
Partial Lazy Forward Checking *

Javier Larrosa1 and Pedro Meseguer2

1Universitat Politècnica de Catalunya, Dep. Llenguatges i Sistemes Informàtics
Jordi Girona Salgado 1-3, 08034 Barcelona, SPAIN

E-mail: larrosa@lsi.upc.es
2Institut d'Investigació en Intel.ligència Artificial, CSIC

Campus UAB, 08193 Bellaterra, SPAIN.
E-mail: pedro@iiia.csic.es

Abstract. Partial forward checking (PFC) may perform more consistency checks than
really needed to detect dead-ends in MAX-CSP. After analyzing PFC, we have identified four
causes of redundant check computation: (a) unnecessary lookahead when detecting an empty
domain, (b) not always using the better bounds for future value pruning, (c) computing in
advance inconsistency counts, and (d) lookahead is performed on the whole set of future
variables. We present the partial lazy forward checking (PLFC) algorithm, which follows a
lazy approach delaying as much as possible inconsistency count computation, keeping
updated the contribution of future variables to the lower bound. This algorithm avoids the
causes of redundant checks identified for PFC. It can be easily combined with DACs,
producing the PLFC-DAC algorithm. Empirical results on random problems show that
PLFC-DAC outperforms previous algorithms in both consistency checks and CPU time.

1 Introduction

Constraint satisfaction problems (CSP) consider the assignment of values to variables
under a set of constraints. A solution is a total assignment satisfying every constraint.
If such assignment does not exist, the problem is overconstrained, and it may be of
interest to find a total assignment satisfying as many constraints as possible. This
problem is called the maximal constraint satisfaction problem (MAX-CSP), and a
solution is a total assignment satisfying the maximum number of constraints. MAX-
CSP is of interest in several areas of application [Fox, 87; Feldman and Golumbic,
90; Bakker et al., 93].

Partial forward checking (PFC)1 is one of the best algorithms for MAX-CSP
[Freuder and Wallace, 92]. It is a branch and bound algorithm including forward
checking in order to anticipate dead-ends before they actually occur. To detect dead-
ends, PFC computes a lower bound of the number of unsatisfied constraints from (i)
the set of past variables, and (ii) the effect of past variables on future ones, by using
inconsistency counts (IC). Recently, this lower bound has been improved by including

* This research has been supported by the Spanish CICYT under the project #TIC96-0721-
C02-02.

1 In [Freuder and Wallace, 92] several versions of partial forward checking are presented.
We use here as PFC their P-EFC3 algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

unsatisfied constraints from the set of future variables. This has been implemented
using directed arc-consistency counts (DAC) [Wallace, 94], and the reported empirical
results show a clear improvement in performance with respect to pure PFC. DAC are
computed in a preprocessing step, which is later followed by PFC for variable
instantiation. DAC usage has been enhanced by [Larrosa and Meseguer, 96] in their
PFC-DAC algorithm2, which has a better performance than the initial combination of
PFC and DAC proposed by [Wallace, 94].

In this paper, we show that the PFC greedy strategy of performing lookahead on
every future variable may require more consistency checks than really needed to detect
dead-ends. A careful analysis of PFC behaviour has allowed us to identify the
following causes of redundant consistency checks: (a) PFC may do unnecessary
lookahead when detecting an empty domain, performing checks that are never used, (b)
PFC does not always use the better bounds for future value pruning, which may cause
to collect more inconsistencies than really needed and therefore, it may require the
computation of an extra number of consistency checks, (c) computing in advance
inconsistency counts may cause more checks than really needed to prune a value of the
current variable, and (d) lookahead is performed on the whole set of future variables,
possibly doing more work than really needed to prune a value of the current variable.

Based on this analysis we take a lazy approach that essentially consists on delaying
as much as possible the IC computation, while keeping updated the contribution of
future variables to the lower bound. This lazy strategy is further developed in the
following points: (α) future domains are not pruned in advance, (β) the lowest amount
of lookahead is done on future domains, to compute the minimal contribution of
future variables to the lower bound, and (γ) IC updating and lookahead can be stopped
prior completion. Following these points we have developed the partial lazy forward
checking algorithm (PLFC). Since future domains are not pruned and ICs are not
completely updated, PLFC cannot compute without an extra cost some dynamic
variable ordering heuristics (minimum domain or largest mean of ICs).

The lazy approach can be easily combined with DACs, just in the same way it
was combined with the greedy algorithm, producing the PLFC-DAC algorithm. This
combination is particularly adequate: because of DAC usage, this algorithm requires
static variable order, so the inability of PLFC to compute some dynamic variable
ordering heuristics is not really a drawback, while keeping the advantages caused by
DACs for a better lower bound.

This paper is organized as follows. In Section 2 we present related approaches to
the paper topic. In Section 3 we provide some preliminaries and definitions required in
the rest of the paper. In Section 4, we analyze the behaviour of PFC, showing that it
may perform more consistency checks than required, and we present our lazy approach
to PFC, the PLFC algorithm. This algorithm is combined with the DAC usage,
producing the PLFC-DAC algorithm. In Section 5, we give empirical results of
PLFC-DAC on random problems, showing a clear performance improvement in both

2 In [Larrosa and Meseguer, 96] this algorithm was called P-EFC3+DAC2. For simplicity
reasons, we refer it as PFC-DAC from now on.

number of consistency checks and CPU time with respect to PFC-DAC. Finally, in
Section 6 we summarize the conclusions of this work.

2 Related Work

The simplest algorithm for MAX-CSP is depth-first branch and bound, which
traverses completely the whole search tree looking for the leaf node violating a
minimal number of constraints. In terms of variable assignments, an internal node
represents a partial assignment while a leaf node represents a total one. The distance of
a node is the number of constraints violated by its assignment. At each internal node,
the algorithm computes a lower bound of the distance of any leaf node below the
current one. It also keeps track of the best leaf node (complete assignment violating
less constraints) found so far, and its best distance is an upper bound of the allowable
distance of any future leaf node. When the lower bound is greater than or equal to the
upper bound, the current node (and all its successors) can be pruned because no leaf
node below the current one will improve the best distance already found. This basic
algorithm can be enhanced with more sophisticated strategies, and in particular we
consider partial forward checking (PFC), which evaluates the impact of the current
partial assignment on future variables computing ICs, which allows PFC to improve
the lower bound. For a detailed description of other algorithms, see [Freuder and
Wallace, 92]. Regarding dynamic variable ordering with PFC, variables may ordered
either by the largest mean of inconsistency counts in their domains or by minimum
domain size, and dynamic value ordering considers values by increasing IC [Freuder
and Wallace, 92]. Two heuristics for dynamic variable and value ordering are given in
[Larrosa and Meseguer, 95]. Other static variable ordering heuristics can be found in
[Wallace and Freuder, 93].

DAC usage has been an important step to increase the lower bound [Wallace, 94;
Larrosa and Meseguer, 96; Wallace, 96]. Another way to improve the lower bound is
russian doll search [Verfaille et al, 96], where the whole problem is substituted by n
nested subproblems such that the solution of the i-th subproblem can be used as the
starting lower bound for the i+1th subproblem. Several approaches have tried to
improve the upper bound at early search states by heuristic repair [Wallace, 96] and by
stochastic methods [Cabon et al, 96].

The idea of lazy evaluation in not new in constraint satisfaction, although it has
not been fully exploited. Regarding forward checking (FC), several researchers have
realized that it performs more lookahead than needed to detect empty domains [Zweben
and Eskey, 89; Dent and Mercer, 94; Bacchus and Grove, 95]. FC checks every
feasible value of every future domain, while it would be enough to stop checking a
future domain as soon as one consistent value has been found. The lazy FC approach,
called minimal forward checking, has proved to save from 10% to 30% of consistency
checks solving several problem classes [Bacchus and Grove, 95]. Regarding arc
consistency (AC), a similar situation has been reported by [Schiex et al, 96]: AC
algorithms perform more checking than needed to detect empty domains.

3 Preliminaries

A discrete binary CSP is defined by a finite set of variables {Xi} taking values on
discrete and finite domains {Di} under a set of binary constraints {R ij}. A constraint R ij
is a subset of Di ×Dj, containing the permitted values for Xi and Xj. The number of

variables is n and, without loss of generality, we will assume a common domain D for
all variables, m being its cardinality. A global solution of the CSP is an assignment
of values to variables satisfying every constraint. If no solution exists the CSP is
overconstrained; in this case we are interested in finding solutions satisfying a
maximum number of constraints. This problem is usually referred as MAX-CSP.

Partial forward checking (PFC) is an efficient algorithm to solve MAX-CSP
[Freuder and Wallace, 92]. It is a forward checking algorithm over the branch and
bound schema and its code appears in Figure 1 (assuming for simplicity of
presentation that variables are assigned in lexicographical order). At a given node, we
denote by P and F the sets of past and future variables respectively. PFC keeps for
every feasible value l of every unassigned variable Xi, the inconsistency count icil

which records the number of inconsistencies that l has with the assignments of past
variables. If Xi is the current variable and value l is assigned to it, the lower bound of
the current partial assignment is increased in icil, as the number of inconsistencies

between Xi and P . The sum ∑
j∈F
� mink {icjk} is a lower bound of the number of

inconsistencies that will necessarily occur when every future variable is instanciated,
so it can included to compute the lower bound of the current partial assignment (lines
13 and 32). In addition, if Xi is a future variable, value l can be pruned if the current
distance plus icil plus the sum of mink {icjk} of other future variables is not lower than

the best distance (lines 21 and 24). This value is called the lower bound associated
with l. Finally, values can be heuristically ordered by increasing ICs.

PFC has been enhanced with the inclusion of DACs: given a static variable
ordering, the DAC associated to a value l of a variable Xi, dacil, is the number of
variables which are arc-inconsistent with value l for Xi and appear after Xi in the

ordering [Wallace, 94]. ICs and DACs were first combined to improve lower bound
computation and better value pruning in [Wallace, 94] and later in [Larrosa and
Meseguer, 96]. If Xi is the current variable and value l is assigned to it, the lower
bound of the current partial assignment is increased in icil + dacil, as the number of
inconsistencies between Xi and P plus the number of inconsistencies that necessarily
will appear between Xi and F when extending the current partial assignment into a

total one. The sum ∑
j∈F
� mink {icjk + dacjk} is a lower bound of the number of

inconsistencies that will necessarily occur when every future variable is instanciated,
so it can be included to compute the lower bound of the current partial assignment. In
addition, if Xi is a future variable, value l can be pruned if the current distance plus
icil + dacil plus the sum of mink {icjk + dacjk} of other future variables is not lower

than the best distance. This value is called the lower bound associated with l (when

DACs are used). Finally, values can be heuristically ordered by increasing

procedure PFC (current_solution,next_variable,distance)
1 Xi := next-variable;
2 values := sort-values(Xi);

3 while values ≠ Ø do
4 l := first(values);
5 values := values - l;
6 if (feasible(Xi,l)) then
7 new_distance := distance + icil;

8 if (i = n) then
9 best_distance := new_distance;
10 best_solution := current_solution + (Xi,l);

11 else
12 if (look_ahead(Xi,l)) then

13 if (new_distance +∑
j>i

� mink{icjk} < best_distance) then

 PFC(current_solution+(Xi,l),Xi+1,new_distance);

14 endif
15 endif
16 endif
17 endif
18 endwhile
endprocedure

function look_ahead (Xi,l)

19 for j := i+1 to n do
20 forall k∈Feasibles do
21 if (new_distance + icjk +

∑

p∈F-j
 minq{icpq} ≥

 best_distance) then prune(Xj,k)
22 elsif (inconsistent(Xi,l,Xj,k)) then
23 icjk := icjk + 1;
24 if (new_distance + icjk +

∑

p∈F-j
 minq{icpq} ≥

 best_distance) then prune(Xj,k)

25 endif
26 endif
27 endforall
28 if (empty domain(Xj)) then return false endif
29 endfor
30 return true
endfunction

function feasible (Xi,l)

31 return (distance + icil + ∑
j>i

� mink{icjk} < best_distance)

endfunction

Figure 1. The PFC algorithm.

IC+DACs. The PFC-DAC algorithm [Larrosa and Meseguer, 96] can be easily
obtained from PFC substituting lines 13, 21, 24 and 31 of Figure 1 by the following
lines:

13 if (new_distance +
∑

j∈F
 mink{icjk+dacjk} < best_distance)

21 if (new_distance + dacil + icjk + dacjk +
∑

p∈F-j
 minq{icpq+dacpq} ≥

 best_distance) then prune(Xj,k)
24 if (new_distance + icjk + dacjk + ∑

p∈F-j
 minq{icpq+dacpq} ≥

 best_distance) then prune(Xj,k)

31 return (distance+icil+dacil + ∑
j∈F

� mink{icjk+dacjk} < best_distance)

4 PFC and Lazy Evaluation

The idea of lazy evaluation in PFC consists on delaying as much as possible the
computation of inconsistency counts, producing as an inmediate consequence the delay
of future value pruning. Although this may seem counterintuitive for a forward
checking algorithm based on lookahead, in the following we will show that delaying
inconsistency count computation may cause a decrement in the number of consistency
checks performed by the algorithm, without decreasing its pruning capability. In the
following, we analyze the PFC greedy behaviour to identify those situations where it
may perform more consistency checks than needed.

4.1 PFC Analysis

PFC tries to anticipate pruning of future values as much as possible. For this reason,
the pruning condition in future domains is checked each time the look_ahead function
is called and, necessarily, inconsistency counts are continuously updated. We analyze
the two situations where value pruning occurs:

1. Early pruning (lines 21 and 24, Figure 1). Value l of future variable Xi is early

pruned as a side-effect of the look_ahead function, because the lower bound
associated with l is greater than or equal to the current upper bound. In this
situation, there are the following independent sources of redundant consistency
check computation:

1.1. If the domain of future variable Xi becomes empty after pruning value l, the

lookahead performed from the current variable on any other future variable
different from Xi is useless. Therefore, those consistency checks performed by

this lookahead are redundant.

1.2. If the domain of future variable Xi does not become empty after pruning value

l, there are two further situations:

1.2.1. The lower bound associated with value l at the current node, denoted as
node A , is as follows,

distance(A) + icil(A) + ∑
j∈F(A)�-�i

� mink {icjk}

Let us assume that the evaluation of the pruning condition for value l is
delayed to a future node in which Xi is the current variable. Calling it node

B, the lower bound associated with l at B is as follows,

distance(B) + icil(B) + ∑
j∈F(B)

� mink {icjk}

At node A , the contribution of each future variable between the current one
and Xi is mink {icjk}. At node B, the contributions of these variables are

greater than or equal to the corresponding contributions at node A , and they
are included in distance(B), since these variables have become past variables
at node B. At node A , the contribution of each future variable after Xi is
mink {icjk}. At node B, the contributions of these variables are greater than
or equal to the corresponding contributions at node A , since their mink
{icjk} could have increased. Therefore, the following inequality holds,

distance(A) + ∑
j∈F(A)�-�i

� mink {icjk} ≤ distance(B) + ∑
j∈F(B)

� mink {icjk}

that is, the contribution of every variable but Xi to the lower bound

associated with l at node B is greater than or equal to the same contribution
at node A . Therefore, the required contribution from icil to satisfy the

pruning condition of value l at node B is lower than or equal to the same
contribution that is required at node A . In other words, delaying pruning
evaluation until node B may require collecting a lower (and never higher)
number of inconsistencies caused by l than at node A . If icil is computed at

node B, checking that the pruning condition is satisfied will require a lower
(and never higher) number of consistency checks than if icil is computed at

node A .

1.2.2. Value l has been pruned at node A using the current upper bound.
However, if l pruning is delayed to node B, in which Xi is the current

variable, a better upper bound may be available. The upper bound at node B
will be lower than or equal to the upper bound at node A . This will cause a
less demanding pruning condition, able to be satisfied with less consistency
checks than required to prune l at node A .

Analyses 1.2.1 and 1.2.2 are independent and complementary. Pruning delay
may decrease the number of consistency checks needed to compute
inconsistency counts because other contributions to the lower bound may
increase (1.2.1). In addition, pruning delay may also decrease the number of
consistency checks needed to compute inconsistency counts, because the upper
bound has decreased and the pruning condition is easier to satisfy (1.2.2).
Considering both analyses simultaneously magnifies their effects in
consistency checks decrement. As conclusion, early pruning does not always
use the better bounds to minimize the number of checks, and it may perform

more checks that required.

2. Pruning values of the current variable (lines 6 and 13, Figure 1). Value l of current
variable Xi is pruned because its lower bound is greater than or equal to the current

upper bound. In this situation, there are two independent sources of redundant
consistency check computation:

2.1. Value l is pruned before look_ahead (line 6, Figure 1). This implies that the
upper bound has decreased from the last look_ahead call at the previous node
(otherwise, l would have been pruned at that look_ahead call). PFC has
computed in advance icil, checking every past variable against l when it is
assigned. However, this may be more effort than required. If icil is not computed

in advance, pruning can be detected at this point checking l against as few past
variables as needed to satisfy the pruning condition, stopping as soon as the
lower bound reaches the upper bound. Therefore, if l can be pruned checking it
against a subset of past variables instead of the whole set, computing in
advance inconsistency counts may cause redundant consistency checks.

2.2. Value l is pruned after look_ahead (line 13, Figure 1). This function tries to
update minl (icil) for every future variable. However, this may be more effort
than required. It could be enough to update minl (icil) for a subset of future

variables, such that the lower bound would satisfy the pruning condition.
Therefore, performing the look_ahead function on the whole set of future
variables without the possibility of early termination may cause redundant
consistency checks.

4.2 Lazy Approach

From the previous analysis, we conclude that PFC may perform more consistency
checks than needed due to four causes:

(a) early pruning may do unnecessary lookahead when detecting an empty domain,
performing checks that are never used,

(b) early pruning does not always use the better bounds, which may cause to
collect more inconsistencies than really needed and therefore, this may generate
an extra number of unnecessary consistency checks,

(c) computing in advance inconsistency counts may cause more checks than really
needed to prune a value of the current variable, and

(d) the look_ahead function is executed on the whole set of future variables,
possibly doing more work than really needed to prune a value of the current
variable.

Based on this analysis we take a lazy approach that essentially consists on delaying
as much as possible the IC computation, keeping updated the contribution of future
variables to the lower bound. This lazy strategy is further developed in the following
points:

(α) No early pruning. To prevent redundant consistency checks due to causes (a),
(b) and (c), values are not pruned when performing lookahead. For this reason,

pruning is performed on values of the current variable only.

(β) Computing minl (icil) only. For lower bound computation at the current node,
it is not needed to compute exactly the inconsistency count icil of every value l
of every future variable Xi. It is enough to have the minl (icil) for every future

variable (see lines 13 and 15 of PFC, Figure 1).

(γ) IC updating and lookahead can be stopped prior completion. As a consequence
of (α) a value is only checked for pruning when its variable has become the
current one. Then, the following steps are made: (i) if needed, its inconsistency
count is updated and, each time it is increased, the pruning condition for the
current value is checked, and (ii) if pruning does not occur, lookahead is
performed until the pruning condition is satisfied or every future variable is
considered. Steps (i) and (ii) can be stopped prior completion, to prevent causes
(c) and (d) respectively.

4.3 The PLFC and PLFC-DAC Algorithms

 With the previous criteria, we have developed the partial lazy forward checking
(PLFC) algorithm, and its code appears in Figure 2. PLFC keeps the same structure as
PFC, substituting functions feasible and look_ahead by their lazy versions
lazy_feasible and lazy_look_ahead.

procedure PLFC (current_solution,next_variable,distance)
1 Xi := next_variable;
2 values := sort-values(Xi);

3 while values ≠ Ø do
4 l := first(values);
5 values := values - l;
6 if (lazy_feasible(Xi,l)) then
7 new_distance := distance + icil;

8 if (i = n) then
9 best_distance := new_distance;
10 best_solution := current_solution + (Xi,l);

11 else
12 if (lazy_look_ahead(Xi,l)) then
13 PLFC(current_solution+(Xi,l),Xi+1,new_distance);

14 endif
15 endif
16 endif
17 endwhile
endprocedure

Figure 2. The PLFC algorithm.

function lazy_feasible (Xi,l)

18 feasible_so_far:= true;
19 stop:= false;
20 while (feasible_so_far and not stop) do

21 if (distance+icil + ∑
j>i

� mink{icjk} < best_distance) then

22 feasible_so_far:= false
23 else
24 if (ic_levelil = i-1) then stop:=true;

25 else
26 ic_levelil := ic_levelil + 1;
27 if (inconsistent(Xi,l,X ic_levelil,val(ic_levelil))) then
28 icil := icil + 1;

29 endif
30 endif
31 endif
32 endwhile
33 return feasible_so_far;
endfunction

function lazy_look_ahead (Xi,l)

34 for j := i+1 to n do
35 update_value_with_min_IC(Xj)

36 if (new_distance + ∑
j>i

� mink{icjk} < best_distance) return false

37 endif
38 endfor
39 return true;
endfunction

procedure update_value_min_IC (Xj)

40 k:= value_with_min_IC;
41 stop:= false;
42 while (not stop) do
43 if (ic_leveljk =i) then stop:= true

44 else
45 ic_leveljk := ic_leveljk + 1;
46 if (inconsistent(Xj,k,X ic_leveljk,val(ic_leveljk))) then
47 icjk := icjk + 1;

48 endif
49 k:=value_with_min_IC;
50 endif
51 endwhile
endprocedure

Figure 2 (cont.). The PLFC algorithm.

Given that PLFC does not keep updated the inconsistency counts of every future
value, it needs an additional data structure ic_level, indexed by variables and values.
ic_levelil indicates the update level of icil with respect to the assignment order of past
variables. For example, ic_levelil = u and icil = v mean that value l of future variable
Xi is inconsistent with v assignments of u first past variables. We say that icil is

updated if its update level is equal to the last assigned variable.

The lazy_feasible (Xi,l) function sequentially updates icil starting from the level
ic_levelil + 1 to the current level. The pruning condition for value l is checked at each

step (line 21, Figure 2). Therefore, if the pruning condition holds during the updating,
this process is stopped. If the pruning condition is not satisfied, the updating process
continues until every past variable is considered.

The lazy_look_ahead (Xi,l) function updates ∑
j∈F
� mink {icjk} after the assignment

of l to the current variable Xi. If the function call terminates successfully, it is

guaranteed that the minimum inconsistency count among the values of every future
variable it updated. This function works as follows. For each future variable, it selects
the current minimum inconsistency count and increases its update level until either (i)
it becomes updated, or (ii) it is increased. If it becomes updated, this inconsistency
count remains the minimum. If this inconsistency count is increased, the new
minimum inconsistency count is selected, on which the same process is repeated.
Observe that, with this lazy approach, the minimum inconsistency count of a future
variable is updated to the current variable level, but the rest of inconsistency counts are
only computed up to the level where they equal to or surpass by 1 the minimum
inconsistency count of that variable. In addition, lazy_look_ahead checks the pruning
conditions each time a variable has its minimum inconsistency count updated (line 36,
Figure 2). It is worth noting that, in this process, the lower bound is repeatedly
computed, adding at each iteration a new updated minimum inconsistency count of a
future variable. As soon as the pruning condition is satisfied, the process stops.

PLFC can easily extended to include DACs, in the same way that PFC, producing
the PLFC-DAC algorithm. This algorithm can be obtained by replacing lines 21, 35,
36, 40 and 49 by the following ones,

21 if (distance + icil + dacil + ∑
j>i

� mink{icjk+dacjk} < best_distance)

35 update_value_with_min_IC+DAC(Xj)

36 if (new_distance + ∑
j>i

� mink{icjk+dacjk} < best_distance) return false

40 k:= value_with_min_IC+DAC;

49 k:= value_with_min_IC+DAC;

and replacing procedure update_value_min_IC (Xj) by procedure

update_value_min_IC+DAC (Xj).

5 Empirical Results

We have compared the performance of PLFC-DAC versus PFC-DAC on random
CSPs. A random problem is characterized by <n,m,p1,p2> where n is the number of
variables, m is the number of values for each variable, p1 is the graph connectivity as

the proportion of existing constraints (the number of constrained variable pairs is
exactly p1n(n-1)/2), and p2 is the constraint tightness as the proportion of forbidden

value pairs between two constrained variables (the number of forbidden value pairs is
exactly p2m 2). The constrained variables and their nogoods are randomly selected

[Prosser, 94]. We tested the following problem classes:

1. <15,5,p1,p2>, with p1 taking values 25/105, 50/105, 75/105 and 105/105, and
p2 taking values from 12/25, 13/25, ..., 25/25.

2. <10,10,p1,p2>,with p1 taking values 15/45, 25/45, 35/45 and 45/45, and p2

taking values 50/100, 51/100, ..., 100/100.

generating for each parameter setting 50 problems, forming two sets of 2,600 and
10,200 instances respectively. All algorithms were implemented in C and run on a
SUN Ultra 1.

Each problem was solved using PFC-DAC and PLFC-DAC. The static variable
ordering used was decreasing forward degree, breaking ties with decreasing backward
degree. This variable ordering gave a very good performance when used with PFC-
DAC on previous experiments with the same set of problems [Larrosa and Meseguer,
96].

The average search effort as the number of consistency checks for the two tested
classes appear in Figure 3 and Figure 4. For these classes, it is clear that PLFC-DAC
outperforms PFC-DAC. It can be observed that the lazy approach saves the
computation of up to 50% of consistency checks. The average CPU time of both
algorithms on the two tested classes appears in Figure 5 and Figure 6. They clearly
show that savings caused by PLFC-DAC, measured initially in consistency checks, is
maintained when measuring execution time.

6 Conclusions

From this work we extract the following conclusions. First, as it was already detected
for the FC algorithm, PFC may perform more consistency checks than really needed
to detect dead-ends on MAX-CSP problems, although PFC presents more causes than
FC for redundant check computation. Second, the lazy approach of performing the
lowest amount of lookahead, just needed to keep updated

 ∑
j∈F
� mink {icjk} , is a correct strategy to remove the causes of PFC redundant check

computation. And third, the lazy algorithm PLFC can still get advantage from DAC
usage in the combined PLFC-DAC algorithm, which has shown a very good
performance on random problems.

0E+00

5E+04

1E+05

2E+05

2E+05

2E+05

3E+05

#c
on

s.
 c

he
ck

s

0.5 0.6 0.7 0.8 0.9 1

p2

0E+00

5E+05

1E+06

2E+06

2E+06

2E+06

0.5 0.6 0.7 0.8 0.9 1
p2

p1=45/45

0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

6E+04

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

#c
on

s.
 c

he
ck

s PFC-DAC

PLFC-DAC

p1=15/45 p1=25/45

p1=35/45

Figure 3. Consistency checks on the <10,10> random problem class.

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

#c
on

s.
 c

he
ck

s

0E+00

2E+04

5E+04

8E+04

1E+05

0E+00

2E+05

4E+05

6E+05

8E+05

#c
on

s.
 c

he
ck

s

0.4 0.5 0.6 0.7 0.8 0.9 1p2

0E+00

2E+06

4E+06

6E+06

8E+06

0.4 0.5 0.6 0.7 0.8 0.9 1p2

PFC-DAC

PLFC-DAC

p1=75/105

p1=25/105 p1=50/105

p1=105/105

Figure 4. Consistency checks on the <15,5> random problem class.

0

0.02

0.04

0.06

0.08

C
PU

 ti
m

e
(s

ec
.)

0

1

2

3

4

C
PU

 ti
m

e
(s

ec
.)

0.5 0.6 0.7 0.8 0.9 1P2

PFC-DAC

PLFC-DAC

p1= 35/45

p1= 15/45

0

0.25

0.5

0.75

1

0

5

10

15

20

25

30

0.5 0.6 0.7 0.8 0.9 1P2

p1= 25/45

p1= 45/45

Figure 5. CPU time on the <10,10> random problem class.

0

0.02

0.04

0.06

0.08

C
PU

 ti
m

e
(s

ec
.)

0

2

4

6

8

C
PU

 ti
m

e
(s

ec
.)

0.4 0.5 0.6 0.7 0.8 0.9 1P2

PFC-DAC

PLFC-DAC

p1= 25/105

p1= 75/105

0

0.5

1

1.5

0

20

40

60

80

0.4 0.5 0.6 0.7 0.8 0.9 1P2

p1= 50/105

p1= 105/105

Figure 6. CPU time on the <15,5> random problem class.

References

Bacchus F. and Grove A. (1995). On the Forward Checking Algorithm, Proceedings of
CP-95, 292-309.

Bakker R., Dikker F., Tempelman F. and Wognum P. (1993). Diagnosing and solving
overdetermined constraint satisfaction problems, Proceedings of IJCAI-93, 276-
281.

Cabon B., Verfaille G., Martinez D. and Bourret P. (1996) Using Mean Field Methods
for Boosting Backtrack Search in Constraint Satisfaction Problems, Proceedings
of ECAI-96, 165-169.

Dent M. and Mercer R. (1994). Minimal forward checking, Proceedings of TAI-94,
432-438.

Feldman R. and Golumbic M. C. (1990). Optimization algorithms for student
scheduling via constraint satisfiability, Computer Journal, vol. 33, 356-364.

Fox M. (1987). Constraint-directed Search: A Case Study on Jop-Shop Scheduling.
Morgan-Kauffman.

Freuder E. C. and Wallace R. J. (1992). Partial constraint satisfaction, Artificial
Intelligence, 58: 21-70.

Larrosa J. and Meseguer P. (1995). Optimization-based Heuristics for Maximal
Constraint Satisfaction, Proceedings of CP-95, 103-120.

Larrosa J. and Meseguer P. (1996). Exploiting the use of DAC in MAX-CSP.
Proceedings of CP-96, 308-322.

Prosser P. (1994). Binary constraint satisfaction problems: some are harder than
others, Proceedings of ECAI-94, 95-99.

Schiex T., Regin J.C., Gaspin C., and Verfaille G. (1996). Lazy Arc Consistency,
Proceedings of AAAI-96, 216-221.

Wallace R. J. and Freuder E. C. (1993). Conjunctive width heuristics for maximal
constraint satisfaction, Proceedings of AAAI-93, 762-778.

Wallace R. J. (1994). Directed Arc Consistency Preprocessing as a Strategy for
Maximal Constraint Satisfaction, ECAI94 Workshop on Constraint
Processing, M. Meyer editor, 69-77.

Wallace R. J. (1996). Enhancements of Branch and Bound Methods for the Maximal
Constraint Satisfaction Problem, Proceedings of AAAI-96, 188-195.

Zweben M. and Eskey M. (1989). Constraint Satisfaction with Delayed Evaluation,
Proceedings of IJCAI-96, 875-880.

