-

View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by UPCommons. Portal del coneixement obert de la UPC

Analysing the Process of Enforcing Integrity Constraints

Enric Mayol
Ernest Teniente

Universitat Politecnica de Catalunya
Facultat d'Informatica
Pau Gargallo 5
E-08028 Barcelona - Catalonia
e-mail: [mayol | teniente]@Isi.upc.es

Abstract

Two different approaches have been traditionally considered for dealing with the
process of integrity constraints enforcement: integrity constraints checking and
integrity constraints maintenance. However, while previous research in the first
approach has mainly addressed efficiency issues, research in the second approach has
been mainly concentrated in being able to generate all possible repairsthat falsify an
integrity constraint violation. Moreover, the methods proposed up to date are only
concer ned with handling one of the approaches in an isolated manner, without taking
into account the strong relationship between the problems to be solved in both
Cases.

In this paper we address efficiency issues during the process of integrity constraints
maintenance. In this sense, we propose a technique which improves efficiency of
existing methods by defining the order in which maintenance of integrity constraints
should be performed. Moreover, we use also this technique for being able to handle
in an integrated way the integrity constraints enforcement approaches mentioned
above.

KEYWORDS: deductive database, updating, integrity checking, integrity maintenance

June 1996

https://core.ac.uk/display/41825744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Deductive database updating has attracted a lot of research during last years (see for exan
[Abi88, Win90]). In general, several problems may arise when updating a deductive database. One
the most important problems is thatenforcing database consistency. A deductive database is called
consistent if it satisfies a set of integrity constraints. When performing an update, deductive datab:
consistency may be violated. That is, the update, together with the current content of the deduct
database, may falsify some integrity constraint.

The classical approach to deal with this problem has been to develop metholeckong
whether a given update violates an integrity constraint (see [Oli91, CGMD94] and the referenc
therein). When a violation is detected, the transaction is rolled back in its entirety. That is, the upd:
request is rejected and, in this case, the user intention cannot be satisfied. We will refer to tl
approach astegrity checking.

In some cases, this solution may not be satisfactory because the user may not know wh
additional changes are needed in order to satisfy all the integrity constraints. Then, a second apprc
for dealing with integrity constraints satisfaction [CW90, KM90, MLOEPT92, Wit93, TO95,
Dec96] consists of trying to repair constraints violations by performing additional updates that resto
consistency of the deductive database. In this case, it is guaranteed that the state resulting fi
applying the update does not violate any integrity constraint and that it satisfies the update reques
by the user. We will refer to this approachrasgrity maintenance.

Up to the present, the main effort of the research in integrity maintenance has been devotec
define methods for handling repairs in an effective way. These methods are mainly concerned w
being able to generate all possible repairs when an integrity constraint violation is detected. Howev
little attention has been paid to efficiency issues (even though efficiency is known to be one of tl
most important factors of success for practical databases).

Both integrity constraint enforcement policies, integrity checking as well as integrity maintenanc
are reasonable [Win90]. The correct choice of a policy for a particular integrity constraint depends «
the semantics of the integrity constraint and of the deductive database. Thus, a Deductive Datak
Management System should allow to define constraints to be checked as well as constraints tc
maintained, and should also be able to handle them appropriately. However, the integration of b
integrity constraint enforcement policies is not an easy task since most of the existing methods |
only concerned with handling one of the policies in an isolated manner, without taking into accou
the strong relationship between the problems to be solved in both cases.

This paper aims at improving integrity constraints enforcement by considering the two aspec
just mentioned before. First, we propose a technique for improving efficiency of existing integrit

maintenance methods by defining the order in which maintenance of integrity constraints should
performed. This technique is based on the definition of a graph which explicitly states all relationshij
between integrity constraints and repairs. Our technique is directly applicable to the methods we h:
proposed in the past for updating consistent deductive databases [MT95, TO95] and it could be
easily adapted for improving efficiency of most of the existing integrity constraints maintenanc
methods. Second, we present an approach for integrating the treatment of integrity constraints tc
checked and integrity constraints to be maintained. This approach is based on incorporating also in
previous graph the information corresponding to the integrity constraints to be checked, ar
considering its relationship with constraints to be maintained and their corresponding repairs.

Our approach is based on a set of rules (proposed in [Oli91, UO92]) that define the preci
difference between two consecutive database states, by explicitly stating the exact insertions, deleti
and modifications induced by the application of a transaction. We will use these rules for obtainir
the graph which contains the relationships between constraints and repairs.

Our previous work in the field has been mainly devoted to the definition of a sound and comple
method for updating deductive databases while maintaining their consistency [TO95] and c
considering efficiency issues on the treatement of view updates [MT93, MT95]. This paper exten:
our previous work by considering efficiency issues in the treatement of integrity constraint
maintenance and also by proposing an approach for incorporating in a single method integr
checking and integrity maintenance.

This paper is organised as follows. Next section reviews basic concepts of deductive databas
Section 3, which is based on [UO92], reviews the concepts of event, transition rules and event rul
In Section 4 we propose to use a graph to maintain integrity constraints in an efficient way. W\
distinguish the case that integrity constraints are defined by only base predicates (section 4.1) :
integrity constraints defined by either base and derived predicates (section 4.2). In Section 5
propose a mechanism to execute that graph. Section 6 describes a proposal to combine integ
constraints checking and integrity constraints maintenance policies. Finally, at Section 7 we relate «
approach to other relevant previous work and in Section 8 we summarise our conclusions.

2. Deductive Databases

In this section, we briefly review some definitions of the basic concepts related to deductiv
databases [LI087, UlI88] and present our notation. Throughout the paper, we consider a first orc
language with a universe of constants, a set of variables, a set of predicate names and no func
symbols. We will use names beginning with a capital letter for predicate symbols and constants (w
the exception that constants are also permitted to be numbers) and names beginning with a lower
letter for variables.

A termis a variable symbol or a constant symbol. If P is an m-ary predicate symbe| andt
are terms, then B(t..., t,,) is anatom. The atom iground if every { (i=1, ..., m) is a constant. A
literal is defined as either an atom or a negated atom.

A factis a formula of the form: P(t;, ..., t,) « , where P{, ..., t,,) is a ground atom.

A deductiveruleis a formula of the form:

P-L,0.0L, withn>1

where P is an atom denoting the conclusion, apd. L, are literals representing conditions. Any
variable in P, kL, ..., L, is assumed to be universally quantified over the whole formula. A derived
predicate P may be defined by means of one or more deductive rules.

An integrity constraint is a closed first-order formula that the deductive database is required tc
satisfy. We deal with constraintsdenial form:

~ Ly 0...0L, withn>1

where the | are literals and all variables are assumed to be universally quantified over the who

formula. More general constraints can be transformed into this form by first applying the range for
transformation [Dec89] and then using the procedure described in [LT84].

For the sake of uniformity, we associate to each integrity constraint an inconsistency predice
Icn, with or without terms, and thus they have the same form as the deductive rules. We call the
integrity rules. Then, we rewrite the former denial as:

Ich « L1 0..0Ly withm=>1

We assume that each predicate (base or derived) has a non-null vector of ardyrettsorm
a key for that predicate. We have then two types of predicates: thkse, Rith key and non-key
arguments and those K(with only key arguments; where bdtrandx are vectors.

To enforce the concept of key we assume that associated to &aghttidre is a key integrity
constraint that we define as: Pk,x) OP(,x") Ox # x'. Underlined arguments of predicates will
correspond to their key argumerf®y integrity constraints do not need to be explicitly defined since
they are implicitly handled by our update method.

A deductive database D is a triple (EDB,IDB,IC), where EDB is a set of facts, IDB a set of
deductive rules and IC a set of integrity constraints. The set EDB of facts is cakztite®nal part
of the database and the set of deductive rules and integrity constraints is cafieshdiomal part.

In this paper we assume that key arguments of predicates appearing in the body of a deduc
rule are a subset of key arguments of the predicate defined by that rule. That is, we deal with 1
universal key case.

We also assume that deductive database predicates are partitioned into base and derived (v
predicates. A base predicate appears only in the extensional part and (eventually) in the body
deductive rules. A derived predicate appears only in the intensional part. Any database can be defi
in this form [BR86]. We deal witktratified databases [LI087] and, as usual, we require the database
to beallowed [LI087]; that is, any variable that occurs in a deductive rule has an occurrence in
positive condition of an ordinary predicate.

3. The Augmented Database [UO92]

Our approach to improving efficiency of current integrity maintenance methods is based on a ¢
of rules that define the difference between two consecutive database states. This set of rules toge
with the original database D compose the Augmented Database [UO92]. The Augmented Datab:
explicitly defines the insertions, deletions and modifications induced by a transaction consisting of
set of updates to the extensional part of the database. In this section, we will review the main conce
of the Augmented Database. We refer the reader to [UO92] for a further description of these conce|

The definition of the Augmented Database is strongly based on the conespttofor each
predicate P of a given deductive database D, a distinguiskation event predicate (P, deletion
event predicate P, andmodification event predicate P are used to define the precise difference of

deducible facts of consecutive database states.

More precisely, rules abou®, dP anduP in the Augmented Database (cakwent rules) define
exactly the facts about P that are effectively inserted, deleted or modified in the extension of P
some transaction T. The definition ¢, 8P anduP depends on the definition of P in D, but it is

independent of any transaction T and of the extensional part of D. A more formal declarativ
definition of 1P, dP anduP is given by the following equivalences:

Ok,x (1PK,x) « P'(k,x) O~ LyPo(k,y))
Ok,x (0P (k,X) « Po(k,x) O - LyP(k,y))
OK,X,X"(MP(k,X,x") « PO(k,x) OO P (k,x") Ox#x")

where P refers to predicate P evaluated in the old state of the database (before the application of
Pn refers to predicate P evaluated in the new state of the databasexagcandx' are vectors of
variables.

If P is a base predicatd?, dP anduP facts represent insertions, deletions and modifications of

base facts, respectively. Therefore, we assume from now on that a transaction T consists of
unspecified set of base event facts. If P is a derived prediPat® anduP facts represent induced

insertions, induced deletions and induced modifications, respectively. If P is an inconsistenc
predicate, themP facts represent violations of an integrity constraint. For inconsistency predicates
OP anduP facts are not defined since we assume that the database is consistent before the update.

For instance, if Stdt-id,name) is a predicate (denoting that the student identified by st-id is
named name) Std(1,John) denotes an insertion event corresponding to predicate Std: Std(1,John)
true after the application of T and it was false before. On the other d&twh{2,Mary) denotes a
deletion event: Std(2,x) is false for all possible values of x after the application of T and Std(2,Man
was true before. FinallyStd(2,Mary,Sue) denotes a modification event: Std(2,Mary) was true

before the application of T while Std(2,Sue) is true after this application.

Given a deductive database D = (EDB, IDB, IC), the Augmented Database associated to D it
triple A(D) = (EDB, IDB, IC*), where IDB contains deductive rules of D and event rules associated
to these deductive rules, while*I€ontains the integrity rules of D and their associated insertion event
rules.

A more precise description and discussion of the procedure for automatically deriving a
Augmented Database from database clause definitions can be found in [UO92]. The followir
example illustrates the concept of Augmented Database.

Example 3.1Consider the following deductive database which contains three base predicate
Pk,x), T(k,x), Rk,x) and two integrity constraints Id,k) and Ic2k,x).

Ic1(k,x) « PK,x) 0= T(k,x)
Ic2(k,x) « R(k,x) 0= PK,X)

Integrity constraint IcI,x) states that facts of predicat& R can not hold if related factsK k)
do not also hold. While in a similar way, integrity constraint kg2(prevents to be true a fact of
predicate R, x) to be false the associated fadt,R).

If we apply the definition of insertion event rules to predicates Icl and Ic2, we get the following
equivalences:

Ok, x (1lcl(k,x) o lcIn(k,x) O- Oy lc1o(k,y))
Ok,x (11c2(k,x) « lc2(k,x) 0= Oy 1c29(k,y))

And after simplifying these two rules by applying the procedure defined in [UO92], we get the
following insertion event rules of our example:

(Cp) el k, xX) « Pk, x) 0= 8Pk, x) 0= puPK, x, a)ddT(k, X)
(Co) el k, X) « Pk, x) 0= 0Pk, x) 0= puPk, x, a)JpuT(K, X, b)
(C3) tlcl k, X) « IPK,x)d= Tk, x) = 1T(k, x) 0= uT(k, a, x)
(Cqp) tlcl k, X) « 1Pk, x) OdT(k, X)

(Cs) el k, X) « IPK, x) OuT(k, X, @)
(Ce) 1lcl k, X) « uPk, a, x)0= T(k, X) O=1T(k, X) 0= puT(K, b, x)

(Cy) uc2 k, X) « Rk, x) 0= dR(k, x) O~ puR(, x, 8)T 6P (K, Xx)
(Cg) 1lc2 (k, X) « R, x) d= dR(k, x) 0= uR(k, x, a)duP(, X, b)
(Co) 1lc2 k, X) « IRk, X) 0= PK, x) 0= 1PK, x) 0= puP(K, a, X)
(C10) tlc2 k, x) — 1IR(k, x) OOP(K, x)

(C11) tlc2 k, X) « IRk, x) OuPk, x, a)

(C12) tlc2 k, X) « UR(, a, X)00= Pk, x) 0= 1Pk, x) 0= uP(K, b, x)

Rules G to C;o define all possible ways of inserting facts about predicaté,bglénd Ic2K,x).
These rules deserve special attention since they define all possible situations in which datab
consistency is violated by the application of some transaction. For instance gratat€s that
database consistency will be violated if a transaction T inserts a facR@nd no insertion nor
modification is performed by transaction T about the fa&t,X). It is not difficult to see that
database consistency would be violated by the application of T since in the new stati fagt R(
would be true while fact R(, X) would be false.

Due to the absense of derived predicates, no insertion, deletion nor modification event rule
derived predicate appears in this example. An example of these event rules will be given in Sect
4.2

4. Structuring the Process of Integrity Constraints Maintenance

In general, integrity constraints of a database are very interrelated because they have sc
predicates in common. These predicates shared among several integrity constraints may apf
explicitly in their definition as well as implicitly because they participate in the definition of a certain
derived predicate that appears explicitly in that definition. For this reason, the consistenc
maintenance activity uses to be very complex since, for instance, repairs of an integrity constraint v
correspond to violations of other integrity constraints; or since an already repaired integrity constral
could be violated again by the repair of another integrity constraint. This situation is aggravated by t
fact that even simple integrity constraints can be violated through several operations and also bece
often a multitude of repair actions exists.

The methods proposed so far for integrity constraints maintenance [KM90, ML91, CFPT9Z
Wiit93, TO95, Dec96] have been mainly concerned with the generation of a complete set of repairs
integrity constraints violations, but little attention has been paid in the past to efficiency issues. Tht
for instance, when a constraint is repaired all other constraints are checked for consistency e
though they were already satisfied prior to the repair and they could not be violated by the perform
repair.

In this section we propose a technique for determining the order in which integrity constraint
should be handled to minimize the number of times that an integrity constraint must be reconsidel
by an integrity constraints maintenance method. This minimization provides two importan
advantages. First, it is useful for minimizing the number of recomputations of whether a give
constraint is violated, minimizing in this way its associated cost. Second, and most important one
is helpful for ensuring that a repair of a certain integrity constraint Icj is performed only when it i
guaranteed that have been performed all repairs of other constraints that could induce a violatior
Icj.

Our technique is based on the definition of a graphPtbeedence Graph, which explicitly states
all relationships between repairs and potential violations of integrity constraints. Information provide
by this graph is directly applicable to the methods we have proposed in the past for handlit
consistent updates in deductive databases (reported in [MT93, MT95, TO95]) and it could be eas
adapted to be applicable to the other existing methods.

To obtain the Precedence Graph we only need to take into account syntactical informatic
associated to the definition of each integrity constraint and, thus, we do not need to consider 1
contents of the EDB nor the transaction to be applied to the database. Therefore, we generate
Precedence Graph at definition time, and we delay to run time to test whether potential dependent
defined in the graph correspond to real violations.

As we said in the previous section, we assume that the database is consistent before
application of a transaction T. Then, violations of database consistency due to the transaction
produced because some insertion event rule associated to an integrity constraint becomes t
Moreover, repairs of the constraint are defined by the violated insertion event rule, since a rep
corresponds to an additional update that will falsify the efect of T on the corresponding event rul
For this reason, in the rest of the paper we will refer to the insertion event rules of an integri
constraint as theonditions of that integrity constraint.

In order to state dependencies between integrity constraints more precisely, we will consider t
conditions associated to an integrity constraint instead of the own integrity constraint definition. Thu
the Precedence Graph will state all relationships between repairs and potential violations of the
conditions.

Example 4.1 Conditions associated to integrity constraint Icl of the example 3.1 are the
following:

Name Condition
C1 « Pk, x) 0= 8Pk, x) O= puPk, x, a)ddT(k, X)
Co « Pk, x) 0= 0Pk, x) = pPk, x,) uT(k, X, b)

Cs — IPK,x) 0= Tk, x) D= 1T(k, x) 0= uT(k, a, x)
Ca « 1Pk, x) OdT(K, x)

Cs — IPK, X) OuT(K, X, a)

Ce « MPK, a, x)0-~ T(k, x) 0= 1T(k, x) 0= pT(k, b, x)

Note that each condition describes a situation to be avoided to ensure that an update does
violate integrity constraint Ic1. Therefore, ensuring that no condition holds we guarantee that r
integrity constraint is violated. In the following we will refer to each condition by its identifier C
(i=1..n).

A dependency from a given condition © another condition jGn the Precedence Graph
indicates that a repair of;@& a potential violation of Gand, thus, thatGhould be handled before
than G.

In the following subsections we describe in detail how to obtain the Precedence Graph. We w
start by analysing which events are involved in each condition and in which way. To perform thi
analysis, we use theependency Graph of Events [Cos95]. Information provided by this graph
allows us to identify dependencies between conditions that are used to set up later the Precede
Graph. Finally, two kinds of optimisations are proposed to remove non feasible dependenci
obtaining a graph which states more precisely dependencies between conditions.

4.1 Precedence Graph with Flat Integrity Constraints

In order to simplify the presentation, we will first define how to build the Precedence Graph fo
the case of flat integrity constraints. That is, we will assume for the moment that predicates appear
in the definition of an integrity constraint are restricted to be base predicates.

Before explicitly stating the relationship between repairs and potential violations of condition:
associated to integrity constraints, we need to analyse which events are related to each condition
in which way. This information is provided by the Dependency Graph of Events [Cos95] whicl
explicitly states the relationship between events of base and derived predicates with respect
conditions. In section 4.1.1 we review the main concepts regarding this graph.

4.1.1 Dependency Graph of Events [C0s95]

A Dependency Graph of Events is a triad <V,C,E> where V and C are two sets of nodes and E
(VxV)O(VxC) is a set of directed edges. Each nodeW has associated an event, each nodeCc
has associated a condition and each edgE & marked positive or negative.

In the Dependency Graph of Events there are two kinds of edges:

There exists an edge e=(Vv', v) where v' amd\; if there is a rule in the Augmented Database
A(D) with event v as a head, and there is an event w in the body of the rule that coincides wi
v'. This edge is marked positively (resp. negatively) if w is positive (resp. negative) in the
rule.

There exists an edge e=(V', ¢c) wher@ W and cO C, if there is an event w which coincides
with v' in the body of the condition associated to node c. This edge is marked positively (res
negatively) if w is positive (resp. negative) in the rule.

If v (or ¢) and v' are nodes in the Dependency Graph of Events, we say that:
a) v depends on V' if there is a path from v' to v.

b) v depends evenly (resp. oddly) on V' if there is a path from v' to v containing an eve
(resp. odd) number of negative edges.

Example 4.2Consider the condition4®f the integrity constraint Ic1 of example 3.1:
— IPK,x)0= Tk, x) D= 1T(k, x) O= uT(k, a, x)

In the body of this rule there is one positive euét{k, x) and two negative onesk(k, x) and
MT(k,a,x). Therefore, in the Dependency Graph of Events there will be one edge marked positive
from nodelP to node @, and two edges marked negatively from nodand nodeuT to node G. It
is also easy to see that nodgdepends evenly a®, and it depends oddly oh anduT. Thus, the

part of the Dependency Graph of Events corresponding to condgiati® following, where black
arrows correspond to edges marked positively and grey arrows correspond to negative ones:

©)

P (T MT

Fig.1. Dependency Graph of Events corresponding to condition C3

By considering all the conditions of example 3.1, we obtain the following Dependency Graph ¢
Events:

-10 -

MR

Fig.2. Dependency Graph of Events of our example

In addition to stating which events are related to each condition, the Dependency Graph of Eve

is also used for defining the conceptsGlfecking andGeneration Conditions and ofPotential
Violation and ofRepair.

1) For our purposes it will be useful to distinguish betw€&leecking Conditions, those conditions
that once violated may never be repaired, @eaakration Conditions, those that once violated by
an update can be falsified by performing additional updates of base facts. Conditions can
classified into one of these classes by a syntactic analysis of the Dependency Graph of Event:

A condition G is aChecking Condition if it that does not depend oddly on any base event
(all dependencies on base events are even).

A condition G is aGeneration Condition if it depends oddly on at least one base event.

Note that from the above definitions it follows that a condition must be either a Checking o
a Generation Condition and that it may never be both.

Checking Conditions of the example arg Cs, Cig and G 1, while the rest correspond to
Generation Conditions. For instance, conditioni€a Generation Condition because if it
holds, an insertion or a modification of a fact of predicakex) (will falsify it.

2) The Dependency Graph of Events allows also to identify which events could violate a conditio

thus being &otential Violation of this condition, and which events may be usedRepair of a
condition when it is violated.

An event Ev is @otential Violation of a condition if the condition depends evenly on it.
Note that if an event Ev is a potential violation then when Ev is true an insertion event fact of tf

inconsistency predicate associated to the conditionoGld be induced and thus integrity
constraint could be violated.

-11 -

At definition time we can not ensure that at run time an event Ev will correspond to a rec
violation, since the database must also satisfy other requirements which may not be complet
verified at this moment. In particular, the rest of literals of the condition must be also true fo
some concrete value. This is the reason why we talk about potential violations.

An event Ev is &epair of a condition ¢if the condition depends oddly on it. Note that, in
this case, if a conditionjGolds and the event Ev (repair) occurs then conditioneComes
falsified (repaired).

Let us consider again the conditiog & the example:

— IPK,x) 0= T(k, x) D= 1T(k, X) O= uT(k, a, X)

It is not difficult to see that evenP(k, x) is a potential violation of £because it could
make G true depending on the rest of literals of the condition. Notice also ghdegends
evenly ontP(k, x). EventaT(k, x) anduT(k, a, x) are two different repairs of condition.C
This condition depends oddly on them, and if one of these events occurs, then the conditi
will be false.

4.1.2 Dependencies Between Conditions

The Dependency Graph of Events does not provide any information about which repairs of
condition become potential violations of other conditions, even though it provides the basis fc
determining this information. In this section we explain how to identify a dependency between tw
conditions by looking at the Dependency Graph of Events. This identification will be a key point fo
obtaining later the Precedence Graph.

Given two conditions Cand G, there is alependency between Cj and C; if there exists an event
Ev that is a repair of {Gand a potential violation ofjCNote that a dependency between these two
conditions explicitly states that a repair of a conditipm@y induce a violation of;C

Since the information about repairs and potential violations is provided by the Dependency Gra,
of Events, this graph will be the basis for determining dependencies between conditions. To do tr
we begin by identifying all relevant conditions to each event. We will obtain for each event Ev tw
different sets: the set of conditions for which Ev is a repair and the set of conditions for which Ev is
potential violation. Notice that if at least one of these sets is empty no dependencies betwe
conditions exist due to this event since either no condition is repaired by it or no condition i
potentially violated by it.

Given two conditions Cand G, and an event Ev which is a repair gfa@d a potential violation
of G, the dependency betweenpddd G is depicted as follows:

Ci - G with respect to Ev

-12 -

Example 4.3Consider the deletion evedP(k, x). Conditions @ and G depend evenly on this
event, while conditions Cand G depend oddly on it. Then, eved®(k, x) defines the following
dependencies between conditions:

Ci1- Cy with respect t@dP (K, x)
C1 - Cqo with respect t@dP (K, X)
Co - Cy with respect t®P (K, x)
Cy - Cqo with respect t@dP (K, x)

All these dependencies state that e, x) is a repair of the condition at the left hand side of
the arrow and, at the same time, it is a potential violation of the condition at the right hand side.

In the rest of the paper we will write a set of dependencies in a compact way. For example, \
will write the previous set of dependencies as:

C1, C - C7, C10 with respect t@dP (K, Xx)

4.1.3 Precedence Graph

Once we know how to identify a dependency between two conditions with respect to an event \
are in the position to define the Precedence Graph and to explain how it can be obtained from this
of dependencies.

A Precedence Graph for a set C of conditions, is a triad <N,G,E> where N is a finite number of
nodes, G is a finite number of subgraphs ard @XxN)d(GxN) is a set of directed edges. Each
node nO N has associated a condition € and each edgeeE is labelled with one event.

In the Precedence Graph there are two kinds of edges:

A directed edge e=(n,n’) labelled with an event Ev where n and\In'states that event Ev
corresponds to a repair for the condition associated to node n and it is, at the same time
potential violation to the condition associated to n'.

A directed edge e=(g,n’) labelled with an event Ev wherésgand ntO N, states that event Ev
corresponds to a repair for some condition of the subgraph g and it is, at the same time
potential violation to the condition associated to n'.

A subgraph G is considered as an special case of node of the Precedence Graph. It correspon
a cyclic precedence subgraph, where there exists a path from a node to itself. A precedence subg
of conditions describes that a repair of a conditigre@ild induce potential violations to other
conditions, repairs of which are also potential violations of the sanmiéh€refore, we can not ensure
that G is falsified until all conditions (nodes) of the subgraph are false.

-13 -

If there exists a dependency between conditipand condition with respect to event Ev, we
establish an edge from nodet@ node Glabelled by Ev. When a node of the graph corresponds to a
subgraph G, dependencies between a nqdadéinber of the subgraph and a nogeo@side the
subgraph are transformed into an edge between the subgraph G and thg wittiellie same label.

To obtain the Precedence Graph we have to identify all dependencies between conditions w
respect to insertion, deletion and modification events of each relevant predicate to all integri
constraints. To do that, we proceed in three steps:

Sep 1: Consider dependencies between conditions of the same integrity constraint. ldenti
dependencies between conditions of each integrity constraint independently of the rest
integrity constraints.

Sep 2: Consider dependencies between conditions of different integrity constraints. Identify
dependencies between conditions of each integrity constraint and conditions of the rest
integrity constraints.

Sep 3: Collect and integrate all dependencies identified in the previous steps into a common grap

In the rest of this subsection, we explain how to proceed to build the Precedence Graph of 1
database example 3.1.

Sep 1: We begin by analysing the first integrity constraint Ic1. Conditions associated to Icl ar
C1to Gs. To identify dependencies between them we proceed as we have explained in section 4.
and we obtain the following set of dependencies:

C1, C - Cp with respect tuP(K, X, y)
C3, Cs - Co, Cs with respect tquT(k, X, y)

It is not difficult to detect a recurrent set of dependencies composeg by@ and G - Co.
Then, in the corresponding Precedence Graph, we will group these dependencies into a subgr:

Dependency between nodg &d node €is transformed into an edge from the subgraph to the node
Cs with the same labeiT. Fig. 3 shows the Precedence Graph relative to the first integrity constrain

Ic1l alone. Note that nodes corresponding to Checking Conditions are filled in grey to differentiai
them from Generation Conditions.

-14 -

Fig.3. Precedence Graph of integrity constraint Ic1

To obtain the set of dependencies relative to the second integrity constraint Ic2, we proceed il
similar way as for Icl. Fig. 4 shows the Precedence Graph associated to integrity constraint Ic2.

Fig.4. Precedence Graph of integrity constraint Ic2

If we compare Dependency Graphs of Conditions of integrity constraints Ic1 and Ic2, we can s
that they have the same structure. They only differ in the condition names (nodes) and events (e
labels). The reason of these similarities is that syntactic definitions of both integrity constraints ha'
the same structure: they are defined by two base predicates, the first one is positive and the sec
one is negative.

Sep 2: In step one, we have obtained dependencies between conditions of each integri
constraint independently of the rest of integrity constraints. Now, as a second step, we will identi
which dependencies exist between conditions of integrity constraint {c1G4} and conditions of
integrity constraint Ic2 (&..C12). The resulting set of dependencies is the following:

Co, C12 - C3, C4, C5 with respect toP(K, x)

C1, & - C7, Cr0o with respect t@dP (K, X)
Cg, Clb - Cp with respect tuP(, X, y)
Cq1, C - Cg, C11 with respect tuP(K, X, y)

-15 -

Fig. 5 shows the Precedence Graph that states dependencies between conditions associat
integrity constraint Ic1 and conditions associated to integrity constraint Ic2.

Fig.5. Graph of dependencies between integrity constraints (Icl1- Ic2)

In fact, the partial graphs we have drawn at step 1 and step 2 (shown in figures 3, 4 and 5),
not need to necessary be generated. In general, we only need to obtain the set of their dependenc
obtain the global Precedence Graph. We have drawn graphically these partial Precedence Grapf
make more clear our explanations.

Step 3 As the third step of the process to obtain the Precedence Graph, we have to collect &
integrate all subsets of dependencies identified at step 1 and step 2.

These dependencies are:

C1, & - Cs with respect tuP(, X, y)
C3, G - Co, G5 with respect tuT(k, X, y)
C7,Cs - Cq2 with respect tuR(k, X, y)
Co, C12- Cg, C11 with respect tuP(K, X, y)
Co, C12 - C3, C4, C5 with respect taP(k, X)

C1, C - C7, Cio with respect t@dP (K, x)

Co, C12 - Cp with respect tuP(K, X, y)
C1, & - Cg, C11 with respect tuP(K, X, y)

Notice that this set of dependencies contains those cycles already identified in previous ste
between conditions £and G, and between £and Go. But now, when considering all
dependencies together, two additional cycles have appeated;: € - C> - Cg— C12 and
Co- C7-C12- Cg- Co. But since these cycles share some conditions then, they must be groupe
into a unique cyclic subgraph.

The global Precedence Graph of the example 3.1 is shown in Fig.6.

-16 -

Cs
F)
| Ky P
P
P uT C,
C
C
(P e
oP
MP| P
Csg
& UR| |uP
P R
5P C12
pP oP
Cu1 Cio

Fig.6. Precedence Graph of example 3.1

As we have said previously, the Precedence Graph is useful to state and manage more ec
relationships between integrity constraints. It shows an overall view of these relationships
dependencies between conditions. Using this graph, we can identify alternative repairs for eg
condition that is violated, and at the same time, it allows to determine which conditions could &
affected by the repair. The most important advantages of using the Precedence Graph are that
useful to minimize the number of recomputations to check whether a given constraint is violated; a
also that it is helpful for ensuring that a repair of a certain integrity constraint Icj is performed onl
when it is guaranteed that all repairs of other constraints that could induce a violation of Icj have be
performed.

217 -

4.1.4 Optimizations

Each dependency drawn into the Precedence Graph, states that a repair of one condition
potential violation of another condition. If we analyse in more detail these dependencies, we c.
detect that some of them are never achievable at run-time since the requirements of each conditior
incompatible. The more accurately we can make this decision, more efficiency we will be gaining fc
integrity constraints maintenance. In this section, we propose two different optimizations that allo
us to eliminate non-reachable dependencies, obtaining a more precise Precedence Graph. TI
optimizations can also be applied at definition time since we only need to take into account definitic
of events and syntactical information of conditions.

The first optimization that we propose is used to eliminate dependencies between conditio
associated to the same integrity constraint (Step 1 of our procedure). This optimization is based on
analysis of the necessary requirements that the contents of the database should satify to ensure t
repair of a condition is a potential repair of another condition. Hence, it restricts the set of conditiol
that could be violated by the repair of another condition.

The second optimization is addressed to reject non-feasible dependencies drawn into {
Precedence Graph, independently if they are associate to the same or to different integrity constra
(Steps 1 and 2 of our procedure). This optimization is based on the fact that the definition
insertion, deletion and modification events given in section 3 prevents two different kinds of evel
about the same predicate to hold at the same time. This optimization is aimed to detect if such situa
could be introduced by a dependency.

a) Database Requirements Optimization

As we said in section 2, in this paper we restrict deductive databases to the universal key ce
Under this assumption, we can ensure that when a condition associated to an integrity constrair
violated, the corresponding repair (event) with a key k can not violate another condition of the sar
integrity constraint with another key k',&k.

We know that a condition is violated if and only if all their database requirements hold. Then,
repair of a condition could violate another condition only if both conditions do not have contradictor
database requirements. This situation allows us to eliminate dependencies between two conditi
with different database requirements, because both conditions will not be achievable at the same ti
This criterion is only applicable to dependencies between conditions of the same integrity constra
since for conditions of different integrity constraints we can not guarantee that conditions wit
different database requirements are always non-achievable at the same time.

For each condition associated to an integrity constraint, we must identify which is the set «
requirements of the database contents needed to violate that condition. We are only interested in
kinds of requirements: the set of concrete facts that must hold and those predicates that can not |

-18 -

any true fact into the database. To do that, we distinguish two kinds of literals in the body of tt
condition: the set of literals that refer to base or derived predicates and the set of positive ever
Literals that refer to base and derived predicates state which is the necessary contents of the data
to allow the condition to be violated. Positive events that appear into the body of conditions permit
derive additional database requirements using the event definitions presented in section 3, as
shown by the following rules:

Ok, x (1IPK, X) - =Ly Pk, y))

Ok, X (OPk, X) - P, X))

Ok, x, X' (UPK, X, X) - Pk, x))

Now, we will show how to apply this optimization to integrity constraint Ic1 of example 3.1. We
begin by analysing database requirements of its associated condititm€4CConsider for instance
condition G

— IPK,x) 0= T(k, x) D= 1T(k, X) O= uT(k, a, X)

Satisfaction of this condition requires eveR{k, x) to hold. Therefore, from the definition of
insertion event, grequires X, z) to be false for all possible values of z, that is, it requifeg,
z). On the other hand, literal T(k, x) is not considered a database requirement because it only
prevents predicate t to be true for only one specific value 'x' (the value for which theR{kerj
holds); while we are only interested in requirements stating either concrete facts that must hold
predicates that must have an empty extension.

In a similar way we obtain the following database requirements of the rest of condition:
associated to Icl:

C1 - Pk, x) OT(k, x)
C2 - Pk, x) OT(k, x)
Cs - = Pk, 2)

Cy4 - = Pk, 2)OT(K, x)
Cs - = Pk, 2)OT(K, x)
Ce - PK,y)

Notice that conditions {7 C; and G have compatible database requirements, and the group of
conditions @, C4 and G also have compatible database requirements. Database requirements of t
first group and the requirements of the second one are contradictory with respect to predicate P(
This means that dependencies between a condition of one group and another condition of the o
can be eliminated because they correspond to non-feasible dependencies. In the example, we elimi
two dependencies of Icl:

C1 - Cg Co - Cp with respect tuP(, X, y)

-19 -

C3—-Co C3 - Cs with respect tuT(k, X, y)
Ce — Co Cg —Cs with respect tuT(k, X, y)

If we apply this optimization to the set of dependencies between conditions associated to t
second integrity constraint Ic2, we obtain this new set of dependencies:

C7- Cy2 Cg - C12 with respect tuR(K, X, Y)
Cg — Cg Cg - C11 with respect tuP(K, X, y)
C12 > Cg Ci12—C11 with respect tuP(, X, y)

b) Event Exclusiveness Optimization

The purpose of this optimization is to identify in which situations, or upon which assumptions,
dependency will not be reachable at run time. This optimization relies on the analysis of eau
dependency in the Precedence Graph, independently if it relates conditions of the same or of differ
integrity constraints.

For each dependency G Cj, we analyse which are the set of events that must occur and the se
of events that must not occur to induce a violation of conditjoAffer that, and given the repair of
condition G that is a potential violation ofjCwe identify the events that must hold and those that
must not hold to violate condition;.af we find some contradiction between events phi@l events
of Gj, it means that this dependency will not be reachable at run time, and we eliminate it from
Precedence Graph. Otherwise, we keep it on the graph.

There are two different situations we may detect:

b.1) Mutually exclusive events that must hold at the same time.

By the definition of events, some events are mutually exclusive in the sense that they may r
happen at the same time. Therefore, if a dependency requires two mutually exclusive events
occur together, this dependency must be rejected because it will not be reachable at run time.

Using the event definitions, we establish the following relation of exclusivness between events

Ok, x 1Pk, X) - = Oy 1Pk, y) Ox#y))
Dk, X (6P(K’ X) - 7 Eb/ (UP(K! X, y) DXiy))
Ok, X, X' UPK, X, X') - = 3P, X))

Dk, X, X' GJP(K’ X, XI) - 7 Dy (HP(IS’ X, y) DX'iy))

This set of implications states that two insertion event facts of the same predicate with the sau
key, but with different non-key arguments, are mutually exclusive and prohibited. It is alsc
forbidden to combine deletion and modification events of the same fact. Finally, twc
modifications of a fact to two different new values are also prohibited.

-20 -

Suppose, for example, dependengy-CCq1 with respect to eventP (K, X, y). Definitions of
these conditions are:

Co <~ IRk, x) 0= PK, x) 0= 1Pk, x) O= puPk, a, x)
Ci1 < IR, x) OuPK, x, a)

Events involved in each condition are:

Co

Repair

C11

IR(K, X)
HPK, &, X)

WPk, a, x)

HPK, a, x)
IR(k, a)

To have condition gviolated, it is necessary that eveRtk, x) holds. We repair it by means
of the evenuP(, a, x) with &x. To violate condition ¢ with the evenuP(k, a, x), it is
necessary that everR(k, a) also occurs. But it is not possible becabyg, a) andR(k, X)
are two mutually exclusive events because the values of a and x must be different.

A similar reasoning can be applied to detect that dependency €5 may never hold at run
time.

b.2) Two opposite assumptions.

A more general contradiction could appear when we have to assume two contradictory ever
That is, we have to assume that an event must occur and must be prevented at the same time

Consider dependencyC- Cp due to the eventT(k,x,y). Definitions of these conditions are:

Cs « WPk, a, x)0= T(k, x) O=1T(k, x) 0= uT(k, b, x)
Co « Pk, x) 0= 8Pk, x) 0= puPk, x, a)OuT(k, X, b)

Requeriments involved in each condition are:

Ce Repair Co
uPk, a, x) -~ Pk, a) HUT(K, b, X) uT(k, b, x)
= Tk, x) Pk, b) — b=a
uT(k, b, X) - uP(k, b, c)

To have condition gviolated, it is necessary that eveiit(k, a, x) occurs and that factkT (x)

is false. EvenfiP(, a, x) to hold requires factg(a) to be true. A repair of conditions & the
eventuT(k, b, x). It can only violate conditionGf fact Pk, b) is true and evemtP(k, b, c)
does not to occur. Notice that a and b must be equal (a=b) to akow)Rg be true. Note also
that condition G forces not to occur any event lik€(, b, c), where c is a free variable. But,

=21 -

this is contradictory with the fact that eveR(k, a, X) is necessary to violatg.CTherefore,
we can eliminate dependency betwegraid G from the Precedence Graph.

A similar reasoning can be applied to remove dependengy-CCsg.

The final set of dependencies that results from the application of the Database Requeriments i
the Event Exclusiveness Optimizations is the following:

C1, & - Cp with respect tuP(, X, y)
C7,Cs > Cq2 with respect tuR(k, X, y)
Co, C12 - C3, C4, C5 with respect toP(K, Xx)
C1, C - C7, Cro with respect tdP(k, X)
Co, C12 > Cp with respect tuP(K, X, y)
Cq1, C > Cg, C11 with respect tuP(K, X, y)

We show in Fig.7 the optimized version of the Precedence Graph. Note that, in this example, t
optimizations applied permit to eliminate dependencies that are responsible of cycles betwe
conditions.

©
2 ’.. ©
©

oF P . @ 1P
KO
oD (CoyTR
C P uP
. 3P Co ©

Fig.7. Final Precedence Graph of example 3.1

4.2 Precedence Graph with Non-Flat Integrity Constraints

In this section we explain how to build the Precedence Graph for the case of non-flat integri
constraints, that is, when literals appearing in the body of an integrity constraint may be derive
predicates as well as base ones. The procedure for obtaining the Precedence Graph is similar tc

procedure explained in section 4.1 but in the presence of derived predicates we have to consider s
specific aspects not considered in the previous case. We begin by introducing the database exar
we will use in this section.

Example 4.5Consider the following database containing two integrity constraints: Ic1 and Ic2,
and where Icl is defined upon the derived predicatex(

P(le) - Q(K!X) = T(K,X)

Ic1(k,x) « Sk,x) 0= PK,x)
ICZ(K1X) - Z(L(1X) DQ@’X)

The corresponding Augmented Database A(D) is the following:

(1) 1PKX) « QKxX) 0= 3Q(k,x) U= pQ(k,x,a) I dT(K,x)

(120 1PKX) « Qkx) 0= 3Q(K,x) 0= pQ(k,x,a) OuT(k,x,b)

(I3 1PKX) < 1QKx) O~ T(k,x) 0= 1T(k,x) O~ uT(k,a,x)

(la) 1PKX) < 1Q(Kx) O3T(k,X)

(Is) 1PKX) < 1Q(KX) OuT(k,x,a)

(Ie) 1PkX) « pQK,a,x)0~ T(k,x) 0= 1T(k,x) 0= uT(k,b,x) OT(k,a)

(D) dPKx) « dQ(k,x) U= T(k,x)

(D2) OPkxx) « uQkx,a)0~ T(k,x) OT(k,a) 0= &T(k,a) I~ uT(k,a,c)
(D3) 0Pk,x) « nQ(kx,a)0~ T(k,x) U1T(k,a) I~ dT(k,a) I~ uT(k,a,c)
(Dg) OPKX) « HQ(k,x,a) 0= T(k,x) OuT(k,b,a)00= dT(k,a) 0~ puT(k,a,c)
(Ds) dPkx) — Qkx) U1T(k,x) U~ pQ(k,x,a)

(De) 0Pk,X) — Qk,x) OpT(k,a,x)~ pQ(k,x,b)

(M1) PPK,X,X) « HQ(K,X,x) O~ T(k,x") O~ 1T(k,x") O~ uT(k,a,x’)0- T(k,X)
(MZ) “P(IS’X1X') e HQ(KaXaX') DBT(K,x')
(M3) pPKXxX) « pQ(K,x,x) OuT(k,x'a)

(Cp) uelk,x) « Sk,x) O= 8S(k,x) 0= uS(k,x,a)doPK,x)
(Co) tlclk,x) « SK,x) 0= dS(kK,x) 0= uSk,x,a) duPK,x,b)
(C3) tlclk,x) « 1Sk,x) 0= Pk,x) 0= 1PK,x) 0= pPk,a,x)
(Cq) Ucl(k,X) « 1Sk,x) JoP(k,x)

(Cs) tlcl(k,xX) « 1SK,x) OuPk,x,a)

(Ce) tlcl(k,x) « uSk,a,x)0- Pk,x) 0= 1PKk,x) 0= pP(K,b,x)

(C7) Ue2(kx) « Z(kx) 0= 3Z(k,x) 0= pZ(k,x,a) D1Q(k,x)
(Cg) tc2(kx) « Z(k,x) 0= dZ(k,x) 0= pZ(k,x,a) DpQ(K,b,x)
(Co) tlc2(k,x) — 1Z(k,x) DQ(K,x) U= dQ(k,x) U~ pQ(k,x,a)
(C10) tle2(k,x) « 1Z(k,x) D1Q(K,X)

(C11) tc2(kx) « 1Z(k,x) OuQ(k,a,x)

-23-

(C12) tle2(kx) — pZ(k,a,x)0Qk,x) O~ dQ(k,x) O~ puQ(k,x,b)
(C13) tle2(kx) ~ pZ(k,a,x)01Q(k,x)
(C1g) tlc2(kx) — uZ(k,a,x)IpQ(k,b,x)

4.2.1 Dependency Graph of Events

To build the Dependency Graph of Events of a database with some non-flat integrity constrair
we proceed in the same way as we have described in section 4.1.1, but considering also relations
of derived events.

If there are derived events in the body of a condition, we must also include into the Dependen
Graph of Events the positive and negative edges corresponding to the relationships of these deri
events with respect to events of their underlying predicates. To obtain them, we apply the mechani
defined in section 4.1.1 to the insertion, deletion and modification event rules of those derive
predicates. In some cases, it may happen that there exists two edges one marked positively anc
other negativaly that connect the same nodes. For instance, it is not difficult to see by looking at 1
modification event rules Mand M that there exists a negative and a positive dependency of even
HP(K,Xx,x") with respect to eveptT(Kk,x,X").

In Fig.8, we show the Dependency Graph of Events of example 4.5. Black arrows correspond
edges marked positively and grey arrows correspond to negative edges.

Fig.8. Dependency Graph of Events of example 4.5

Note that in this case it is also possible to distinguish between Checking Conditions ar
Generation Conditions by using the same criteria than in the case of flat integrity constraints. In t
above Dependency Draph of Events we can classify conditigh<¢;, C13 and G4 as Checking
Conditions, while the rest of conditions correspond to Generation Conditions.

-24 -

Definitions of potential violation and repair of a condition are also applicable to the case of nor
flat integrity constraints. Moreover, we can also use the concept of repair of a condition to define tl
repair of a derived event. Thus, we have that a base event Ev is a repair of a derived event if 1
derived event depends oddly on Ev. That is, if the derived event holds and the event Ev (repe
occurs then, the derived event becomes falsified (repaired). For instance, in the previous graph
have that eventT (k, X) is a repair for derived eventB(k, x) anduP(k, X, y) and that it is also a
repair for conditions €and G.

In addition to the concepts already defined in section 4.1.2, we need to define a new kind
relationship between events of the same derived predicate. Given two events Ev1 and Ev2 of the si
derived predicate D and an event Ev such that Evl depends oddly on Ev and Ev2 depends evenl
Ev, we say thaEvl may become Ev2 since repairing Ev1l by means of Ev may induce Ev2. This new
relationship is included in the Dependency Graph of Events as a non labelled edge drawn as a dol
arrow from node Evl to node Ev2. This relationship is needed because if we have two conditons
and G that depend evenly (resp. oddly) on events Evl and Ev2, it may happen that a repair
condition G (resp. ¢) could violate €(resp. G). The notion that an event Evl may become Ev2 will
allow us to identify the dependency between conditionar@ G when we will generate the
Precedence Graph.

Example 4.6Consider the deletion and modification event rulesaid M, of derived predicate
Pk,x) of example 4.5:

OPK,x) « pQ(k,x,a)d- T(k,x) OT(k,a)d~ &T(k,a) - uT(k,a,c)
HP(K,X,a) - HQ(K’)(’a) O 6T(L<|a)

In these rules we have thalP(k,x,a) depends evenly on evéyii(k,a), whiledP(k,x) depends
oddly on the same event. Therefore, repairing the derived &RPgnk) by means of eveT (k,a)
will induce the facuP(,x,a). In the same way, we can also identify the simetric relationship from
UP todP looking at the first modification event rule (M1) and at the third deletion event rule (D3) of
predicate F{,x). Then, we represent in the Dependency Graph of Events these two relationships |
the following edges:

5P ?MP

This kind of relationship may appear only between deletion and modification events of the san
derived predicate. It is not possible to fulfil an insertion event by the repair of a deletion o
modification event (or viceversa) because these events have opposite database requirements.

-25-

4.2.2 Dependencies Between Conditions

The meaning of a dependency between two conditions is the same independently if the event t
determines the dependency is a base or a derived event because, even though a derived event do
correspond to a physical repair of the condition, it is induced by this repair. However, the way ¢
identifying dependencies between conditions differs from the case of flat integrity constraints sinc
now we have to decide first with respect to which events (predicate events) do we want to establ
the dependency. In the previous case this problem did not exist since we always had conditic
defined only by means of base events.

In the non-flat integrity constraint case, we have different alternatives with respect to which ai
the events considered for identifying dependencies between conditions. In our approach, we expr
dependencies between conditions with respect to base or derived events involved, explicitly
implicitly, in the definition of an integrity constraint. Then, for each integrity constraint, we must
determine with respect to which predicate events do we have to define dependencies betwz
conditions. The set of predicates considered for defining dependenciesraeetihg predicates:

A base or a derived predicate imeeting predicate with respect to a set of integrity constraints if
one of these three cases holds (these cases must be considered in the same order as described bt
- it is a base predicate that explicitly appears into some integrity constraint definition.

- it is a derived predicate whose underlying predicates are not meeting predicates.
- it is a base predicate that defines a derived predicate which is not a meeting predicate.

Example 4.7 Consider the database example 4.5. The corresponding meeting predicates of t
integrity constraint Icl are B(x) and PK,x). Note that predicates &) and Tk,x) are not
considered meeting predicates because they do not appear explicitly in the body of Ic1 and do
define any other predicate tharkR). Then, all dependencies between conditions associated to Icl
will be defined only with respect to events of predicatésxp@and PK,x). On the other hand, if we
consider integrity constraints Icl and Ic2 together, the meeting predicates wik kg 3(k,X),
Q(k,x) and Tk,x). Notice that in this casel§X), Z(k,x) and QK,x) appear explicitly in the body of
some integrity constraint and thenkBX) is not a meeting predicate because it is defined by the
meeting predicate ®(x). Predicate T{,x) must be also considered a meeting predicate because
defines the non-meeting predicaté,R).

Insertion, deletion and modification events of a meeting predicate are called meeting events.

Now, by taking into account meeting events, we can identify dependencies between conditio
from the Dependency Graph of Events. We have three criterions to identify dependencies betwe
conditions:

- 26 -

a) We define a dependency from each condition that depends oddly on a meeting event to e
condition that depends evenly respect to the same event. This is the same criteria as for the
integrity constraint case.

b) For each derived meeting event, we also state a dependency between each Genera
Condition that depends evenly on the event to each condition that depends oddly on the sa
event.

For example, if we consider the integrity constraint Ic1 aloRé, X, y) is a meeting event
and conditions €and G depend evenly and oddly on it, respectively. Since conditias &
Generation Condition we identify a dependency from conditigrioCcondition @ with
respect to the evepP(, X, Y).

c) For each double edge from a derived meeting event Ev1 to a derived meeting event Ev2,"
define a dependency with respect to the event Ev2 from each condition that depends evenly
Evl to each condition that depends evenly on Ev2. We also establish a dependency w
respect to the event Evl from conditions that depends oddly on Ev2 to conditions that

depends oddly on Ev1.

Note that in this later case, an edge marked with a negative event Ev1 denotes that repairin
condition through event Ev2 may induce the falsification of event Ev1.

EventsdP(k, x) anduP(, X, y) are derived meeting predicates respect to integrity constraint
Icl and there exists a double edge froltopuP. Then, we can identify a dependency
between conditions £and G with respect to evempP(, X, y).

4.2.3 Precedence Graph

To generate the Precedence Graph, we consider exactly the three steps defined in section 4
for the flat integrity constraints case. Now, the only difference is that to identify a dependenc
between two conditions we will apply the criterions defined in the previous section. In the following
example we show how to obtain dependencies between conditions of example 4.5.

Sep 1: We begin by considering dependencies between conditions associated only to integri
constraint Icl (@...Gs). Dependencies we can derive from the Dependency Graph of Events are tr
following:

C1, C - Cg with respect tuS(, X, Y)
C3, G5 —» Co, Cs with respect tuP(, X, y)
Co, C5 - C3, G with respect tuP(K, X, y)
Cy, C5 - C1, Cy with respect t@dP (K, X)

- 27 -

C1, G - Co, Cs with respect tuP(K, X, y)

Notice that the first group of dependencies are generated by applying the criteria a). The secc
group corresponds to dependencies obtained upon criteria b). And the last group of dependencies
obtained taking into account the third criteria c).

The second integrity constraint is flat, so we only can apply criteria a) and we obtain th
following set of dependencies:

C7, Cg - C12, C13, Ci4 with respect tuZ(k, X, y)
Co, C12 -~ Cg, C11, Ca4 with respect tuQ(k, x, y)

Sep 2: Since when considering constraints Ic1 and Ic2 together all meeting predicates are be
predicates we can only apply criteria a); and we obtain the following set of dependencies:

C3, G5 —» Cy, C10, C13 with respect taQ(K, x)
Cg, C12 » Cq, C3, C4, Gs with respect t@Q(K, x)
Cq1, C3, G4, Cs - Cg, C11, C14 with respect tuQ(k, X, y)
Co, C12 - Cq, G, C3, Cy, G5, G with respect tquQ(k, X, y)

Sep 3. In previous Steps 1 and 2 we have obtained the complete set of dependencies betwt
conditions of example 4.5. The graph resulting from considering these dependencies betwe
conditions is too complex and difficult to understand. Therefore, we will not draw it until applying in
next section all possible optimizations.

4.2.4 Optimizations

Optimizations of the Precedence Graph proposed in section 3.1.4 are also applicable in this c¢
but we have to make some precisions.

The Database Requirements optimization is directly applicable. We only have to distinguish th
when we require a base predicate to be true (false) it means that it will hold (do not hold) in tt
database; while when we require a derived predicate to be true (false) it means that it must be (not
deducible given the contents of the database. Note that if the derived predicate is defined by more t
one deductive rule, all of them must be considered.

The Event Exclusiveness optimization is also applicable in this case. We must only take in
account that a derived event could be defined by several deductive rules, and that their corresponc
insertion, deletion and modification events may also be defined by more than one event rule. This f
forces us to consider all these rules at the same time. In particular, to ensure that a derived fact
not be true, all deduction rules that could induce it must be taken into account. The same considera
must be done to ensure that a derived event will not be fulfilled.

-28 -

Example 4.8 As an example of both optimizations, let us consider the dependency betwee
conditions G and G with respect to the derived evamR(, X, y):

C3 - Cs with respect tQuP(, X, Y)

Respect to the database requirements optimization, this dependency is reachable because i
compatible database requirements:

(Ca) -~ Sk, 2)
(Cs) - 7 Sk, 2) 0Pk, x)

Let us see for both conditions what are the set of necessary events to violate them and we will
to detect some contradiction that allows us to discard this dependency.

Cs Repair Cs

1Sk, x) HPK, a, x) MPK, a, X)
HP K, a, X) 1Sk, a)

To violate condition g it is necessary that everg(k, x) holds. To repair it, we must induce
eventpP(k, a, x) by means of a modification event rule of predicake ¥)(Condition G would
become violated by eveniS(, a) anduP(, a, x). But it will not be possible because eveSstg,

x) andi1S(, a) are mutually exclusive. Then, dependengy-CCs with respecuuP(K, X, y) is not
feasible and we can reject it.

Consider the set of dependencies-€ Cq, C3, C4, Cg With respect to everdQ(k, x). To repair
condition G we must assume that factkQk) and eventZ(k, x) hold and the repair is the base event
0Q(k, x). To determine if the repadQ(k, x) would violate conditions { C3, C4 or G, we must see
which derived events could be induced or not by the repair. Looking all the events rules of predice
Pk, x), we can state that the repair @f @uld induce~ 1P, X) (insertion event ruleg bnd b) and
inducedP(, x) (deletion event rule {). By the fact that the repair can dismiss evét, x), then
conditions @ and G could be violated. In the same way, by the induction of ede(, x), it is
possible to violate €and G. Then, the set of dependencies fromt& C;, C3, C4 and G with
respecdQ(k, X) can not be eliminated.

The final set of dependencies that can not be rejected by the proposed simplifications is:

C1, C - Cp with respect tuS(, X, y)
Ci-Co with respect tuP(, X, y)
Cs4 - Cs with respect tuP(, X, Yy)
Cr - Cy with respect t®dP(K, x)
Cs - Cy with respect tdP (K, x)
C3, G5 - C7, C10, C13 with respect toQ(k, Xx)

-29-

Cg, C12 » Cq, C3, C4, Gs with respect t@Q(K, x)
Cs3, Cs » Cg, C11, C14 with respect tuQ(k, X, y)

The final version of Precedence Graph obtained after the application of the propose
optimizations is shown in Fig.9.

Fig.9. Precedence Graph of the example 4.5

The existence of cycles between conditions of the Precedence Graph may indicate that the proc
of integrity maintenance does not terminate. However, it is important to note that the existence o
cycle between a set of conditions does not necessarily imply that dealing with conditions of the cyc
should be performed forever. On the contrary, a cycle in the Precedence Graph does not corresg
in general to an infinite loop at execution time.

As an example, consider the cycle between conditigrsn@ G of Figure 9. This cycle states
that a repair of the conditiony@ia the literaldP may induce an evepP which is a potential violation
of Cs; and also that a repair og@ia uP may also induce an evédft which is a potential violation of
C4. However, if we look at the modification event rules of example 4.5, there exists only onu
possible repair of conditiongZvia rule M.1) that may induce an evéi. Thence, at execution time,

-30-

it is garanteed that the cycle between conditiopar@ G will be considered almost one time, which
ensures termination of that cycle. This situation will be clarified by the example we will explain in the
following section. A similar comment applies to the cycle between conditipaaG.

5. Execution of the Precedence Graph

The purpose of the database consistency maintenance is to ensure that a transaction to be ap
to a database does not violate any integrity constraint. Therefore, given a transacion T, the outcom
the integrity constraints maintenance process will be either the same transaction T if no constrain
violated by T, or otherwise a new transaction T' (which is a superset of T) that satisfies all tf
integrity constraints of the database.

In our approach, information about integrity constraints is provided by the set of their associate
conditions which are represented in the Precedence Graph. Therefore, integrity constrait
maintenance is concerned with guaranteeing that all conditions of the Precedence Graph remain
after the application of a transaction.

To specify the integrity constraints maintenance process, we must define how and when
condition should be processed. The own structure of the Precedence Graph implicitly defin
different possible orders to check its conditions, but we need to determine a proper order to che
them. To do that, we use the set of events that compose the transaction T and the facts of
extensional database (EDB) to detect which potential violations become real violations and then wh
conditions must be repaired.

The mechanism we propose to maintain all conditions of the Precedence Graph is based on
execution rules of Petri nets [Pet81]. In our approach, we use tokens to mark nodes whose associ
condition is potentially violated by the transaction. Therefore, to maintain all conditions of the
Precedence Graph, we have to visit only those nodes that contain a token. For each node, we che
the associated condition is violated and we repair it if this is the case. Finally, the token is dropp
from the repaired condition and it is sent to each node whose condition could be violated by tf
repair.

In the following, we give a more detailed description of the mechanism for maintaining integrity
constraints by using our Precedence Graph:

Step 0 Mark all nodes of the graph. To ensure that all conditions of the Precedence Graph G will
be enforced, mark each node of the graph by one token. Go to Step 1.

Step 1 Pick up next node C. If all nodes of the graph G are unmarked, go to step 4. Otherwise,
select a marked node C. Select with priority nodes that correspond to Checking Conditiol
instead of Generation Conditions. If different candidates exist, choose first nodes withot
(in_degree of node equal to 0) or with all predecessors already visited. If node C belongs tc

-31-

subgraph SG of the graph G we are considering, start the mechanism again considering o
nodes of subgraph SG. If not, go to Step 2 considering the same graph G.

In general, it is more efficient to begin enforcing Checking Conditions than Generatior
Conditions. This is because when a Checking Condition is violated, it can not be repaired al
the consistency maintenance process will finish rejecting the transaction T, withou
considering the rest of conditions of the Precedence Graph.

A node C will be a good candidate to be visited if all nodes whose repairs can violate C ha
been already visited. This precaution permits to ensure that a node will be visited only once
it does not belong to a subgraph).

Step 2 Check violation of a condition. Verify if the condition associated to node C is violated. If
not, unmark the node C and go to Step 1.

In the case that condition C is violated and it is a Generation Condition, go to Step 3 to reps
it. If the violated condition C is a Checking Condition, go back to the last node Cp whos:t
condition has been repaired, restore the same marked nodes before Cp was repaired and ¢
Step 3 to find an alternative repair.

Note that, to improve efficiency of the whole process, it will be better to use an integrity
constraints checking method [Oli91, CGMD94].

Step 3 Repair a condition. Repair the condition associated to node C and include the repair into the
transaction T. Notice that if the repair is a derived event, a view updating method must k
applied to translate it into base events. Given the repair, compute the derived events that co
be induced by it and send a token to each node that can be violated by the repair or by -
induced derived events. Finally, unmark node C and go to Step 1.

In the case that it is not possible to repair the condition associated to node C, come back to
last condition Cp we have repaired, restore the same marks on nodes before Cp was repa
and try to find an alternative repair of Cp going to Step 3.

Step 4 End of the consistency maintenance process. If the graph we are considering is a subgraph
SG of a more general graph G, we have finished the execution of the mechanism restricted
the sugbraph SG. Now, mark all nodes outside the subgraph that could be violated by a
repair performed of conditions of nodes inside the subgraph. Then, continue at Step 1t
execution of the mechanism with respect to the more general graph G.

If the gaph we have been considering is not a subgraph, finish the process of consister
maintenance giving the transaction T as a solution that maintains the consistency of ¢
conditions of the Dependency Graph.

-32-

At steps 2 and 4 of this mechanism, we distinguish between whether a node belongs tc
subgraph SG or not. This is needed because after repairing a condition inside a subgraph (cycle).
can not ensure that we will not need to visit it again until all nodes of the subgraph have be:
unmarked. So, we can not select nodes outside the subgraph until all nodes of the subgraph bec
unmarked to avoid visiting several times the same node if it is not necessary.

Notice that, in the particular case in which the Precedence Graph does not contain any subgr:
(it is acyclic), the proper order to visit all nodes coincides with the topological sort of a grapl
[Wil79]. But, in a general case, topological sort is not applicable to our Precedence Graph becaus
could contain cycles. In this latter case, a possible way to apply the topological sort would be
remove cycles by the substitution of subgraphs of the Precedence Graph by condensed nodes. T
we could apply the topological sort to the acyclic Precedence Graph, and condensed nodes mus
handled individually.

To exemplify how the mechanism we have defined goes on, we will consider the Preceden
Graph shown in Fig.10, which is a subset of the final graph of example 4.5. Therefore, note that tl
graph is only useful to illustrate how to execute the mechanism and it is not useful to enforce t
global consistency of the example. We are going to explain the execution of the Precedence Gr:
assuming that the initial transaction T that we consider is composed by the base ev&(A fdgt
and that the contents of the EDB is fQ(1), SA, 1)}.

Fig.10. Precedence Graph to execute

The set of event rules of the Augmented Database A(D) involved in this Precedence Graph are
following:

P(K!X) - Q(le) = T(L(,X)

Ic1(k,X) « SK,x) 0= PK,Xx)
ICZ(K!X) - Z(K’X) DQ(K’X)

() 1PKX) < Qkx) 0= 0Q(k,x) 0= nQ(k,x,a)13T(k,x)

-33-

(12)
(13)
(12)
(I5)
(le)

IPKX) « Qk,x) 0= 3Q(k,x) U~ uQ(k,x,a) I pT(k,x,b)

IPK,X) « 1Q(K,x) 0= T(k,x) O=1T(k,x) 0= uT(k,a,x)

IPK,X) ~ 1Q(k,x) O3T(Kk,x)

IPKX) — 1Q(KX) DuT(kx,a)

IPK,X) « pQ(k,a,x)U= T(kx) U= 1T(kx) U= uT(k,b,x) D T(k,a)

(D1) OPk.x) — 3Q(k,x) O~ T(k,x)

(My)
(M2)
(M3)

(Ca)
(C2)
(Ce)

(Cs)
(Co)
(C10)
(C11

MPKX,X) « HQ(K,X,X") O= T(k,x) O=1T(k,x) 0= uT(k,a,x) 0= T(K,X)
HPK,X,X) « pnQ(k,x,x") 08T (k,x')
HP(K,X,X) « pQ(Kk,x,x") OuT(k,x',a)

tlcl(k,x) « Sk,x) 0= dS(K,x) 0= uS(k,x,a)d6P(K,x)
tlcl(k,x) « Sk,x) 0= dS(K,x) 0= uSk,x,a) duPK,x,b)
tlclk,x) « uSk,a,x)0- Pk,x) 0= 1PK,x) 0= puP(k,b,x)

e2(k,x) « Z(k,x) 0= 8Z(k,x) O- pZ(k,x,a) OpQ(k,b,x)
He2(k,x) — 1Z(k,x) 0Qk,x) U= 3Q(k,x) U~ uQ(k,x,a)
tlc2(k,x) « 1Z(k,x) 01Q(k,x)

tlc2(k,x) « 1Z(k,x) OuQ(k,a,x)

In the following table, we summarize the execution of the Precedence Graph of Figure 10 wi
respect to the initial transaction T 34(A, 1) }.

Rows of this table represent different states of the ongoing of the mechanism. In each row, \
indicate the node that we are visiting with a bold m&ikand we also indicate tokens (X) of the rest
of nodes. The column named Transaction T indicates which events belong to the transaction and €
new inclusion on T is denoted in italic.

-34 -

O
=
O
N
Q)
(2]
@)
oo
0O
©

C101C11 Transaction T
X v [X |zl

X vV [1Z(A1)

\ 1Z(A,1), 0Q(A.1)
1Z(A,1),0Q(A,1)
1Z(A,1),3Q(A,1), uS(A1,2)
1Z(A,1),0Q(A,1)
1Z(A,1),0Q(A,1), 05A.1)
1Z(A,1),3Q(A,1),0S(A,1)
1Z(A,1),0Q(A,1),3S(A,1)
1Z(A,1), 6Q(A,1), 8S(A,1)

<| X[X]|X

<[X|X|X|[X

< | X[<|X|X|X]|X]|X

olo|N|lo|la|s|[w]| |
| X[X[X]|X]|X|X[X[X

=
o

Initially, a token is assigned to each node of the Precedence Graph. At stages 1 and 2, we se
Checking Conditions ¢ and G, respectively. They are not violated because even though
transaction T contains everd(A,1), T does not contain any deletion nor modification event on

predicate Q4, 1). Then, we can drop their corresponding tokens.

At stage 3 we select nodg @ecause it is a node that does not have any incoming edge. I
corresponds to a Generation Condition that is violated by transaction T. To repair it, we have tv
alternativesdQ(A,1) orpQ(A,1,y). We decide to repair it by means of the first option and, therefore,
we include event fadQ(A,1) into the transaction. Notice that by this repair, an edBf,1) is
induced by the rule D1. To continue, token of nodasGiropped and we send a token to nodgs C
and G.

After the repair of @, there are four different candidates to be visited:@, Cs and . We
must selected £because it is the candidate with less incoming edges and all previous nodes had be
already visited. His token is removed because it is not violated. Noticestbhaldhgs to a subgraph
of the Dependency Graph, then in the next stage, we are forced to choose a marked node of the ¢
subgraph: node £ This condition is violated because evéR{A,1) was induced by some previous
repair. To repair it, eventS(A,1,2) is included into the transaction. We unmark nogeNodes G
and G do not have any token, then the treatement of the subgraph is finished. To continue, we m:
Ce because could be violated by the repair pa@d we continue with the rest of the marked nodes of
the graph.

Notice that as we have explained in the previous section, cyclic subgraphs do not alwa
correspond to a cycle that at execution time loops infinitely. This is the case of the subgraj
composed by conditionsi@Gnd G. In this case, the repair ofy@oes not induce anyP(k,x,x")
event.

-35-

At stage 6, any node of the subgraph remains marked, then we can select nodes outside
subgraph. We choose nodg.@otice that this condition €is violated by eventS(A,1,2) and
because fact R(2) is not true. It is not possible to repair it by means the insaf®@n2) nor the
modification eventP(A,z,2). We must come back to the situation previous to the moment we mads
the last repair. Therefore, at stage 7 we have the same marked graph of stage 5, but now, we re
condition G with the evendS(A,1) instead of eventS(A,1,2). We drop token of and continue at
stage 8.

At immediate stages 8 and 9, nodegsa@id G are selected. Both are not violated and their token
can be dropped.

At the last stage 10, all nodes of the Precedence Graph are unmarked so the execution of
graph is completed. We have obtained a transaction(A{1), dQ(A,1), dS(A,1)} that ensures the

consistency of all conditions of this Dependency Graph.

6. Joining Integrity Constraints Maintenance and Checking

Up to now we have been concerned with improving efficiency of the integrity constraints
maintenance process. Thus, we have considered for the moment that a deductive database con
only integrity constraints to be maintained. However, it may be interesting for a Deductive Databa
Management System to distinguish between integrity constraints to be checked and integr
constraints to be maintained since, as we have argued in the introduction, both constrai
enforcement policies are reasonable [Win90]. Therefore, it is important to develop methods able
handle appropriately both policies.

Unfortunately, little work has been performed in the past in this direction since the methoc
proposed up to date are devoted either to one or to the other policy. In this section we will preser
first proposal of integration of both integrity constraint enforcement policies which is based ol
incorporating also in the Precedence Graph the information related to the integrity constraints to
checked.

Integrity constraints to be checked correspond to those constraints that when violated by
transaction involve rolling back of the transaction. Thus, by the own definition of its enforcemer
policy, no possible repair exists for this kind of integrity constraints. Therefore, all conditions
associated to an integrity constraint to be checked correspond to Checking Conditions. For tl
reason, the only relevant information to be taken into account when incorporating these conditio
into the Precedence Graph is the information regarding their potential violations. By considering on
this information, the incorporation of these conditions into the Precedence Graph can be performec
explained in section 4.

-36 -

The procedure for incorporating integrity constraints to be checked into the Precedence Graph ¢
be summarized as follows:
- Consider that all conditions associated to an integrity constraint to be checked correspond
Checking Conditions.
- Obtain the Precedence Graph as explained in section 4, but considering only tr
dependencies due to potential violations in the case of Checking Conditions.

The following example illustrates our approach.

Example 6.1 Consider again the database of example 4.5, but considering now an addition.
integrity constraint Ic3, for which we want to apply the integrity constraints checking policy, definec
as follows:

Ic3(k,xX) « RK,x) 0= Z(k,x)

Rules to be added to A(D) due to this new integrity constraint are the following:
(C15) 1lc3(k,x) « R(K,x) 0= dR(k,x) = pR(k,x,a) dZ(k,X)
(C1e) 11c3(kx) — Rkx) U= dR(k,x) U= pR(k,x,a) U pZ(k,x,b)
(C17) Uc3k,x) — 1R(Kx) 0= Z(k,x) 0= 1Z(k,x) U= pZ(k,a,x)
(C18) 1lc3(k,x) — 1R(k,x) 0dZ(k,x)
(C19) tc3(k,x) — 1R(k,x) OpZ(k,x,a)
(C20) 11e3(k,x) — uR(k,a,x)0= Z(k,x) U= 1Z(k,x) 0= pz(k,b,x)

Conditions Gsto Cq are considered as Checking Conditions since they are associated to ¢
integrity constraint to be checked. Moreover, from the resulting Dependency Graph of Events, v
obtain new dependencies related to conditions of the integrity constraint Ic3 in addition to th
dependencies already obtained in section 4.2.3:

C7,Cg - C15 Ci3 with respect tdZ(k, x)
C7, Cg —» C16 Ci9 with respect tquZ(k, X, y)

Note that the conditions;@ nor Gg may never be violated by repairs of Ic1 or Ic2 since repairs
of these integrity constraints do not involve insertions nor modifications of predicate R. On the oth
hand, none of the conditions; £to G should be repaired since they correspond to an integrity
constraint to be checked. Therefore, no dependency exists from these conditions to conditic
associated to Icl nor to Ic2.

In the following figure we show the Precedence Graph of example 6.1.

-37 -

Fig.11 Precedence Graph of Example 6.1

Note that this graph is the same as the graph of Fig.9, but with the inclusion of condigons C
Coo- Conditions @7 and Gowhich are not connected to the rest, are those that may never be violate
by repairs of other conditions.

Now, we have obtained a Precedence Graph which includes conditions regarding constraints
be maintained as well as constraints to be checked. Therefore, by executing this graph as we F
explained in Section 5, we will be able to deal at the same time with both kinds of integrit
constraints.

Little work has been devoted in the past to try to join in a single method the treatment of integri
constraints to be checked and of integrity constraints to be maintained. As far as we know, the ol
proposal towards this direction is that of [CHM95] which presents a method that follows the integrit
constraints checking philosophy, but makes some exceptions by using certain constraints to sugc
new updates. However, we believe that much more effort must be devoted to this field if we want
exploit to the maximum the relationship between these two kinds of constraints enforcement police
For instance, it should be interesting to study how to use the information needed for repairing o
constraint for making more efficient the process of checking the violation of other constraints.

-38 -

7. Relation with Previous Work

Related work can be divided into two groups. The first one comprises the research performed
the field of integrity constraints maintenance related to analyzing and structuring the repair proce
[Ger93a, Ger93b, Ger94]. The second group contains the research performed in the field of act
databases devoted to static analysis techniques for predicting termination and confluence of a giver
of active database rules [BW94, KU94, AHW95]. In sections 7.1 and 7.2 we are respectivel
concerned with the relation between our approach and the techniques proposed in both groups.

7.1 Analyzing and Structuring Reactions

As we said in the introduction, little attention has been devoted to efficiency issues by th
methods proposed up to date for integrity constraints maintenance. a significative exception is t
work performed by Gertz in this direction [Ger93a, Ger93b, Ger94].

Gertz proposes to carry out at definition time the analysis and the specification of reactions «
constraint violations. In this sense, he provides a declarative specification language for reactions
violations suitable to express several integrity constraints enforcement policies. He describes how
obtain, once the integrity constraints and their corresponding reactions have been specified by
designer, a dependency graph which expresses the relationship between repairs and potel
violations of integrity constraints. Finally, he presents also a procedure for deriving integrit
enforcing triggers from this dependency graph. Execution of these triggers guaranties that
transaction applied to a database maintains the integrity constraints.

Several differences exist between Gertz's proposal and ours. The first one is related to the way
handling integrity constraints maintenance. Gertz proposes the designer to explicitly specify reactic
to integrity constraints violations, while we consider these reactions to be automatically generat
from the definition of the integrity constraints. Thus, looking for dependencies between integrit
constraints is more complex in our approach since they are not explicitly stated and have to
implicitly derived from the integrity constraints definition.

Another important difference refers to the expresiveness of the definition language considered
both proposals. Gertz's proposal is restricted to databases without deductive rules, thus conside
only flat integrity constraints (i.e. constraints that are defined only by means of base predicates); ¢
it is restricted also to integrity constraints in Implicative Normal Form (which does not allow negatiol
in the body of a constraint). On the contrary, we handle deductive rules as well as non-flat integri
constraints and we allow negation to appear in the body of the rules and of the constraints (in fact,
only requirements we impose on the database are those of allowedness and stratification which
much more general than Gertz requirements). Thus, our technique can be applied in more cases
Gertz's technique. It is also worth to mention the additional complexity of our approach due to tt
fact that we have to take the definition of derived predicates into account.

-39 -

Finally, if more than one dependency exists between two integrity constraints, Gertz forces to t
designer to weight all possible reactions to indicate which reaction should be considered with priorit
Thus, it is garanteed that at execution time only one repair is considered for a concrete violation of
integrity constraint. On the contrary, we take into account all possible repairs of a given integrit
constraint definition. Thus, we will be able to restore database consistency in cases where Gertz is
able to do it since the designer may not have appropiately weighted the repairs of integrity constrair

7.2 Static Analysis Techniques for Active Database Rules

Work related to ours has also been developed in the field of active databases. Rules in act
databases can be very difficult to program due to the unstructured and unpredictable nature of r
processing. For this reason, a significant amount of work has been devoted to statically analyzing ¢
of active database rules to predict in advance aspects of rule behaviour sacinasion (that is, if
the rules are guaranteed to terminategamfluence (that is, if the rules are guaranteed to produce a
unique final database state). See for instance [BW94, KU94, AHW95] and the references therein.

The techniques proposed in the mentioned references are based on the definition of a graph wi
explicitly states the relationship between the activation of rules. Construction of this graph is based
predicting how a database query (i.e. a rule condition) can be affected by the execution of a d
modification operation (i.e. a rule action). Thus, this graph will contain and edge from an active ru
r1 to another active rule if the action performed by may activate:

In addition to the different framework of active databases versus deductive databases, there e
two important differences between this work and the one we present in this paper. First, sta
analysis techniques for active database rules consider that the update performed by the execution
rule is explicitly stated, while we have to determine the possible ways in which a violated conditio
may be repaired. That is, we need first to analyse integrity constraints for determining the updz
performed by the repair of a condition. Second, work in active databases restricts the upda
appearing in the action part of a rule to be base fact updates, while we consider also view update
is worth to mention the additional complexity of our approach motivated by the need to translate vie
updates into updates of base facts.

8 Conclusions

In this paper we have presented a technique for improving efficiency of the integrity constrain
maintenance process. This technique is based on the definition of a graph, the Precedence Gr
which explicitly states the relationship between repairs of an integrity constraint and potentic
violations of other integrity constraints. We have also proposed an algorithm for executing th
Precedence Graph which aims to minimize the number of times that an integrity constraint must
considered during the maintenance process.

- 40 -

We have also shown how our technique could be extended to takeg into account integri
constraints to be checked in addition to integrity constraints to be maintained. Thus, we ha
integrated into a single method both integrity constraint enforcement policies, what constitutes in o
opinion an important advance in this field.

Our technique is directly applicable to the methods we have proposed in the past for updati
consistent deductive databases [MT93, MT95, TO95] and it could be easily adapted for improvir
efficiency of most of the other existing integrity constraints maintenance methods.

Acknowledgements

We are grateful to D. Costal, A. Olivé, J. A. Pastor, C. Quer, M. R. Sancho, J. Sistac and
Urpi for many useful comments and discussions. This work has been partially supported by t
CICYT PRONTIC program project TIC94-0512.

References

[Abi88] Abiteboul, S. "Updates, a New Frontier", Int. Conf. on Database Theory (ICDT'88), Springer, 1988, pp. 1
18.

[AHW95] Aiken, A.; Hellerstein, J.M.; Widom, J. "Static Analysis Techniques for Predicting the Behavior of Active
Database Rules", ACM Transactions on Database Systems, Vol. 20, N° 1, Mrach 1995, pp. 3-41.

[BR86] Bancilhon, F.; Ramakrishnan, R, "An Amateur's Introduction to Recursive Query Processing”, Proc. ACN
SIGMOD Int. Conf. on Management of Data, Washington D.C., 1986.

[BW94] Baralis, E.; Widom, J. "An Algebraic Approach to Rule Analysis in Expert Database Systems", Proc. of the
20th VLDB Conference, Santiago, Chile, 1994, pp. 475-486.

[CGMD94] Celma, M; Garcia, C.; Mata, L.; Decker, H. "Comparing and Synthesising Integrity Checking Methods fol
Deductive Databases", Int. Conf. on Data Engineering (ICDE'94), Houston (Texas), 1994, pp. 214-222.

[CHM95] Chen, I.A.; Hull, R.; McLeod, D. "An Execution Model for Limited Ambiguity Rules and Its Application
to Derived Data Update". ACM Transactions on Database Systems, Vol. 20, N° 4, December 1995, pp. 36
413.

[Cos95] Costal, D. "Un métode de planificacié basat en l'actualitzacié de vistes en bases de dades deductives", F
Thesis, Barcelona, 1995 (in catalan).

[CW90] Ceri, S.; Widom, J. "Deriving Production Rules for Constraint Maintenance", Proc. of the 16th VLDB
Conference, Brisbane, Australia, 1990, pp. 566-577.

[CFPT92] Ceri, S.; Fraternali, P.; Paraboschi, S.; Tanca, L. "Integrity Maintenance Systems: an architecture”, Thi
Int. Workshop on the Deductive Approach to Information Systems and Databases, Roses, Catalonia, 19¢
pp. 327-344.

[Dec89] Decker, H. "The Range Form of databases or: How to avoid Floundering", Proc. 5th OGAI, Springer-Verlac
1989.

[Dec96] Decker, H. "An Extension of SLD by Abduction and Integrity Maintenance for View Updating in Deductive
Databases", To appear in Joint International Conference and Symposium on Logic Programmin
(JICSLP'96), Bonn (Germany), 1996.

[Ger93a] Gertz, M. "On Specifying the Reactive Behavior on Constraint Violations", Informatik-Berichte 2/93,
Institut fur Informatik, Universitat Hannover, 1993.

[Ger93b] Gertz, M.; Lipeck, U.W. "Deriving Integrity Maintaining Triggers from Transaction Graphs", International
Conference on Data Engineering (ICDE'93), Vienne, 1993, pp. 22-29.

[Ger94] Gertz, M. "Specifying Reactive Integrity Control for Active Databases", Research Issiues on Date
Engineering: Active Databases (RIDE-ADS'94), Houston, Texas, 1994, pp. 62-70.

- 41 -

[KM9O]

[KU94]

[LI087]
[LT84]

[ML91]

[MTO3]

[MT95]

[0li91]

[Pet81]
[TO95]

[UlI8g]

[U092]

[Wil79]
[Win90]
[Wiito3]

Kakas, A.; Mancarella, P. "Database Updates through Abduction", Proc. ofth&/lIBB Conference,
Brisbane, Australia, 1990, pp. 650-661.

Karadimce, A.P.; Urban, S.D. "Conditional Term Rewriting as a Formal Basis for Analysis of Active
Database Rules" Research Issiues on Data Engineering: Active Databases (RIDE-ADS'94), Houston, Tex
1994, pp. 156-162.

Lloyd, J.W. "Foundations on Logic Programmingn,dZedition, Springer, 1987.

Lloyd, J.W.; Topor, R.W. “Making Prolog More Expressive”. Journal of Logic Programming, 1984, No. 3,
pp. 225-240.

Moerkotte, G; Lockemann, P.C. "Reactive Consistency Control in Deductive Databases", ACM
Transactions on Database Systems, Vol. 16, No. 4, December 1991, pp. 670-702.

Mayol, E.; Teniente, E. " Incorporating Modification Requests in Updating Consistent Knowledge Bases"
Fourth Int. Workshop on the Deductive Approach to Information Systems and Databases, Lloret de Ma
Catalonia, 1993, pp. 335-360.

Mayol, E.; Teniente, E. "Towards an Efficient Method for Updating Consistent Deductive Databases"
Basque International Workshop on Information Techlogogy (BIWIT'96): Data Management Systems, IEEE
Computer Society Press, San Sebastian, Spain, 1996, pp. 113-122.

Olivé, A. "Integrity Checking in Deductive Databases", Proc. of tH8 VI DB Conference, Barcelona,
Catalonia, 1991, pp. 513-523.

Peterson, J.L. "Petri Net Theory and the Modeling of Systems", Prentice-Hall Inc., 1981.

Teniente, E.; Olivé. A. "Updating Knowledge Bases while Maintaining their Consistency”, The VLDB
Journal, Vol. 4, Num. 2, 1995, pp. 193-241.

Uliman, J.D. "Principles of Database and Knowledge-Base Systems", Computer Science Press, New Yol
1988.

Urpi, T.; Olivé, A. "A Method for Change Computation in Deductive Databases", Proc. of the 18th VLDB
Conference, Vancouver, 1992, pp. 225-237.

Wilson, R.J. "Introduction to Graph Theory", 2on Edition, Longman Editors, 1979.
Winslett, M. "Updating Logical Databases", Cambridge Tracts in Theoretical Computer Science 9, 1990.

Withrich, B. "On Updates and Inconsistency Repairing in Deductive databases”, Int. Conf. on Dati
Engineering, Vienna, 1993, pp. 608 - 615.

=42 -

