result of applying it
to the succession of OPRY, described above.

6 CONCLUSONS

The EVM is a highly concise model for OPP that
allows simpler and faster algorithms for Set

segments, then these splitting points are all theMembership Classification in linear time (some of

Extreme Vertex ofW,, whenk is odd. Whenrk is

them may require a®(n log n)preprocess).

l
0 100 200 300 400 500 600 700 800 900 1000
Number of vertices in OPP ->

AN
21000 - 1
@ 900] L] Known methods /.I/'/
.E /.
£ 8004 — O FVM (Average)]
8
£ 700 4 ="
g 600 4 . EVM (Minimum) =
2 5004 [
Q
2
Q,
rS]
2
g
5
Z

Figure 9: Experimental comparison of known methods with the proposed one.

The experimental results show that the average EVM[Aguil98b] Aguilera,A: Orthogonal Polyhedra:

performance is quite better than other methods, and Study and ApplicationPh.D. Thesis. LSI-
not too far from the optimum (the/, case study). Universitat Politécnica de Catalunya, 1998.
The above methods use the vertex list as their onlylHaine94] Haines,EPoint in Polygon Strategiesn
data structure. Fast@®(log n) methods have been Heckbert,P, editorGraphics Gems 1Vpp.24-
developed elsewhere [Haine94], but they need to do a 46. Academic Press, Boston, 1994.
preprocess to generate an alternate polyhedro .
representation and/or additional efficiency structures.rbuansg] Juan-Arinyo,ROn Boundary to CSG and
Similarly in [Aguil98a], other OPP representation Extended Octree to CSG Conversioirs
and data structure are proposed, that allows us to do Strasser,W, editorTheory and Practice of
most of the set membership classifications in time Geometric Modelingpp. 349-367. Springer-
O(log n) Velarg, 1989.

[Loren87] Lorensen,W, Cline,HWvlarching Cubes: A
7 ACKNOWLEDGMENTS ngh_Resqutlon 3D Surface Construction

Algorithm Computer Graphicsvol.21, No.4,

The present work has been partially supported by pp.44-50, 1987

CICYT grants TIC-95-630-C03. . .
g [M&nty88] Mantyla,M: An Introduction to Solid

Modeling Computer Scientific Press, 1988.
8 REFERENCES .
[Prepa85] Preparata,F, Shamos,®omputational
[Aguil96] Aguilera,A, Ayala,D:Orthogonal Poly- Geometry: an IntroductianSpringer-Velarg,
hedra as Geometric Bounds in Constructive 1985.
Solid Geometryln Hoffman,C, Bronsvort,W,

Solid Modeling and ApplicationsVol.4, Non-Regularized Geometigomputer - Aided
pp.56-67, 1997. Also as Technical Report LSI- Deign Vol.23, No.1, pp. 21-32, 1991.
-64-R. Uni itat Politecni I
S1)89% Universitat Politécnica de Catalunya, [Shimr62] Shimrat,M:Algorithm 112: Position of
point relative to polygonCommunications of
[Aguil97] Aguilera,A, Ayala,D: EI Modelo de the ACM Vol.5, p.434, 1962.

Vértices Extremos (EVM) para Poliedros _ L . .
Ortolgonale)s(.\/ll Cong(reso I)Es?)aﬁol de Ilnfor- [Sriha81] Srihari,SRepresentation of Three-Dimen-
matica Gréafica (CEIG '97) Memorias del sional Digital ImagesACM Computing
Congreso (written in Spanish), Vol.7, pp.111- SurveysVol.13, No.1, pp.399-424, 1981

125, Barcelona, Espafna, 1997. AlsoTdse N

Extreme Vertices Model for Orthogonal Poly- [Tang91] Tang,K, Woo,TAlgorithmic Aspects of

hedra (written in English) Technical Report Alternating Sum of Volumes. Part 1. Data
LSI-97-6-R. LSI-Universitat Politécnica de Structure and Difference Operation.
Catalunya, 1997. ?C’Zgg%tgelr—mded Deigrvol.23, No.5, pp.357-

[Aguil98a] Aguilera,A, Ayala,D:Domain Extension . .
for the Extreme Vertices Model (EVM) and [vGeld94] van Gelder,A, Wilhelms,Jropological
Set Membership Classificatiofio appear in Considerations in Isosurface Generation
the proceedings of the CSG '98, Information ACM Transactions on Graphicd3 (4): 337-
Geometers Ltd., 1998. 375, 1994,

