
Implementing Static Synchronus Sensor Fields

Using NiMo ∗†

S. Clerici and A. Duch and C. Zoltan
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
{silvia,duch,zoltan}@lsi.upc.edu

April 25, 2009

Abstract

In this work we present some implementations of a Static Synchronus
Sensor Field (SSSF) [2], a static and synchronus model for sensor networks
in which a finite set of sensing devices are geographically distributed and
can communicate among them. We used for implementations the NiMo
(Nets in Motion) [1] programming language, a graphic-functional-dataflow
language that allows a step by step visualization of the executions of an
algorithm, making visible all the involved elements. Generator programs
to build different topologies (rings, trees, etc.) of variable size produce
the corresponding sensor networks in the first execution stage. Once it
is generated, the network can be run in the next execution step. Experi-
menting with sensor networks gives an insight of their behaviour and aids
to see their properties, as can be appreciated in this work.

1 Introduction

A Static Synchronus Sensor Field (SSSF) [2] is a static and synchronus model
for sensor networks in which a finite set of sensing devices are geographically
distributed and communicate among them. The communication scheme of such
a network is captured by a directed communication graph G = (V,E) whose set
of vertices V represent the set of devices and whose set of arcs E the commu-
nication link of each pair of devices, each arc (u, v) ∈ E indicates that device
u ∈ V can communicate (send information to) device v ∈ V .

Among the several problems that can be simulated and analyzed using the
SSSF model, we focus our attention on the problem of average monitoring
(AM) [2]. Given a SSSF of n devices taking each a measure at every step,
the AM problem consists on produce, per each step and at each device simulta-
neously, the average of the n taken measures. The result will be produced with
a certain delay (the latency of the system) that depends on G’s topology.

∗Partially supported by the ICT Program of the European Union under contract number
215270 (FRONTS). The second author was also supported by the spanish project TIN2006-
11345 (ALINEX-2).

†This work is an extended version of the abstract presented in the 1st Workshop on New
Challenges in Distributed Systems held in Valparaiso, Chile, April 6-9 2009.

1

We present then, some exemples of SSSF implementations solving the AM
problem on different topologies and we use the NiMoToons tool (the NiMo
environment) to show their execution. NiMo (networks in motion) [1] is a
graphic-functional-dataflow language that allows a step by step visualization
of the executions of an algorithm, making visible all the involved elements. The
corresponding program is a network of processes and data and its execution
exhibits its state at every instant.

Synchronization in NiMo is obtained by data availability, parallel execution
and delays on channels of dataflow. This is in sharp contrast with synchro-
nization obtained by memory allocation in each device, the way in which syn-
chronization is achieved with implementations in an imperative programming
language. In NiMo’s implementations of the AM problem channels act as buffers
and need to have a capacity proportional to the network size, but this is inde-
pendent of the device and therefore free devices from memory constraints due
to synchronization requirements.

Experimenting with sensor networks gives an insight of their behaviour and
aids to see their properties. In particular, for SSSFs solving the AM problem, the
NiMo implementation simplifies the verification of the programs correcteness,
which is one of our main claims in this work.

The work is organized as follows. In Section 2 we give some preliminaries
of NiMo programming language. We then show, in Section 3 the imperative
solutions (introduced in [2]) and the NiMo implementations (object of this work)
solving the AM problem in a SSSF under two topologies: an oriented ring and
a complete and oriented binary tree. The implementations mentioned above
consider that the size of the communication graph of the SSSF is fixed, but,
in applications, even if the graph topology is known, its size can be variable,
so in Section 4 we introduce the NiMo programs that generate, for both ring
and tree topologies, a network of any given size. It is also possible that a given
network calculates its own size as it is shown in Section 5. In Section 6 we show
how NiMo’s implicit parallelism is exploited in the referred programs. Finally,
in Section 7, we give some final considerations and guidelines for future work.

2 The NiMo Programming Language

NiMo [1] is a general purpose typed graphical programming language designed
to express common programming applications in a concise, elegant, and type-
safe way. It implements the classical boxes and strings paradigm. In particular
it is oriented to support stream programming and execution of open programs.

Its evaluation model supports setable behaviour for processes that range
from lazy to week eager and exploits implicit parallelism. Its environment (NiMo
Toons) turns out to be a workbench for program experimentation and provides
special support for the construction, manipulation, and execution of NiMo code.
Supporting a non-strict evaluation policy, NiMo is well suited to deal with infi-
nite streams. It has a small set of primitives, including those needed for stream
programming. For instance the map process is the generalization to n inputs
and m outputs for the program scheme “apply to all”. The map process in-
cludes a process parameter P that when applied to n inputs produce m outputs.
The map behaviour is to apply P to each n incoming elements to produce a new
result in each of its m output channels. An example of the map process can

2

Figure 1: The map process with integer division

Figure 2: The map process after three execution steps

be appreciated in Figure 1, where we can see that map gives the quotient and
the remainder of integer division componentwise. After three execution steps,
in Figure 2, we can see in the output channel, two already calculated values and
the third that will be evaluated in the next execution step.

Other useful stream processes are for example SplitAt or SplitCond. The
first one, given an integer n, splits the input channel into two channels, the first
of size n and the second with the remaining elements. The second, SplitCond,
separates a list into two lists: the first holds all the values in the input channel
satisfying the condition and the second holds the complement. Basic processes
are combined to define a component, i.e., a new process that can be used later
in programs or to define new components. A component has an associated
interfase which is a white box (basic processes have grey boxes) with typed
input and output ports.

3

3 SSSFs Implementations for the AM Problem

In order to solve sensor networks problems it is important to take into account
(and try to optimize) parameters such as the latency of the network (elapsed
number of steps between the first taken measure and the first computed average),
the number of sent data items per device per step, the execution time and
memory requirements per device per step, the amount of energy requirements,
among others.

Unfortunately, in many occasions an improvement in some measures (like the
latency) implies a lost in other (like the size of the sent messages). In particular
for sensor networks there are many trade-offs among the different complexity
measures.

Although there exists a generic algorithm for solving the AM problem in any
SSSF with optimal latency (which is the diameter of the SSSF’s communica-
tion graph1 [2]), the a priori knowledge of the communication graph topology
can considerably improve the algorithms that control the execution of devices,
optimizing some of the complexity measures involved.

In what follows, we will show the imperative implementations introduced
in [2] as well as their NiMo versions. It is the case of algorithms that minimize
either the latency or the message length in SSSFs solving the AM problem. We
focus on two topologies: oriented rings and complete binary trees.

3.1 Ring topology

In a SSSF whose communication graph is an oriented ring, each sensing device
reads (measures) data from the environment, receives data from its predecessor
(unique because of the topology), sends data to the environment and, sends data
to its successor. We will now introduce two different implementations, the first
one has optimal latency, the second one improves the message length (incre-
menting the latency) at every computational step (see [2] for formal definition
of computational step under this model, but, informally, it goes from the receive
up to the send actions–both included– of the synchronized devices).

3.1.1 Optimal latency

In order to be able to compute the average of the measurements taken by all
devices in the network at a given time, a single device requires all these values,
and, the smallest number of steps in which it can receive these values is the
number of steps required by the value of its farthest device to arrive, in this
case, n− 1 steps (the diameter of the graph), considering that the ring consists
of n devices.

In [2] a solution that has a latency of n − 1 steps (optimal) in rings of
n devices is introduced. In this particular solution, all sensors have a similar
behaviour (parameterized by the size of the network), each transmitting, at each
step, an amount of data proportional to the number of sensors in the network.
In fact, a total of n − 1 data items per step are trasmitted between neighbor
sensors. If we call ut

i the value read by the sensor i at step t, then the values
transmitted between sensor k and sensor (k + 1) mod n at step t is a tuple of

1The diameter diam(G) of a graph G is the maximum distantace over all pair of vertices
in a graph.

4

values (ut
k, ut−1

k−1, . . . , u
t−n+1
k−n+1) which corresponds to the values read by the n−1

other sensors in the n − 1 previous steps.

Imperative solution. The imperative algorithm executed by sensor k intro-
duced in [2] is Algorithm 1. Since we are considering that the network has n
sensors connected into an ordered ring, we have that every sensor k is connected
to sensor (k + 1) mod n.

Algorithm 1 Optimal latency in a ring topology

/ / A l g o r i t h m f o r s e n s o r k

/ / I n i t i a l l y

A[1, ... ,n] = [0.0, ... , 0.0];
X[1, ... ,n-1] = [0.0, ... , 0.0];

/ / S t e p

/ / r e c e i v e

receive X;
receive input data u;

/ / c o m p u t e

for (i = n-1; i >= 1; --i) A[i+1] = A[i]+X[i];
A[1] = u;
for (i = n-1; i >= 2; --i) X[i] = X[i-1];
X[1]=u;
v= A[n]/n;

/ / s e n d a n d o u t p u t

send X;
output v;

As we already said, at every step, sensor k receives information from sensor
(k − 1) mod n and sends information to sensor (k + 1) mod n. It is assumed
that each sensor knows the number n of sensors in the ring, but, if it were not
the case, in this topology it could be calculated easily with a corresponding
increment in latency (see Section 5).

For each sensor k the algorithm considers a vector X of size n−1 that stores
the tuple (ut−1

k−1, . . . , u
t−n+1
k−n+1) comming from sensor (k − 1) mod n. X stores

also the tuple of data items that will be send to sensor (k + 1) mod n. There
is an additional vector A of size n that stores partial sums.

At step t, A has stored in its first position the measure taken by the sensor
(k) at previous step (t − 1), in its second position the sum of its measure and
the one of its predecessor in step t− 2, and so on up to the n-th position where
it has stored the sum of the measures taken at step t − n by all sensors. The
value of this n-th position (divided by n) is the value that was sent by sensor k
to the environment at previous step t − 1.

When vector X is received, A is actualized as follows. The n-th position of A

5

Figure 3: Sensor interfase

is the sum of its n−1-th position and the n−1-th position of X, it corresponds
to the sum of the n − 1 devices at step t − n + 1 and is the value that will be
used to send the average to the environment at this step. The rest of positions
are actualized in a similar way, up to the first one wich is equal to the data item
received from environment at this step. The values of X are moved one position
to the left and the first one takes the value of the data item comming from the
environment at this step. Finally X is sent to next device.

Using this algorithm, the Average Monitoring problem can be solved with an
optimal latency of n − 1 steps. At each step, device k take a measure, receives
n−1 data items from its predecessor corresponding to measures taken by device
at distance i (for i ∈ {1, . . . , n − 1}) at the i-th previous step, computes and
outputs the average of the (n − 1)th step and sends to its successor the n − 1
corresponding measures (the n − 2 received from its predecessor plus its new
taken one). Hence, the complexity measures are as follows, the execution time
T (n) per device per step is T (n) = O(n), the space requirements per device per
step is S(n) = Θ(n), the message number sent per each device at each step is
MN(n) = 1 and the corresponding message length is ML(n) = n − 1.

We now explain how to implement Algorithm 1 in NiMo.

NiMo Solution. The solution is based on a set of identical components that
we called onestep, the interfase is given in Figure 3. It receives 2 input data
streams and produces 2 output data streams.

Using this component a network is built having ring topology, with the
desired number of sensors (in our example case will be three).

Data flows from right to left of the screen, and each sensor’s output is con-
nected to an hexagon as shown in Figure 4. In channels that connect two sensors
we can see the values (in this case a two-elements list and in the general case
an (n − 1)-elements list, initialized to zero) that flow from one sensor to its
neighbor. The second input in each sensor is left open to be connected with the
environment.

Whenever the ports are connected to the environment in the corresponding
location, the sensor will take measures from the environment.

In Figure 5 we see the sensor program. Input values (incoming arrows having
a numbered yellow box on it’s rigth), numbered 1 and 2 (in the example), are
used for two purposes, therefore they are duplicated via the black dot process.
The first set of copies serve to calculate the value that should be output to
the environment and the values that should be saved for the next interaction,

6

Figure 4: Example: a three-sensor network

Figure 5: A sensor

7

Figure 6: Sensor: output to the environment

so become the input to the process expanded in Figure 6. The second set of
copies serve to construct a new value for the neighboring sensor. This value
is constructed by dropping the last received value in the list coming from the
neighbor and prefixing to the list the newly received value from the environment.

Dropping the last element of the list is done by using the SplitAt process. In
our example, a network with 3 components, it is set to 1. Since this action is to
be done to every list sent by the neighbor, the SplitAt is “stream-ized” by the
use of the map proccess that applies its function parameter to each incoming
element. The output will be a list of one element (n− 2 elements in the general
case), which feeds another map process that constructs via the process “:” a
list of two elements (n− 1 in the general case), with the element read from the
environment and the remaining values that came from the neighbor.

In Figure 6 we see a list of values painted in magenta. We will call these
values “memory” because the list circulates in a circuit that always contains
exactly one list. This list holds the partial sums of the readings of all other
sensors in the network and will be added componentwise to the list of the rest
of sensors, coming from the neighbor.

The last item in the list will contain the sum of all sensor readings in a step.
Therefore, this last value will be a result to the environment (yellow rectangle
numbered 1) and will be removed from the “memory”. As this “memory” has
size equal to n − 1, the sensor parameter must be n − 2, which in our 3-sensor
network is 1. The new “memory” builds on the last one by prefixing (using the
process :) the last reading of the sensor. And since the same operation needs to
be executed for every “memory”, the map process is used for transforming it.

Execution is synchronized by data availability and the cost of obtaining a
result depends on the calculation of n − 1 sums. NiMo exploits as much as
possible parallel execution, but as it is a stream oriented language, it does not
have yet facilities for treating parallel vector operations, a capability that would

8

be useful in this case.
In NiMo a computation step is the expansion/execution of all processes in

the network that are able to do so. Therefore, in this solution, that mimics
the imperative algorithm, the number of steps (steps of the model multiplied by
execution time) needed for obtaining a result depends on the size of the network
and is summarized in the following lemma.

Lemma 3.1 Each channel in the circuit has at most one list consisting of n−1
elements. A value goes to the output every n steps.

3.1.2 Improving the message length

Imperative solution. By data aggregation and allowing a larger latency, it
is possible to improve the size of each sent message as we show below.

Considering again a communication graph of n devices under an oriented
ring topology, Algorithm 2 solves the AM problem with messages of smaller size
(at most the sum of n values), at each step.

Informally, one device acts as a leader (say device 1) and another device (say
device n) computes, collects and distributes the averages. It is assumed that
each sensor knows the number of sensors n as well as its position in the ring.
As before, all the nodes start reading from the environment at the same time.

Device 1 takes and flows its first taken measure to device 2 at step 1. At
step 2, device 2 receives the first taken measure of device 1, adds it to its own
taken measure at step 1 and forwards the sum to device 3. Eventually, sensor n
receives the sum of measures taken by devices 1, 2, . . . , n − 1 at step 1, adds it
to its own taken measure at step 1, computes the first meaningful average and
forwards it to all other devices.

NiMo Solution. Another solution to the problem of gathering inputs from
all the sensors to produce an identical result at each sensor at the same step, can
be solved by having a stream of partial sums, collecting readings at the same
step. A value in this stream, entering a given sensor, is added to the value read
by the sensor at the corresponding step. Synchronization is obtained because
a buffer of allready read values keeps them until the corresponding partial sum
arrives.

The solution is based on a distinguished sensor and a set of generic sensors
as we see in Figure 7. The generic sensor has two subnetworks. The one on
the top adds the value from the environment (yellow square numbered 2), to
the partial sum comming from the neighbor (yellow square numbered 3) and
sends the result to the neighbor. The second subnetwork receives a partial sum
of sensor readings in a given step and passes it to its neighbor, delaying a copy
of the value before sending it to the environment. The number of steps that
the output needs to be delayed depends on the position of the sensor in the
network. This value is the sensor parameter (yellow square numbered 1), which
is also the parameter to the component delay2.

The component interfase for these class of sensors has one parameter, three
channel inputs and three channel outputs.

The distinguished sensor is the one that initiates the flow of the value to the
environment at each sensor. This sensor does almost the same work as the other
sensors, but as it does not receive a flowing value, so it has less input ports.

9

Algorithm 2 Algorithms that improve the message length

/ / A l g o r i t h m f o r s e n s o r 1

/ / I n i t i a l l y

D[1] = [0.0]; A[1, ... , n-1]=[0.0 , ... ,0.0];
/ / S t e p

/ / r e c e i v e a n d i n p u t

receive avg;
receive input data u;
/ / c o m p u t e

D[1] = u;
sum = D[1];
for (i = n-1; i >= 2; --i) A[i] = A[i-1];
A[1] = avg;
/ / s e n d a n d o u t p u t

send sum , A[1]; output A[n-1];

/ / A l g o r i t h m f o r s e n s o r k

/ / I n i t i a l l y

D[1,...,k]=[0.0 ,... ,0.0]; A[1,...,n-k]=[0.0 ,... ,0.0];
/ / S t e p

/ / r e c e i v e a n d i n p u t

receive sum , avg;
receive input data u;
/ / c o m p u t e

for (i = k; i >= 2; --i) D[i] = D[i-1];
D[1] = u;
sum = sum + D[k];
for (i = n-k; i >= 2; --i) A[i] = A[i-1];
A[1] = avg;
/ / s e n d a n d o u t p u t

if (k == n-1) send sum; else send sum , A[1];
output A[n-k];

/ / A l g o r i t h m f o r s e n s o r n

/ / I n i t i a l l y

D[1,...,n]=[0.0 ,... ,0.0]; A[1,...,n]=[0.0 ,... ,0.0];
/ / S t e p

/ / r e c e i v e a n d i n p u t

receive sum;
receive input data u;
/ / c o m p u t e

sum = sum + D[n];
for (i=n; i >= 2; --i) {D[i]=D[i-1]; A[i]=A[i -1];}
A[1] = sum / n;
D[1] = u;
/ / s e n d a n d o u t p u t

send A[1]; output A[n];

10

Figure 7: Two kinds of sensors for the ring solution

It also has a single value, the one that adds the value from the environment
to the partial sum, comming from the neighbor. Now the result is a total
sum, therefore the value goes to the neighbor after being duplicated (black dot)
and enters the process delay2 to be delayed (n steps) before going out to the
environment, waiting for all other sensors to receive the value that has to be
outputed at each location.

Figure 8 shows a network with four sensors, three of them having three
inputs and three outputs and the sensor on the top, which is the distinguished
one (Figure 7). The sensor that provides the distinguished one, has an open
output port: the one that sends the flowing value, because that value does
not need to return to sensor0. Since the sensor provided by the distinguished
sensor, is the one that starts the partial sum of readings, it has allways a zero
as initial value for the sum. Therefore, the port that is used in other sensors
for connecting to the provider sensor is conected to a process that generates a
stream of zeros (repe process).

In Figure 9 a three sensor network starts its execution. The sensor’s input
ports are connected to a possibly infinite sequence of values. The sensor on the
top will have as inputs from the environment the values 0, 1, 2, 3, . . . , the second
one the values 10, 11, 12, . . . and the third one the values 20, 21, 22, . . . so the
resultant sum must be 30, 33, 36, . . . at each sensor.

In Figure 10 we see a 3-sensor network executing. The 3-sensor network has
produced one value (30) in each sensor, on the output port to the environment.
At the top output channel there are two values (33 and 36) in place waiting to
be sent to the environment. The value 36 is duplicated due to the red rectangle
around the duplicator, and sent to the channel to start flowing the values to
other sensors.

Looking at the addition processes (+), there are two marked with red rect-

11

Figure 8: A 4-sensor network with open input ports

Figure 9: A 3-sensor network before execution

12

Figure 10: The network execution after producing the first value

angles, so are ready to act. One next to the bottom of the figure, that adds 0
to 24 (the reading at step 5 by Sensor 2). The other one will add the readings
(23 and 13) at time 4 of Sensors 2 and 1. There is also a map process marked
with a red rectangle. This process will apply its parameter (+) to the pair of
incoming values: the partial sum at step four (13 + 23) and the own reading at
step four (3) that will produce the next value (9) to the environment2.

Looking at the green double triangles on the rigth of the figure, triangles
that belong to sensors, every sensor reads a value from the environment at step
seven (the one on the top reads the value 6, the next reads the value 16 and
the sensor on the bottom reads 26). Channels between the process map and
the green triangles are the buffers for each sensor. Let’s note that the first
sensor has three values (the ones read in steps 4 to 6), the second has already
consumed the value read in step 4, and the last sensor has only the value read
in the previous step.

In Figure 10 there are several processes ready to be evaluated in paralell.
This NiMo characteristic allows to simulate the network behaviour of each sensor
acting on its own. In simulations, we see that the output to the environment
keeps the same speed as the input from the environment. This is acheived due
to NiMo’s parallel execution.

3.2 Complete binary tree topology

Optimal latency. In a complete binary tree topology of the sensor network,
each sensor has a very simple logic: it adds the readings from its two children
with its own reading and sends the result to the father. Partial sums are there-
fore collected until the root gathers the total sum. All internal vertices need to
flow the value to all sensors and does so by sending it to their children. The
leaves output the value as soon as it is received, whilst the internal sensors need
to delay their outputs depending on its height in the tree. This delay is equal to

2In the example we will use integers and obtain the sum of all sensor readings in order to
simplify the presentation

13

the distance of the node to one of its leaves. The imperative program is given
by Algorithm 3.

Algorithm 3 Algorithm for complete binary trees

/ / A l g o r i t h m f o r s e n s o r k

/ / I n i t i a l l y

const h = log(n+1) - int(log(k)) -1;
up[1, ... ,h] = [0.0, ... , 0.0];
down[1, ... ,h] = [0.0, ... , 0.0];

/ / S t e p

/ / r e c e i v e a n d i n p u t

receive input data u;
if (k != 1) receive y; / / f r o m f a t h e r

if (k<=n/2) receive x1,x2; / / f r o m c h i l d r e n

/ / c o m p u t e

if (k > n/2) X = u;
else X = x1 + x2 + up[h];
for (i = h-1; i > 1; --i) up[i+1] = up[i];
up[1] = u;
if (k == 1) Y = X;
else Y = y;
v = down[h]/n;
for(i = h-1; i > 1; --i) down[i+1] = down[i];
down [1] = Y;
/ / s e n d a n d o u t p u t

output v;
if (k != 1) send X; / / t o f a t h e r

if (k <= n/2) send Y; / / t o c h i l d r e n

In the NiMo program there are three kinds of nodes in a sensor network
with a complete tree topolology for solving the AM problem. All the nodes
have their own channel for readings from the environment. Every sensor, but
the root, have an input to collect the value to send to the output. Every non-leaf
sensor have two inputs comming from each son. The values received from the
sons, and its own reading are added in order to provide the value to its father.
A sensor, to be able to do the operation, must keep values from the proceeding
time intervals. Therefore the root will need a channel with capacity dlg ne.

In Figure 11 the three kinds of sensors are displayed and Figure 12 shows
a sensor network having a complete tree topology of depth three. The network
was generated by means of a generator program as it is explained in next section.
Running this network the first result is produced at all the sensor outputs at
step 8, an then, a new result is produced at each step.

14

Figure 11: Tree sensors

Figure 12: A tree sensor network

15

Figure 13: The ring topology generator

4 Generating static synchronous sensor fields

In this section we show how NiMo multi-stage programming (MSP [3]) charac-
teristics are used for the generation of different network sizes and topologies.

In addition of having the usual constructs of a general-purpose language,
multi-stage languages internalize the notion of runtime program generation
and execution. Thus, multi-stage languages provide the programmer with the
essence of partial evaluation and program specialization techniques, both of
which have shown to lead to dramatic resource-utilization gains in a wide range
of applications. In particular this technique is useful to reduce computation
steps, in order to synchronize execution.

When the program has a regular structure, which is the case for sensor
networks in the network topologies presented earlier, a NiMo program can be
designed such that at the beginning of the execution it generates the sensor
network of a given size. Once the network is generated, the execution becomes
the network simulation.

Ring topology. Networks of ring topology with two kinds of sensors as the
one in Figure 8 can be generated by means of the program shown in Figure 13.
It has the distinguished sensor Sen0 connected to a component process NextS
that recursively generate the others n − 1 sensors according to a ring topology.
The network parameter is the number of sensors (5 in the example). Each sensor
is parameterized by the number of steps that it has to delay its output (see the
case for four sensors in figure 14). Each newly generated sensor is the provider
to the previously generated sensor. The last generated sensor will be provided
by Sen0.

All sensors included in this construction will have their execution mode set
to disable, to inforce that no sensor will execute until the network is completely
constructed. Also, in the construction, there are included processes that simu-
late the input from the environment for each process in the network. To prevent
screen population the processes generating values to simulate the environment

16

Figure 14: A generated 4-sensor network

are also set to disable.
When the execution stops, the network is already constructed. Using the

NiMo Toons command that allows to globally change the processes execution
mode in a network, all processes on the screen change their execution mode to
data driven, therefore, every sensor will be expanded and replaced by its program
at the same time. Once generated (as seen in Figure 14), experimentation
(simulation) using NiMo Toons can be performed. The network execution allows
to know how many steps it takes to produce the first meaningful value, how
many steps between consecutive outputs, how many processors were busy at
each instant, etc. Generating networks of different sizes is just to change a
single parameter. In the network of Figure 13, the value is 5.

Complete binary tree topology. As was the case for ring topologies, a
NiMo program can be designed to construct a regular tree network, having the
height of the tree as a parameter.

In Figure 15 the generating program is shown for a tree with depth 3 (
the root plus the two following levels). The generating program has the sensor
Root connected to two instances of the component NextT (with parameter 2),
which together generate recursively the following levels (n-1 levels of interme-
diate sensors and the last level of leaf sensors). As we can see in figure 12,
the construction phase produce the non linear structure of the complete tree
network. Also in this case, different sequences of input values to simulate the
environment data are generated for each sensor.

5 Calculating the size of the network

In Sections 3.1.1 and 3.1.2 solutions were based on the knowledge of the size
of the network and the relative position of the sensor in the network, these

17

Figure 15: NiMo program for generating a complete tree network

values were a parameter of each sensor. Using NiMo capability of run-time
specialization, network size can be calculated and used at the beginning of the
execution to specialize each sensor program. This cost is assumed as an initial
system stabilization. In Figure 16, instead of the parameter with the sensor
position, an additional input channel is added to do initialization, for both
kinds of sensors, and also an additional output for the rest of sensors except the
distinguished one . The sensor provided by the distinguished sensor will have
an input channel with a single element one.

The last observation alerts that it is necessary to identify the distinguished
sensor and the neighbor.

In order to circumvent this difficulty, the distinguished sensor could include
the initialization of its neighbor as the first one in the network, sending the
value one to the neighbor. In this configuration, there is a distinguished sensor
and all the other sensors receiving a value from the neighbor, using it as its
position value and passing this value plus one to its corresponding neighbor.
By run time specialization, this additional channel becomes useless after a few
computing steps.

6 Parallel execution

In Figure 17 we can see a 5-sensor network with ring topology. After twelve
computation steps, three values are already produced into every output channel,
there are several processes surrounded by a red rectangle, meaning that that
process will act in the step. In the figure we see a small window that shows
graphically how many processors are used in each computation step. As we see
in the curve, the tendency is to stabilize in 45 processors acting in a 5-sensor
network. Parallelization allows the output frequency to be the same than the
input frequency.

18

Figure 16: Sensors calculating their position

Figure 17: Number of processes used

19

7 Conclusions and future work

The work developed up to now shows the feasability of NiMo as simulation
language for networks with sensing devices and its usefulness for experimenting
on this kind of applications. Sensors are relatively simple engines that can be
easily programmed using the NiMo primitives because the problem has a natural
stream programming solution.

Channels have a queue behaviour that avoids the need to represent queues
as vectors as it is done in the imperative solution. Channels also act as in-
ternal buffers for the sensors. That makes the code shorter and simpler. In
addition, NiMo programs exhibit an implicit parallelism that can be exploited.
Experimenting with networks of different sizes or topologies allows to verify
hypothesis on the networks’ behaviour. Therefore the language multi-staging
facilities is quite useful in order to mechanically generate different networks that
can start simulation in the next execution step. As future work we are interested
in testing the NiMo stream language in other problem domains as mobile and
self-stabilizing systems.

References

[1] A graphic functional-dataflow language. S. Clerici and C. Zoltan, Trends in
Functional Programming, Intellect, 2006.

[2] Average monitoring and alerting in static synchronus sensor field. C.
Àlvarez, A. Duch, J. Gabarro and M.J. Serna, personal communication,
2009.

[3] Semantics, Applications, and Implementation of Program Generation
Taha, Walid.,J. Funct. Program. (13) 3, p. 453–454, Cambridge Univer-
sity Press, NY, USA, 2003.

20

