
1

Region-based Algorithms for
Process Mining and Synthesis of Petri nets

Josep Carmona, Jordi Cortadella, Mike Kishinevsky

Abstract—The theory of regions was introduced in the early nineties as a method to bridge state-based and event-based models. In
this paper, the theory of regions is relaxed and extended to enable the synthesis of Petri nets whose language includes the one of
the state-based model. The nets are proved to generate the smallest language with this property. This extension makes the theory
applicable in the area of Process Mining. The paper also presents algorithmic solutions to the synthesis of bounded Petri nets. The
reported experiments confirm the applicability of the solutions.

Index Terms—Petri nets, transition systems, theory of regions, process mining, bisimulation.

F

1 INTRODUCTION

State-based representations, like FSMs [16], I/O Au-
tomata [22], Team Automata [28] or burst-mode au-
tomata [26], among others are typical models of complex
systems. Such formalizations represent the behavior by
means of sequences of events carrying state informa-
tion. Event-based specifications like Petri nets [27] or
CCS [24], model event causality, conflict and concur-
rency, thus providing alternative information to state-
based models often captured in a more concise form.

The theory of regions [17] provides a bridge between
state-based and event-based representations. This theory,
which is now almost two decades old, was introduced
to solve the synthesis problem. This problem consists on
transforming a state-based into an event-based specifi-
cation while preserving the behavior. More specifically,
the theory of regions was used for transforming a tran-
sition system into a Petri net. Although the theory was
initially defined for elementary transition systems deriving
1-bounded Petri nets, Mukund [25] extended the theory
for k-bounded Petri nets with weighted arcs.

Transforming a transition system into a Petri net is
particularly useful when modeling concurrent systems:
the state-based model (which represents the concurrency
implicitly) can be too complex to understand whereas
the equivalent Petri net (which represents the concur-
rency explicitly) is usually a more concise and clear
representation. Moreover, the formal analysis of the
model can be highly alleviated if done at the Petri net
level. Examples of concurrent systems in the real life
range from digital circuits to databases systems. Another
useful application of the synthesis problem comes from
the Business Intelligence domain: business information
systems that record transactions (called event logs) might
mine a model from the set of transactions observed in
order to realize the processes underlying the system.
This is known as Process Mining [2]. The available tool
support for process mining or synthesis based on the the-

ory of regions is relegated to the academic domain. In the
synthesis part, we can mention the tools petrify [11]
and Synet [7]. For process mining, the Parikh language
miner [32] (within the ProM tool) and the ViPTool [5].

In this paper we provide a uniform approach for
synthesis or mining of Petri nets from transitions sys-
tems, based in the theory of regions. We extend the
synthesis theory of [11] (only valid for 1-bounded Petri
nets) to k-bounded Petri nets. Second, we show how
this extension can be used to mine k-bounded Petri
nets from transition systems representing event logs
of a business information system. The practicality of
our approach is demonstrated by providing efficient
algorithms, heuristics and data structures to implement
the methods developed in this paper. This paper is an
extended version of the papers [9] [8].

1.1 Contributions and comparison with related work
In synthesis, apart from the differences with respect
to related work and the contributions reported for the
1-bounded case ([11], Sections 1.3-1.4), there is a high
algorithmic emphasis on the extension presented in this
paper. This contrasts with some of the approaches pre-
sented in the literature for the same goal [17], [25], [15],
[4], [19], [20], making the approach presented in this
paper more suitable for a practical implementation.

Our approach to Process Mining derives the tightest
possible overapproximation of the language defined by
the input traces. Other approaches, as was demonstrated
in [8] often derive a much looser overapproximation.
Other Petri net mining approaches also based on the
theory of regions [5], [32] use different strategy from
the one presented in this paper: integer linear models
are repeatedly solved to find the Petri net places that
forbid some of the unseen behavior until some halting
criteria is reached. These approaches often derive very
loose overapproximations, because sometimes it is not
possible to find a place between two transitions that can
forbid a particular behavior.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1.2 Two introductory examples

Let us introduce the ideas of this paper by means of
two examples, one for each of the approaches presented.

Synthesis of k-bounded Petri nets

s1

s2

s3

s6s5

s4

s0

a

a

a

a

b

b b

6

4

2

3

0

1 0 ba

32

(a) (b)

Fig. 1. (a) TS, (b) equivalent 6-bounded Petri net.

Figure 1(a) shows a transition system (TS) with two
events a and b (we ask the reader to ignore for the
moment the numbers in states). The language defined by
the transition system is (a3|ab|ba|b2). From this transition
system, a 6-bounded Petri net can be derived by the
theory developed in this paper, as shown in Figure 1(b).
In contrast, if a 1-bounded Petri net is required, more
than one transition with the same label is needed to
represent the same behavior, leading to a Petri net with
5 transitions and 5 places. The theory in this paper
extends the one presented in [11], which was restricted
to 1-bounded Petri nets, representing a significant step
towards the use of Petri nets in more complex scenarios.

Informally, the theory works as follows: the states of
the transition system are collected into regions, which
are multisets satisfying conditions with respect to the
set of events. Each one of the regions correspond to a
place in the derived Petri net. For instance, Figure 1(a)
shows the (only one) region r corresponding to the
place shown in Figure 1(b). The region is r(s0) = 6,
r(s1) = 4, . . ., r(s6) = 0. The crucial idea is that r
is a region because each event has a homogeneous
enter and exit relation with it: for instance, each time
event a occurs, the cardinality of the state reached is
decremented by two in r. Once the region is computed,
the corresponding place can be created in the Petri net,
and the initial marking and input and output arcs for
the place can be derived: since r(s0) = 6, i.e. the initial
state of the transition system has cardinality 6, the
initial marking of the place is 6. Moreover, due to the
aforementioned relation between event a and r, there
is an arc with weight two between the corresponding
place and the transition a in Figure 1(b).

Mining of k-bounded Petri nets
For some applications, reproducing exactly the behav-

ior observed is not a requirement, but to have instead
a clear visualization of what are the main processes
involved is preferred. Process Mining [30] is a clear
application of this, but many other applications will
appear in the future, given the increasing complexity
of software and hardware-based systems. The theory

q
a

b

c

a−

a+

b− c−

q−

q+

(a)

b+ c+

(b)

Fig. 2. (a) 3-or gate, (b) Mined Petri net.

presented in this paper for Petri net Mining is a first step
towards bridging the gap between the classical theory of
region-based synthesis and real industrial applications.
Alternative approaches have been presented in the last
years [5], [32] with the same goal.

Let us use the simple example of Figure 2(a),
representing a 3-input OR gate. Although simple, this
example illustrates a typical behavior that can not be
easily represented in a Petri net: the or-causality between
events. The behavior of this gate can be represented
with a transition system of 14 states. However, to
reproduce exactly this behavior in a Petri net requires
complex interactions between transitions. For instance
the 1-bounded Petri net representing the behavior has
11 places, 17 transitions and 74 arcs. If a 3-bounded Petri
net is synthesized instead, it does not get significantly
better: 8 places, 8 transitions and 65 arcs. In contrast
to synthesis, Petri net mining can summarize nicely
the most important part of the 3-or gate by means
of a 1-bounded Petri net, shown in Figure 2(b). The
Petri net contains every possible behavior of the gate,
including the correct alternation of every rising and
falling transitions of the signals in the gate (denoted by
a+ and a−, respectively), and the input-output relation.
It also shows additional behavior not observed in the
gate: initially the gate might be in an unstable state
by changing infinitely its state (i.e. trace (q + q−)∗ is
possible in the initial marking of the Petri net). In other
words, in mining of Petri nets the goal is in finding a
Petri net that can reproduce all observed behaviors, but
extra behavior are allowed. The intention is to restrict
extra behaviors as much as possible and to obtain tight
overapproximation of the observed behaviors. In this
paper, the theory of k-bounded synthesis is adapted to
Process mining, and it is shown that our method derives
the tightest possible over-approximation in terms of
generated languages.

The organization of the paper is as follows: Section 2
includes the theory needed for the understanding of the
paper. Section 3 shows how to derive a k-bounded Petri
net from a set of k-bounded regions. Sections 4 and 5
provide two alternatives for deriving a Petri net, de-
pending on the properties to achieve (language-inclusion
or bisimilarity). Section 6 defines an algorithm for the

3

generation of k-bounded minimal regions. Section 7
introduces the notion of irredundant cover, to restrict
the set of necessary regions. In Section 8 the technique of
label splitting is presented for the general case, to force
the bisimulation approach of Section 5 to obtain a k-
bounded Petri net bisimulating the initial TS. Finally,
Section 9 provides experiments of language-inclusion
and bisimilarity based methods, some of them taken
from real life applications.

2 BASIC THEORY

2.1 Finite transition systems and Petri nets
Definition 2.1 (Transition system): A transition system

(TS) is a tuple (S, E,A, sin), where S is a set of states, E is
an alphabet of actions, such that S∩E = ∅, A ⊆ S×E×S
is a set of (labelled) transitions, and sin is the initial state.

Let TS = (S, E,A, sin) be a transition system. We con-
sider connected TSs that satisfy the following axioms:

• S and E are finite sets.
• Every event has an occurrence: ∀e ∈ E : ∃(s, e, s′) ∈

A;
• Every state is reachable from the initial state: ∀s ∈

S : sin
∗→ s.

A TS is called deterministic if for each state s and each
label a there can be at most one state s′ such that s

a→ s′.
The relation between TSs will be studied in this paper.
The language of a TS, L(TS), is the set of traces feasible
from the initial state. When, L(TS1) ⊆ L(TS2), we will
denote TS2 as an over-approximation of TS1. The notion
of simulation between two TSs is related to this concept:

Definition 2.2 (Simulation, Bisimulation [3]): Let
TS1 = (S1, E, A1, sin1) and TS2 = (S2, E, A2, sin2)
be two TSs with the same set of events. A simulation of
TS1 by TS2 is a relation π between S1 and S2 such that

• for every s1 ∈ S1, there exists s2 ∈ S2 such that
s1πs2.

• for every (s1, e, s
′
1) ∈ A1 and for every s2 ∈ S2

such that s1πs2, there exists (s2, e, s
′
2) ∈ A2 such that

s′1πs′2.
When TS1 is simulated by TS2 with relations π, and

viceversa with relation π−1, TS1 and TS2 are bisimilar [3].
Definition 2.3 (Petri net [27]): A Petri net (PN) is a

tuple (P, T,W, M0) where P and T represent fi-
nite sets of places and transitions, respectively, and
W : (P × T) ∪ (T × P) → N is the weighted flow rela-
tion. The initial marking M0 ∈ N|P | defines the initial
state of the system.

A transition t ∈ T is enabled in a marking M if
∀p ∈ P : M [p] ≥ W (p, t). Firing an enabled transition t
in a marking M leads to the marking M ′ defined by
M ′[p] = M [p]−W (p, t) + W (t, p), for p ∈ P , and is de-
noted by M

t→ M ′.
The set of all markings reachable from the initial

marking M0 is called its reachability set. The reachability
graph of PN (RG(PN)) is a transition system in which
the set of states is the reachability set, the events are the

transitions of the net and a transition (M1, t,M2) exists
if and only if M1

t→ M2. We use L(PN) as a shortcut for
L(RG(PN)).

2.2 Multisets

In general, a region is a multiset where additional con-
ditions hold [25]. We recap in this section the main
definitions and operations on multisets.

Given a set S, a multiset r of S is a mapping
r : S −→ N. We will also use a set notation for multisets.
For example, let S = {s1, s2, s3, s4}, then a multiset
r = {s3

1, s
2
2, s3} corresponds to the following mapping

r(s1) = 3, r(s2) = 2, r(s3) = 1, r(s4) = 0. The support of
r (supp(r)) is defined as {s ∈ S | r(s) > 0}. The power
of r (r�) is maxs∈S r(s). For instance, for r = {s3

1, s
2
2, s3},

supp(r) = {s1, s2, s3} and r� = 3.
The union, intersection and difference of two multisets

r1 and r2 are defined as follows:

(r1 ∪ r2)(s) = max(r1(s), r2(s))
(r1 ∩ r2)(s) = min(r1(s), r2(s))
(r1 − r2)(s) = max(0, r1(s)− r2(s))

A multiset r is said to be trivial if r(s) = r(s′) for all
s, s′ ∈ S. The trivial multisets will be denoted by 0, 1,
. . . , K when r(s) = 0, r(s) = 1, . . . , r(s) = k, for every
s ∈ S, respectively.

Multiset r is k-bounded if for all s ∈ S : r(s) ≤ k.
The multiset r1 is a subset of r2 (r1 ⊆ r2) if
∀s ∈ S : r1(s) ≤ r2(s). As usual, we will denote by
r1 ⊂ r2 the fact that r1 ⊆ r2 and r1 6= r2. The k-topset of
r, denoted by >k(r), is defined as follows:

>k(r)(s) =
{

r(s) if r(s) ≥ k
0 otherwise

and k represents the degree of such k-topset. Multiset
r1 is a topset of r2 if there exists some k for which
r1 = >k(r2). For example, the multiset {s3

1, s3} is a
subset of {s3

1, s
2
2, s3}, but it is not a topset. The multisets

{s3
1, s

2
2} and {s3

1} are the 2- and 3-topsets of {s3
1, s

2
2, s3},

respectively.

2.3 General regions

Given a multiset r, the gradient of a transition (s, e, s′)
is defined as ∆r(s, e, s′) = r(s′) − r(s). An event e
is said to have a non-constant gradient in r if there
are two transitions (s1, e, s

′
1) and (s2, e, s

′
2) such that

r(s′1)− r(s1) 6= r(s′2)− r(s2).
Definition 2.4 (Region): A multiset r is a region if all

events have a constant gradient in r.
The original notion of region from [17] was restricted

to subsets of S, i.e. events could only have gradients
in {−1, 0,+1}. We say that a region is trivial if it is a
trivial multiset (0, 1, . . . , K). The set of non-trivial general
regions of TS will be denoted by RTS.

4

Algorithm 1: BoundedPNDerivation
Input: Transition system TS = (S, E,A, sin),

R is a set of regions from TS
Output: Petri net PN = (R,E, W, M0)
begin1

foreach region r ∈ R do2

M0[r] = r(sin)3

end4

foreach event e ∈ E do5

foreach r ∈ ◦e do6

g = MAX-K-TOP(r, e)7

W = W ∪ {(r g→ e)}8

if (∆r(e) > −g) then9

W = W ∪ {(e g+∆r(e)→ r)}10

end11

end12

foreach r ∈ e◦ do W = W ∪ {(e ∆r(e)→ r)}13

end14

end15

Definition 2.5 (Gradient of an event): Given a region r
and an event e with (s, e, s′) ∈ E, the gradient of e in
r is defined as

∆r(e) = r(s′)− r(s)

Definition 2.6 (Minimal region): A region r is minimal
if there is no other region r′ 6= 0 such that r′ ⊂ r.

3 DERIVING K-BOUNDED PETRI NETS

This section presents an algorithm that derives a k-
bounded Petri net from a set of k-bounded regions. The
relation between the initial transition system and the
derived Petri net will be established in the next two
sections: language-inclusion (Section 4), and bisimilarity
(Section 5).

Definition 3.1 (Excitation and switching regions): The
excitation region1 of an event e, ER(e), is the set of
states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ E}

The switching region of an event e, SR(e), is the set of
states reachable from ER(e) after having fired e, i.e.

SR(e) = {s | ∃s′ : (s′, e, s) ∈ E}

For convenience, ER(e) and SR(e) will be also considered
as multisets of states when necessary.

Definition 3.2 (Pre- and post-regions): A region r is a
pre-region of e if ER(e) ⊆ r. A region r is a post-region
of e if SR(e) ⊆ r. The sets of pre- and post-regions of an
event e are denoted by ◦e and e◦ respectively.

1. Excitation and switching regions are not regions in the terms of
Definition 2.4. They correspond to the set of states in which an event
is enabled or just fired, correspondingly. The terms are used due to
historical reasons.

Definition 3.3 (Topset and its degree): Given and event
e, and a pre-region r, the multiset TOP(r, e) is the
multiset q such that q = >g(r), ER(e) ⊆ >g(r) and
ER(e) 6⊆ >g+1(r). The degree g of TOP(r, e) is denoted
as MAX-K-TOP(r, e).

Informally, TOP(e, r) is the smallest topset of r still
covering ER(e). Note that this is always a single multi-
set. The value MAX-K-TOP(r, e) establishes the maximal
number of tokens that can be safely removed from the
place corresponding to r when e fires guaranteeing that
no negative markings are reached. For instance, in the
example of Figure 1(a), if we consider the region r
shown, TOP(a, r) = >2(r) = {s6

0, s
4
1, s

2
2, s

3
4}, and there-

fore MAX-K-TOP(r, a) = 2.
Now we define an important objects called enabling

topsets, which are crucial for deriving the weighted flow
relation in the algorithm.

Definition 3.4 (Enabling topsets): The set of smallest en-
abling topsets of an event e is denoted by ?e and defined
as follows:

?e = {q | ∃r ∈ ◦e ∧ q = TOP(e, r)}

In Algorithm 1, every region is a place and each event
is a transition in the derived PN. The flow relation
from places to transitions is defined with respect to
the enabling topsets: for a pre-region r of an event e,
g = MAX-K-TOP(r, e) tokens can be removed from place
r (line 7-8). However the gradient of e in r can be
greater than −g, i.e. e removes less tokens than g. In this
situation, part of the removed tokens (g +∆r(e)) are put
back in r (lines 9-10). The flow relation from transition
e to places is defined for regions covering SR(e) and the
corresponding gradient (line 13).

4 LANGUAGE-INCLUSION

4.1 Motivation

In this section we answer the following question: what
is the relationship between the PN derived by applying
Algorithm 1 to the set of minimal regions of a TS ? As
the title of this section suggests, L(PN) ⊆ L(TS). Hence
we assume that the set of minimal regions has been
computed. In Section 6 we present an efficient algorithm
to compute minimal regions.

Let us show the main message of this section with
the help of an example. Figure 3(a) shows a TS. Assume
that 1-bounded minimal regions are used in Algorithm 1.
These regions are reported in Figure 3(b), and the PN
derived from Algorithm 1 on these regions is shown in
Figure 3(c). It is easy to see that L(PN) ⊃ L(TS): the
sequence cbade belongs to L(PN) but it does not belong
to L(TS).

The remainder of this section tries to formalize con-
struction of Petri Nets based on language overapproxi-
mation and presents an important result stating a mini-
mality property on the derived PN.

5

2
p

6
p

3
p

4
p

1
p

5
p

7
p

a b

b a cc

c
b

s1

s2

s5s4 s6

s3

e

ds7

a

s8

1
r = { s1,s2,s3,s5 }

3
r = { s1,s3,s6 }

4
r = { s4,s7,s6 }

5
r = { s3,s5,s6,s7 }

6
r = { s2,s4,s5,s7 }

2
r = { s1,s2,s4 }

7

(c)

ba c

d

e

(a) (b)

r = { s8 }

Minimal regions

Fig. 3. (a) Initial TS, (b) 1-bounded minimal regions, (c)
PN derived by Algorithm 1.

4.2 Mining properties

Formally, given a TS=(S, E,A, sin) , Algorithm 1 derives
a k-bounded Petri net PN=(P, T,W,M0) with the follow-
ing characteristics:

1) L(TS) ⊆ L(PN),
2) T = E, i.e. there is only one transition per event

(no label splitting see Section 8), and
3) Minimal language containment (MLC) property:

For any k-bounded PN′ = (P ′, T ′,W ′,M ′
0)

s.t. T ′ = E : L(TS) ⊆ L(PN′) ⇒ L(PN) ⊆ L(PN′)

Therefore, the algorithm generates the tightest over-
approximation (measured by language containment)
among all possible Petri Nets that can be obtained with-
out splitting labels. Since Algorithm 1 clearly guarantees
item 2), we will focus on proving two other properties
in the next two sections.

4.3 Inclusion

Let us focus on proving the inclusion of language with
respect to the initial TS. The following lemma is required
for proving the main result of this section:

Lemma 4.1: Let TS=(S, E,A, sin) be a transition sys-
tem, and PN=(P, T,W,M0) be the synthesized net (using
Algorithm 1) with the set of minimal regions of TS. If
trace σ is enabled both in TS and PN leading to state s
and marking M respectively, then each minimal region
ri satisfies ri(s) = M [pi].

Proof: Induction on |σ|. For |σ| = 0, line 3 of the
algorithm makes ri(sin) = M0[pi] for every minimal
region ri. Assume the lemma holds for any σ such that
|σ| < n. Let us show it holds for σ = σ′e, with |σ| = n.
By this assumption, the state s′ and marking M ′ reached
after firing σ′ satisfies ri(s′) = M ′[pi] for every minimal
region ri. We focus on the influence of e in regions in
◦e and e◦, because regions not in these two sets are not
affected by the firing of e. Now let us consider the firing
of e in s′ leading to state s: for every region ri ∈ ◦e,
ri(s) = ri(s′) + ∆ri(e). In M ′ the firing of e results in the

following marking M for every minimal region ri:

M [pi] = M ′[pi]−W (pi, e)
= M ′[pi]−MAX-K-TOP(ri, e)
= ri(s′)−MAX-K-TOP(ri, e)
≥ ri(s)

and the last inequality holds because lines
9-13 of the algorithm always guarantee
−MAX-K-TOP(ri, e)} ≥ ∆ri(e). But the inequality is
in fact an equality: if −MAX-K-TOP(ri, e)} > ∆ri(e),
then there exist a transition (s, e, s′) satisfying ri(s) = g,
ri(s′) = g + ∆ri

(e) < 0, which contradicts the region
condition on state s′. Finally, places corresponding to
regions ri ∈ e◦ are incremented exactly with ∆ri(e)
tokens (line 15 of the algorithm), hence the equality also
holds for these places.

Theorem 4.1: Let TS=(S, E,A, sin) be a transition sys-
tem, and PN=(P, T,W,M0) be the synthesized net (using
Algorithm 1) with the set of minimal regions of TS. Then
L(TS) ⊆ L(PN).

Proof: Induction on the length of the traces in L(TS):
in the case |σ| = 1, we have that if sin ∈ ER(e) then
M0

e→, because otherwise there exists a place pi ∈ •e
such that M0[pi] < W (pi, e) = MAX-K-TOP(ri, e), which
implies TOP(ri, e) does not contain sin, and therefore
sin 6∈ ER(e), contradiction.

Assume the theorem holds for traces of length less
than n, and consider the trace σ = σ′e of length n.
Using the induction hypothesis, let sm, M be the state
reached in TS and the marking reached in PN after firing
the trace σ′, respectively, and consider the minimal re-
gions r1 . . . rk corresponding to the places p1 . . . pk ∈ •e.
Lemma 4.1 guarantees ri(sm) = M [pi], for i ∈ 1 . . . k and
therefore, if we assume that there exists a pj ∈ •e such
that M [pj] < W (pj , e), then:

rj(sm) < W (pj , e) = MAX-K-TOP(ri, e)

which implies that sm 6∈ ER(e), a contradiction.

4.4 Minimal Language Containment
Given a set S′ ⊆ S and a multiset r, r |S′ represents the
projection of the multiset r into the set S′, i.e. r |S′= r ∩
S′. As the following results show, regions are preserved
under language containment or simulation.

Lemma 4.2: Let TS=(S, E,A, sin) and TS′ =
(S′, E′, A′, sin) be two transition systems such that
S ⊆ S′, E ⊆ E′, T ⊆ T ′. If r ∈ RTS′ then r |S ∈ RTS.

Proof: If the gradient of an event in a region (∆e(r))
is constant for transitions in A′, then it is also constant
for the transitions in A when r is restricted to S, given
that A ⊆ A′ and S ⊆ S′, i.e. by removing arcs, no new
violations of the region condition can be created.

We now prove a similar lemma on the correspondence
of regions between simulated TSs.

Lemma 4.3: Let TS=(S, E,A, sin) and
TS′ = (S′, E, A′, s′in) be such that there exists a

6

simulation relation of TS by TS′ with relation π. If
r ∈ RTS′ , then π−1(r) ∈ RTS, and for every event e,
∆e(r) is preserved in π−1(r).

Proof: The proof for this lemma is similar to the
one used in Lemma 4.2, but on simulated states: for
every transition (s, e, s′) ∈ A there exists a transition
(π(s), e, π(s′)) ∈ A′. Therefore, gradients are preserved
in TS for the set π−1(r).

In general, language containment between two TSs
does not imply simulation [18]. However, if the TS
corresponding to the superset language is deterministic
then language containment guarantees the existence of
a simulation:

Lemma 4.4: Let TS1 = (S1, E1, A1, sin1) and
TS2 = (S2, E2, A2, sin2) be two TSs such that TS2

is deterministic, and L(TS1) ⊆ L(TS2). Then TS2 is a
simulation of TS1.

Proof: The relation π ⊆ (S1×S2) defined as follows:

s1πs2 ⇔ ∃ σ : sin1
σ→ s1 ∧ sin2

σ→ s2

represents a simulation of TS1 by TS2: the first item
of Definition 2.2 holds since L(TS1) ⊆ L(TS2). If the
contrary is assumed, i.e. ∃s1 ∈ S1 : @s2 ∈ S2 : s1πs2

then the trace leading to s1 in TS1 is not feasible in
TS2, which contradicts the assumption. The second item
holds because the first item and the determinism of TS2:
for every s1 ∈ S1, TS2 deterministic implies that there is
only one state possible s2 ∈ S2 such that s1πs2. But now
if e is enabled in s1 and not enabled in s2, it will imply
that the trace σe, with sin1

σ→ s1, is not feasible in TS2,
leading to a contradiction of L(TS1) ⊆ L(TS2).

And now we can prove the MLC property (see the
definition in Section 4.2) on the derived Petri net from a
TS:

Theorem 4.2: Let TS=(S, E,A, sin) be a transition sys-
tem, and PN=(P, T,W,M0) be the synthesized net (using
Algorithm 1) with the set of minimal regions of TS. Then
PN satisfies the MLC property.

Proof: By contradiction. Let PN′ = (P ′, T ′,W ′,M ′
0)

exist with the reachability graph corresponding to the
TS′ = (S′, E′, A′, s′in) such that E′ = T , L(TS) ⊆ L(TS′)
and L(PN) 6⊆ L(TS′). The following facts can be ob-
served:

• TS′ and RG(PN) are deterministic because
E = E′ = T and therefore they correspond to
the reachability graph of Petri nets with a different
label for each transition.

• Since TS′ is deterministic and L(TS) ⊆ L(TS′), then
there is a simulation π of TS by TS′ (Lemma 4.4).

• ∀r′ ∈ RTS′ , r = π−1(r) ∈ RTS, and events with con-
stant gradient are the same in r′ and r (Lemma 4.3).

• Each non-minimal region can be described as the
union of disjoint minimal regions [11], and therefore
we can focus only on minimal regions.

• Each minimal region r ∈ RTS is a region in RRG(PN),
since PN has been obtained with Algorithm 1 from
the set of minimal regions in TS. Moreover, since

RG(PN) is deterministic and L(TS) ⊆ L(PN) (Theo-
rem 4.1), then there is a simulation of TS by RG(PN)
(Lemma 4.4). Now using Lemma 4.3, together with
the fact that r is a region both in RTS and RRG(PN),
events with constant gradient in TS have also con-
stant gradient in RG(PN).

Hence, the previous items show that for a region in
TS′ there is a corresponding region in RG(PN) with the
same gradient on the events. In Petri net terms, this
fact means that the flow relation of PN′ is included in
the flow relation of PN. Additionally, the simulations
connecting both transition systems preserve the initial
states (see Lemma 4.4). This contradicts the assumption
that L(PN) 6⊆ L(TS′).

Section 9 applies the results presented in this section
in the area of Process Mining.

5 BISIMILARITY

For some applications, deriving a Petri net that repre-
sents the behavior of the initial transition system exactly
is required. However, as the example of Section 4.1
demonstrates, this can not be accomplished in general.
In this section we tackle this problem by defining a
property (excitation closure) that a TS must satisfy in
order to derive a PN with bisimilar behavior. Moreover,
a label splitting technique is presented in Section 8, to
repair excitation closure violations in a TS. This allows
to present a complete method for deriving bisimilar
k-bounded PNs, described in Section 8.3. Finally, in
Section 7 excitation closure is used to reduce the number
of necessary regions while preserving the properties in
the derived net.

5.1 Excitation closure

The concept of excitation closure was presented in [11]
for 1-bounded regions. Here we generalize it for arbi-
trary k-bounded regions:

Definition 5.1 (k-ECTS): A TS is k-excitation closed (k-
ECTS) if using minimal k-bounded regions, it satisfies
the following two properties:

1) Excitation closure. For each event e⋂
q∈?e

supp(q) = ER(e)

2) Event effectiveness. For each event e, ◦e 6= ∅
For instance, the TS shown in Figure 3(a) is not 1-

ECTS, since event c is not excitation closed for the set
of regions shown in Figure 3(b):⋂

q∈?c

supp(q) = r1 ⊃ ER(c)

while the rest of events (a, b, d and e) are excitation
closed. However, the TS is 2-ECTS, as the Figure 4
demonstrates. We will say that a TS is ECTS if it is k-
ECTS for some k.

7

a b

dc

e

1
p

4
p

3
p

2
p

5

0
p

5
r = { s8 }

4
r = { s4,s7,s6 }

3
r = { s1,s3,s6 }

2
r = { s1,s2,s4 }

1
r = { s1,s2,s3,s5 }

0
r = {s2,s3,s5 2,s7}

(a) (b)

p

Minimal regions

Fig. 4. (a) 2-bounded minimal regions in the TS of
Figure 3(a), where only region r0 is not 1-bounded, (b)
Bisimilar PN derived by Algorithm 1.

The intuition behind the notion of excitation closure
is that, provided that Algorithm 1 uses the enabling
topsets to decide when a transition is enabled, the set
of states corresponding to the enabling of the transition
must be exactly the set of states where the transition
is actually enabled in the TS (ER). In other words, if
one state in the intersection of enabling topsets does not
belong to the ER of the event, then the RG(PN) is an
over-approximation of the TS and hence is not able to
simulate the TS.

Theorem 5.1: Let TS=(S, E,A, sin) be a k-excitation
closed transition system. Algorithm 1 on the set of mini-
mal regions derives a PN=(P, T,W,M0) with reachability
graph bisimilar to TS.

Proof: Theorem 4.1 provides L(TS) ⊆ L(RG(PN)),
and together with the fact that RG(PN) is deterministic
(since T = E), Lemma 4.4 can be applied to prove
the existence of a simulation of TS by RG(PN). The
simulation is

s1πs2 ⇔ ∃ σ : sin1
σ→ s1 ∧ sin2

σ→ s2

We will prove that π−1 is a simulation of RG(PN) by
TS (see Definition 2.2). For that purpose, assume that
there exists a reachable state s2 in RG(PN) such that no
state in TS is related to. We can prove by induction
on the length of traces leading to the state that this
never happens. In the base case (n = 0), this trivially
holds because the initial states are related by the relation
π−1. In the induction step, assume that there exists a
trace σ = σ′e, leading to a state s2 in RG(PN) but no
state in S is related to s2 by π−1. Now consider the
state s1, with corresponding marking M in PN, reached
in RG(PN) after firing σ′. By the induction hypothesis,
π−1(s1) ∈ S is related to s1, and according to our
assumption, π−1(s1) 6∈ ER(e) (otherwise π will relate
the state reached after firing e at π−1(s1) with s2). But
then there exists a region ri ∈ ?e for which π−1(s1) 6∈ q,
with q = TOP(ri, e). Due to the excitation closure, the
corresponding place pi derived by Algorithm 1 satisfies
M [pi] < W (pi, e) due to Lemma 4.1, contradicting the
assumption that e is enabled at s1. The other condition
for proving the simulation can be also deduced from the
reasoning above.

6 COMPUTATION OF GENERAL REGIONS
The first step in the approaches presented in the two
previous sections is to compute the set of regions from
the TS. The fact that the number of k-bounded regions
in a given TS might be exponential with respect to the
number of states makes this step a challenging one.
In this section, we will try to convince the reader that
practical algorithms can be used to fight the complexity
underlying the generation of regions.

Independently on the desired properties in the derived
Petri net, not all the regions are necessary. Regions that
are

• Non-minimal [15], or
• Not a pre-region or post-region (see Property 6.4),

or
• Trivial, i.e. 0, 1, . . . , K

are not required. Moreover, as Section 7 reports, de-
pending on the properties in the derived Petri net some
minimal regions can also be excluded:

• In language-inclusion based methods, only a subset
irredundant minimal cover of regions is needed.

• In bisimilarity based methods, only an irredundant
minimal cover of regions is needed.

6.1 Basic algorithm
In this section we will present an algorithm to generate
a set of regions sufficient for deriving a correct Petri
net, independently of the approach followed (language-
inclusion or bisimilarity). Excitation/switching regions
will be the sets of states that serve as seeds in the
algorithm. The following properties will be useful to
ensure the generation of minimal pre/post-regions [9]:

Property 6.1: Let TS = (S, Σ, E, sin) be a transition
system without deadlock states. Then, for any region r
there is an event e for which ∆r(e) ≤ 0.

Property 6.2: Let TS = (S, Σ, E, sin) be a transition
system in which there is a transition (s, e′, sin) ∈ E.
Then, for any region r there is an event e for which
∆r(e) ≥ 0.

Property 6.3: Let TS = (S, Σ, E, sin) be a transition
system without deadlock states. Then, any region r 6= 0
is the pre-region of some event e.

Property 6.4: Let TS = (S, Σ, E, sin) be a transition
system. Then, any region r 6= 0 is the pre-region or the
post-region of some event e.

Due to Property 6.4, only supersets of the ER and
SR of every event must be considered. When a given
(multi)set contains some region violation, it is expanded
to avoid it. Formally, given a multiset r and an event
e with non-constant gradient, the following definitions
characterize the set of regions that include r.

Definition 6.1: Let r 6= 0 be a multiset. We define

Rg(r, e) = {r′ ⊇ r|r′ is a region and ∆r′(e) ≤ g}
Rg(r, e) = {r′ ⊇ r|r′ is a region and ∆r′(e) ≥ g}

Rg(r, e) is the set of all regions larger than r in which
the gradient of e is smaller than or equal to g. Similar for

8

(b) (c) (d)(a)

1 2

4

3 34

1s

e

e

2

e e

ee e

s1

e

1 2

4

6 6 6

5

e e

e e

1s

e

8

6 66

4

21

e e

ee e

s1

s01 2

1

0 4 2

0

e

e e

e e

e

Fig. 5. Successive calculations of u2(r, e). States vio-
lating the constraint ∆r(e) ≥ 2 are depicted with grey
background.

Rg(r, e) and the gradient of e greater than or equal to g.
Notice that in this definition a gradient g may be used to
partition the set of regions including r into two classes.
This binary partition is the basis for the calculation of
minimal k-bounded regions that will be presented at the
end of this section.

The expansion of a set consists of increasing the arity
of some states to satisfy the region condition. As it is
proved below, there is a bound in the increase for each
state:

Definition 6.2: Given a multiset r, a state s and an
event e, the following δ functions are defined2:

δg(r, e, s) = max(0, max
(s,e,s′)∈E

(r(s′)− r(s)− g))

δg(r, e, s) = max(0, max
(s′,e,s)∈E

(r(s′)− r(s) + g))

Informally, δg denotes a lower bound for the increase
of r(s), taking into account the arcs leaving from s, to
force ∆r′(e) ≤ g in some region r′ larger than r. Similarly,
δg denotes a lower bound taking into account the arcs
arriving at s, to force ∆r′(e) ≥ g.

Let us use Figure 5(a) to illustrate this concept. In the
figure each state is labeled with r(s). Now imagine that
we want to force the gradient on event e to be greater or
equal to 2. For state s1, we have δ2(r, e, s1) = 3, which is
determined from the arc s0

e→ s1, indicating that r′(s1) ≥
4 in case we seek a region r′ ⊃ r with ∆r′(e) ≥ 2. The
states that, as s1, violate this constraint are shown with
grey background.

Definition 6.3: Given a multiset r and an event e, the
multisets ug(r, e) and ug(r, e) are defined as follows:

ug(r, e)(s) = r(s) + δg(r, e, s)
ug(r, e)(s) = r(s) + δg(r, e, s)

Intuitively, ug(r, e) is a move towards growing r and
obtaining all regions r′ with ∆r(e) ≤ g. Similarly, ug(r, e)
for those regions with ∆r(e) ≥ g. It is easy to see
that ug(r, e) and ug(r, e) always derive multisets larger
than r. The successive steps of calculating u2(r, e) are
illustrated in Figures 5(a)-(d).

2. For convenience, we consider maxx∈D P (x) = 0 when the
domain D is empty.

Algorithm 2: GenerateMinimalRegions
Input: Transition system TS = (S, E,A, sin),

bound k
Output: R is the set of k-bounded minimal regions

from TS
begin1

R = ∅2

P = {ER(e) | e ∈ E} ∪ {SR(e) | e ∈ E}3

while P 6= ∅ do4

r = remove one element (P)5

if r 6∈ R then6

e = event with non constant gradient (r)7

(gmin, gmax) = (min∆r(e)),max ∆r(e))8

g = b(gmin + gmax)/2c9

r1 = ug(r, e)10

if ((r�1 ≤ k) ∧ (1 6⊂ r1)) then P = P ∪{r1}11

r2 = ug+1(r, e)12

if ((r�2 ≤ k) ∧ (1 6⊂ r2)) then P = P ∪{r2}13

end14

end15

R = R \ {r | r is not a region}16

R = R \ {r | ∃r′ ∈ R : r′ ⊂ r}17

end18

Theorem 6.1 (Expansion on events): (a) Let r 6= 0 be a
multiset and e an event such that there exists some
(s, e, s′) with r(s′)− r(s) > g. The following hold:

1) r ⊂ ug(r, e)
2) Rg(r, e) = Rg(ug(r, e), e)

(b) Let r 6= 0 be a multiset and e an event such that
there exists some (s, e, s′) with r(s′)− r(s) < g. The
following hold:

1) r ⊂ ug(r, e)
2) Rg(r, e) = Rg(ug(r, e), e)

Proof: (We prove item (a), item (b) is similar.)
(a.1) Given the event e, for all states s, s′ with (s, e, s′)
either (i) r(s′) − r(s) ≤ g or (ii) r(s′) − r(s) > g. In
case (i), the following equality holds: r(s) = ug(r, e)(s)
because δg(r, e, s) = 0 by Definition 6.2. In case (ii),
δg(r, e, s) > 0, and therefore r(s) < ug(r, e)(s). Given
that the rest of states without outgoing arcs labeled e
fulfill also r(s) = ug(r, e)(s), and because there exists at
least one transition satisfying (ii), the claim (a.1) of the
theorem holds.
(a.2) To obtain Rg(r, e) it is necessary to guarantee
∆r′(e) ≤ g for each region r′ ⊇ r. Given (s, e, s′) with
r(s′) − r(s) > g, two possibilities can induce a gradient
lower than g, decreasing r(s′) or increasing r(s), but only
the latter leads to a multiset with r as a subset.

The calculation of all minimal k-bounded regions is
presented in Algorithm 2. It is based on a dynamic
programming approach that, starting from a multiset,
generates an exploration tree in which an event with
non-constant gradient is chosen at each node (line 7). All
possible gradients for that event are explored by means

9

b

b

a

a

a

a

a

c
01

1 1

1 1

1

1

b

b

a

a

a

a

a

c
0

3 1

2 0

1

0

4

b

b

a

a

a

a

a

c
01

1 1

1 0

1

0

ER(a)u−1(r, a) u0(r, a)

Fig. 6. Exploration of regions in Algorithm 2 for ER(a):
min∆r(a) = −1, max ∆r(a) = 0.

of a binary search (lines 8-13). Dynamic programming
with memoization [10] avoids the exploration of multiple
instances of the same node (line 6). The final step of the
algorithm (lines 16-17) removes all those multisets that
are neither regions nor minimal regions that have been
generated during the exploration.

Figure 6 shows how Algorithm 2 will explore the
ER(a) (center). After successive calculations of r1 =
u−1(ER(a), a), it reaches the region shown on the left.
Analogously, the region on the right is obtained after
successive calculations of r2 = u0(ER(a), a), and notice
that provided that cover both ER(a) and SR(a), it corre-
sponds to a self-loop place for transition a.

Theorem 6.2: Algorithm GenerateMinimalRegions cal-
culates all k-bounded minimal regions.

Proof: The proof is based on the following facts:

1) All minimal regions are a pre- or a post-region of
some event (Property 6.4). Any pre- (post-) region
of an event is larger than its ER (SR). Line 3 of
the algorithm puts all seeds for exploration in P .
These seeds are the ERs and SRs of all events.

2) Each r that is not a region is enlarged by ug(r, e)
and ug+1(r, e) for some event e with non-constant
gradient. Given that g = b(gmin + gmax)/2c, there
is always some transition s1

e→ s2 such that
r(s2) − r(s1) = gmax > g and some transition
s3

e→ s4 such that r(s4) − r(s3) = gmin < g + 1.
Therefore, the conditions for theorem 6.1 hold.
By exploring ug(r, e) and ug+1(r, e), no minimal
regions are missed.

3) The algorithm halts since the set of k-bounded
multisets with ⊆ is a lattice and the multisets
derived at each level of the tree are larger than
their predecessors. Thus, the exploration will halt
at those nodes in which the power of the multi-
set is larger than k (lines 11-13). The condition
(1 6⊂ r′) in lines 11-13 improves the efficiency
of the search, since regions containing 1 are not
minimal.

6.2 Computing an upper bound for k

The algorithm presented in Section 6.1 assumes an input
parameter k determining the maximal bound required
for the derivation of a PN. If k is unknown, an upper
bound can be computed from the transition system.
In [13] (Section IV), a method to compute the bounded
Petri net closure of a regular language is presented. This
method consists of:

1) Unbounded Petri net synthesis of the lan-
guage [12], by solving a finite system of linear
constraints over the integers,

2) Construction of the covering tree [21] related to the
unbounded Petri net derived in step 1): the vertices
of this tree are tuples v = (M, q), where M is a
marking of the Petri net constructed in the previous
step, and q is a state of the transition system,

3) Iterate 1) and 2) until each leaf vertex v = (M, q)
of the corresponding covering tree is identical to
some ancestor vertex v′ = (M ′, q′), i.e., M ′ = M
and q′ = q. When iteration takes place (M ′ < M),
new constraints are added to the linear problem
solved in step 1). These new constraints account
for the boundedness of the new net derived, for the
case of the repetitive sequence between M ′ and M .

If step 1) is done with language T ∗, the final net obtained
provides an upper bound for k [14].

Although this strategy to provide an upper bound
has high complexity, it might be used when there is no
knowledge on the maximal cardinality needed for the
regions. For many practical purposes it is also possible
to progressively increase the size of k during synthesis
iterations. Note that this problem was not considered in
previous work [11], [9].

6.3 Implementation details

All the operations required in Algorithm 2 to manipulate
the multisets can be efficiently implemented by using
a symbolic representation. A multiset can be modeled
as a vector of Boolean functions, where the function at
position i describes the characteristic function of the set
of states having cardinality i. Hence, multiset operations
(union, intersection and complement) can be performed
as logic operations (disjunction, conjunction and com-
plement) on Boolean functions. In practice, an array of
Binary Decision Diagrams (BDDs) [6] can be used to
represent implicitly a multiset.

7 IRREDUNDANT COVERS

In the methods presented in previous sections, all the
minimal regions were used to satisfy the properties
(bisimilarity and language-inclusion, respectively). In
this section we show that, as in the case of 1-bounded
minimal regions [11], the number of minimal general
regions needed might be smaller than the total num-
ber of minimal regions. Regions that are not needed

10

g+1

g+2

g−1
ER(e)

g

r

e
r

q

g

EC(e)

...

...

Fig. 7. Situation where the arc r
g→ e can be converted

into p
g−1→ e.

for deriving a correct PN (under language-inclusion or
bisimilarity) are called redundant.

We start by defining an important set of states related
to an event:

Definition 7.1 (Enabling Closure): Given an event e, and
a set of regions R the enabling closure of e with respect
to R is defined as:

EC(e) =
⋂

q∈ (?e∩R)

supp(q)

The enabling closure of an event e represents the set
of states that enable e if the set of pre-regions is only
considered for a given set of regions R. The intuition
behind the theory of the remainder of this section is the
following: given a set of regions R, if a region r does
not reduces the enabling closure of any event, then its
removal does not modify the language of the Petri net
derived by Algorithm 1. In other words, the language of
the Petri net derived by Algorithm 1 from R and from
R − {r} is the same. To prove that a given region is
not needed by Algorithm 1, a stepwise simplification
of the arcs arising in the place is applied. Figure 7
illustrates the idea: region r ∈ ◦e is shown together with
the corresponding partition based on the cardinality of
its states (only the partition for states corresponding to
the arities g − 1, . . . , g + 2 is shown). Accordingly, the
enabling topset derived from region r (see Definition 3.4)
will be >g(r). However, if >g−1(r) is considered instead
as enabling topset, EC(e) is still preserved due to the
presence of region q. As a consequence, the arc derived
by Algorithm 1 will have weight g − 1 instead of g. In
general, this methodology can lead to arcs with zero
weight, which can be removed. When all arcs arising
in a place have been removed, then the place can be
safely removed from the Petri net without modifying its
language. The rest of the section formalizes this idea.

Theorem 7.1: Given a TS = (S, E,A, sin) and R a set of
regions, let e be an event and a region r ∈ ◦e ∩R such

that ER(e) ⊆ >g(r). If the following equality holds

EC(e) =

 ⋂
q∈(?e−{r})

supp(q)

 ∩ >g−1(r)

then the arcs p
g→ e and e

g+∆r(e)−→ p in the PN derived by
Algorithm 1 can be substituted by the arcs p

g−1→ e and

e
g+∆r(e)−1−→ p respectively as long as g + ∆r(e) − 1 ≥ 0,

leading to PN′. Moreover, L(PN) = L(PN′).
Proof: L(PN) ⊆ L(PN′) holds because PN′ is PN

with one constraint less on the arc connecting p and
event e. L(PN) ⊇ L(PN′) can be proven by induction
on the length of traces. Case |σ| = 0 holds. In the
induction step, let trace σe be enabled in PN′. By the
induction hypothesis, σ is enabled in PN, leading to state
s. And now one can observe that if e is not enabled
in s, then there is a region ri ∈ ◦e for which the
state s 6∈ argmaxq{q = >g(ri)}. But provided that the
enabling closure is preserved, event e can not be enabled
in PN′ after σ, because state s is still left out from the
enabling closure in PN′ by the topset of ri, contradiction.

Corollary 7.1: Given a place p, if successive applica-
tions of Theorem 7.1 are applied making every arc p

0→ e,
then p is redundant.

In the results presented above, a set of regions R is
used for which the set ◦e is defined for every event e, i.e.
◦e ⊆ R. Therefore the notion of redundancy presented
in Corollary 7.1 is done with respect to a given set
of regions. In general the notion of redundancy is not
monotonic, i.e. if places p1 and p2 are redundant with
respect to the set of regions R, it does not necessary
imply that p2 is redundant with respect to R − {r1}, or
viceversa.

Hence redundancies can arise in the approaches de-
scribed in the previous sections. We can define irredun-
dant minimal covers for each one of these approaches:

• In the language inclusion approach (Section 4): the
cover will contain only these regions whose removal
modify the enabling closure of some event.

• In the bisimilarity approach (Section 5): regions that
are not necessary for the excitation closure of any
event will not appear in the cover.

8 LABEL SPLITTING

In some applications the maximal bound accepted in
the derived PN can not be exceeded. If a TS is not k-
ECTS and the bound can not be incremented further,
then only PNs over-approximating the initial TS can be
derived with the method presented so far (see Section 4).
This section presents a simple yet practical technique to
escape from this problem. Let us illustrate the technique
with the running example shown in Figure 3(a). Assume
that the maximal bound accepted is 1, and a PN with
bisimilar behavior must be generated. As reported in
Figures 3(b)-(c), the derived PN on the set of minimal

11

a1 b1

(a) (b)

b2 a2

e

d

c

d

a2

c

b2

c

a1 b1

b2 a2
c

e

Fig. 8. (a) TS after application of label splitting on events a
and b, (b) PN derived by Algorithm 1 on the set of minimal
regions from TS (a).

1-bounded regions accepts more traces than the initial
TS. Now let us split events a and b in the TS as shown
in Figure 8(a). The new events appearing, a1, a2, b1
and b2 are treated as different events and will generate
a transition each in Algorithm 1. The new TS is 1-
ECTS with corresponding PN shown in Figure 8(b).
The fact that transitions keep the label of the original
events guarantees that the reachability graph of the PN
in Figure 8(b) is bisimilar to TS of Figure 3(a).

The formal definition of the technique is presented:
Definition 8.1 (Label splitting): Let TS = (S, E,A, sin)

be a transition system. The splitting of event e ∈ E
derives a transition system TS′ = (S, E′, A′, sin), with
E′ = E−{e}∪{e1, . . . , en}, and such that every transition
(s1, e, s2) ∈ A corresponds to exactly one transition
(s1, ei, s2), and the rest of transitions for events different
from e are preserved in A′.

This section presents heuristics to guide the label
splitting technique for the achievement of the excitation
closure. The following theorem guarantees completeness
of the method:

Theorem 8.1: Let TS be a non k-ECTS. There exists
a finite sequence of label splitting transformations that
derive a k-ECTS TS’ bisimilar to TS.

Proof: It is always possible to apply label splitting
until every arc of the TS is labelled as a unique event.
In this extreme case, the TS is 1-ECTS, and therefore it
is also k-ECTS, for k > 1.

Theorem 8.1 provides only an upper bound on the
number of splittings to be done to achieve excitation
closure. In the remainder of this section we provide
heuristics to choose, among all the possible splittings,
those that may be more likely to repair the excitation
closure violations.

8.1 Splitting disconnected ERs
The following property can be used to present the first
heuristic for label splitting:

ER(e)

a,b

a,b

a,b

a,b

a,b

b

a,b

r4 = ug+1(r1, b)

r3 = ug(r1, b)

r5 = ug(r2, a)

r6 = ug+1(r2, a)

r1 = ug(ER(e), a)

r2 = ug+1(ER(e), a)

Fig. 10. Multisets reached while exploring the ER(e). For
instance, multisets r1 and r2 are obtained by an iteration
of Algorithm 2 (lines 10,12) on event with non-constant
gradient a.

Property 8.1: Regions are preserved by the label split-
ting technique.

Figure 9 illustrates an ex-
ample in which EC(e) 6= ER(e).

ER3(e1)ER2(e2)ER1(e1)

ER1(e) ER2(e) ER3(e)

Fig. 9. Disconnected ERs.

ER(e) at the top line
of the Figure has sev-
eral disconnected com-
ponents ERi(e). In the
figure, the white part in
a ERi(e) represents those
states in EC(e)− ERi(e).
ER2(e) is covered pre-
cisely by teh correspond-
ing subset of EC(e). By
splitting event e into two
events e1 and e2 in such
a way that e2 corre-
sponds to ERs with no extra states in EC(e), we can
ensure at least the excitation closure for e2.

8.2 EC-guided splitting

Algorithm 2 for generating minimal regions explores
expansions uk and uk of some multisets covering the
ER of an event (see Figure 10). When excitation closure
does not hold, all these multisets are stored. Finally,
given an event without excitation closure, the expan-
sion r containing the maximum number of events with
constant gradient (i.e. the expansion where less effort
is needed to transform it into a region by splitting) is
selected as source for splitting. The idea is to add new
regions covering a non-excitation closed event e in order
to make them excitation closed (by reducing the set⋂

q∈?e supp(q)). For instance, in Figure 10 assume that
initially in ER(e) both event a and b have non-constant
gradient (events with non-constant gradient are shown
at the bottom of every set in the figure), and after the two
expansions on event a leading to multiset r6, event a has
constant gradient. In the rest of multisets shown, neither

12

Algorithm 3: BisimulationBasedAlgorithm
Input: Transition system TS = (S, E,A, sin),

kmax maximal bound allowed
Output: Petri net PN = (P, T,W, M0) bisimilar to TS
begin1

repeat2

k = 13

repeat4

R =GenerateMinimalRegions(TS,k)5

k = k + 16

until k > kmax or ExcitationClosed(TS,R)7

if not (ExcitationClosed(TS,R)) then8

TS = SplitLabels(TS)9

end10

until ExcitationClosed(TS,R)11

PN = BoundedPNDerivation(TS,R)12

end13

a nor b achieved constant gradient. In this situation, r6

will be selected.
Given the selected expansion r where some events

have non-constant gradient, let | 4r (e)| represent the
number of different gradients for event e in r. The
event a with minimal | 4r (a)| is selected for splitting.
Let g1, g2, . . . gn be the different gradients for a in r.
As explained in Definition 8.1, event a is split into n
different events, one for each gradient gi. Intuitively, the
splitting of the event with minimal | 4r (e)| represents
the minimal necessary legalization of some illegal event
in r in order to convert it into a region.

8.3 Bisimulation-based algorithm
A complete algorithm for deriving a PN with bisimi-
lar reachability graph to the initial TS is presented in
Algorithm 3. The algorithm combines the generation of
minimal regions (Algorithm 2, presented in the previ-
ous section) together with the label splitting technique
presented in the previous section, which is applied only
when excitation closure does not hold for the actual TS
and the maximal allowed bound (kmax) is reached.

The label splitting technique can be used also in the
language-inclusion approach: if some events are consid-
ered to be critical in the sense that no over-approximation
must be done for these events, then one can use label
splitting to force excitation closure on these events. The
corresponding algorithm will be similar to Algorithm 3,
but where only a subset of the events (a new input of
the algorithm) are checked for excitation closure.

9 EXPERIMENTS

9.1 Mining experiments
The mining of some examples is summarized in Table 1.
Following the two-step mining approach from [29], we
have obtained the transition systems from each log with
the FSM Miner plugin available in ProM. For each log,

columns report the number of states of the initial log |S|,
number of states of the minimal bisimilar transition sys-
tem |[S]| (that gives an idea of the amount of redundancy
present in the initial log) and number of events |E|. Next,
the number of places |P | and transitions |T | of the PN
obtained by synthesis is reported. For each version of
the mining algorithm (safe and 2-bounded), the number
of places of the mined PN and number of states of the
corresponding minimal bisimilar reachability graph are
reported. The CPU time for the mining of all exam-
ples but the last one has taken less than two seconds.
The mining of pn ex 10, 2-bounded version, took five
seconds. Finally the same information is provided for
two well-known mining algorithms in ProM: the Parikh
Language-based Region and the Heuristics [34] miners. The
number of unconnected transitions (|TU |) derived by the
Parikh miner and the number of invisible transitions
introduced by the Heuristic miner is also reported (|TI |).

The numbers in Table 1 suggest some remarks. If the
synthesis is compared with the mining in the case of
safe PNs, it should be noticed that even for those small
examples the number of transitions is reduced, due to
the absence of label splitting (see row for pn ex 10). The
number of places is also reduced in general. It should
also be noticed that 2-bounded mining represents the log
more accurately, and thus more places are needed with
respect to the mining of safe nets. Sometimes the mined
PN accepts more traces but the corresponding minimal
bisimilar transition system has less states, e.g. pn ex 10:
after over-approximating the initial TS, several states
become bisimilar and can be minimized.

The Parikh miner tends to derive very aggressive
abstractions, as it is demonstrated in the pn ex 10 and
herbstFig6p21 logs. Sometimes the Petri nets obtained
with this miner contain isolated transitions, because the
miner could not find places connecting them to the net.
The Heuristics miner is based on the frequency of pat-
terns in the log. The miner derives a heuristic net that can
be afterwards converted to Petri net with ProM. Some of
the Petri nets obtained with this conversion turned out
to be unbounded (denoted with symbol ∞ in the table),
and contain a significant amount of invisible transitions.
This miner is however very robust to noise in the log. In
conclusion, different miners can achieve different mining
goals, widening the application of Process mining into
several directions.

9.2 Synthesis experiments

In this section a set of parameterizable benchmarks are
synthesized using the methods described in this paper.
The following examples have been artificially created:

1) A model for n processes competing for m shared
resources, where n > m. Figure 11(a) describes the
Petri net3,

3. A simplified version of this model was also synthesized by
SYNET [7] in [4].

13

synthesis mining
petrify Genet Genet ProM ProM

safe safe 2-bounded Parikh Heuristics
benchmark |S| |[S]| |E| |P | |T | |P | |[S]| |P | |[S]| |P | |TU | |[S]| |P | |TI | |[S]|
groupedFollowsa7 18 10 7 7 7 6 11 7 11 7 0 10 7 1 8
groupedFollowsal1 15 15 7 8 9 10 16 12 15 7 0 7 14 10 22
groupedFollowsal2 25 25 11 15 11 15 25 15 25 11 0 13 15 3 25
herbstFig6p21 16 16 7 11 13 7 22 11 16 1 6 2 18 15 ∞
herbstFig6p34 32 32 12 16 13 16 34 18 32 8 2 12 19 12 ∞
herbstFig6p41 20 18 14 16 14 16 18 16 18 17 0 18 14 0 18
staffware 15 31 24 19 20 20 18 22 19 31 18 0 21 19 0 19
pn ex 10 233 210 11 64 218 13 281 16 145 8 2 14 41 25 ∞

TABLE 1
PN mining applied to event logs from [2].

P
1

P
n

........

m

(a)

P
m

P
1

..........

n
n

n

(b)

P
n

P
2

P
1

..
..
..
..
..

2

2 2

2 2

2

(c)

Fig. 11. Parameterized benchmarks: (a) n processes
competing for m shared resources, (b) m producers and
n consumers, (c) a 2-bounded pipeline of n processes.

2) A model for m producers and n consumers, where
m > n. Figure 11(b) describes the Petri net.

3) A 2-bounded pipeline of n processes. Figure 11(c)
describes the Petri net.

Table 2 contains a comparison between a synthesis
algorithm of safe Petri nets [11], implemented in the tool
petrify, and the synthesis of general Petri nets as de-
scribed in this paper, implemented in the prototype tool
Genet. For each benchmark, the size of the transition
system (states and arcs), number of places and transi-
tions and cpu time is shown for the two approaches. The
transition system has been initially generated from the
Petri nets. Clearly, the methods developed in this paper
generalize those of the tool petrify, and particularly
the generation of minimal regions for arbitrary bounds
has significantly more complexity than its safe counter-
part. However, many of the implementation heuristics
and optimizations included in petrify must also be
extended and adapted to Genet. Provided that this
optimization stage is under development in Genet, we
concentrate on the synthesis of small examples. Hence,
cpu times are only preliminary and may be improved
after the optimization of the tool.

The main message from Table 2 is the expressive
power of the approach developed in this paper to derive
an event-based representation with minimal size. If the

initial transition system is excitation closed, using a
bound large enough one can guarantee no splitting and
therefore the number of events in the synthesized Petri
net is equal to the number of different events in the
transition system. Note that the excitation closure holds
for all the benchmarks considered in Table 2, because
the transition systems considered are derived from the
corresponding Petri nets shown in Figure 11.

Label splitting is a key method to ensure excitation clo-
sure. However, its application can degrade the solution
(both in terms of cpu time required for synthesis and the
quality of the solution obtained), specially if many split-
tings must be performed to achieve excitation closure,
as it can be seen in the benchmarks SHAREDRESOURCE(5,2)
and BOUNDEDPIPELINE(7). In these examples, the synthesis
performed by petrify derives a safe Petri net with one
order of magnitude more transitions than the bounded
synthesis method of this paper.

10 CONCLUSIONS

In this paper the theory of regions have been extended
into several dimensions to allow for a uniform ap-
proach for the synthesis and mining of general Petri
nets from state-based specifications. The practicality of
the approach is demonstrated by presenting efficient
algorithms, heuristics and data structures.

We foresee a demanding need for synthesis and dis-
covery in the near future, in applications ranging from
Healthcare [23] to the Web [31], and methods like the
ones presented in this paper may be crucial.

The theory presented in this paper has been im-
plemented in a tool [1], and the experimental results
reported are promising. However, provided the com-
plexity of some of the problems faced, more research
is expected into that direction.

REFERENCES
[1] Genet. http://www.lsi.upc.edu/∼jcarmona/genet.html.
[2] Process mining. www.processmining.org.
[3] A. Arnold. Finite Transition Systems. Prentice Hall, 1994.
[4] E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and

G. Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes in
Computer Science, pages 529–586. Springer, 1998.

14

Petrify Genet
benchmark |S| |E| |P | |T | CPU |P | |T | CPU
SHAREDRESOURCE(3,2) 63 186 15 16 0s 13 12 0s
SHAREDRESOURCE(4,2) 243 936 20 24 5s 17 16 0s
SHAREDRESOURCE(5,2) 918 4320 48 197 3h 24 20 0s
SHAREDRESOURCE(4,3) 255 1016 21 26 2s 17 16 0s
SHAREDRESOURCE(6,4) 4077 24372 36 68 2h40m 25 24 18s
SHAREDRESOURCE(7,5) 16362 114408 – – time 29 28 25m
PRODUCERCONSUMER(3,2) 24 68 9 10 0s 8 7 0s
PRODUCERCONSUMER(4,2) 48 176 11 13 0s 10 9 0s
PRODUCERCONSUMER(3,3) 32 92 10 13 0s 8 7 0s
PRODUCERCONSUMER(4,3) 64 240 12 17 1s 10 9 0s
PRODUCERCONSUMER(6,3) 256 1408 16 25 25s 14 13 0s
PRODUCERCONSUMER(8,3) 1024 7424 20 33 5m 18 17 2s
PRODUCERCONSUMER(8,5) 1536 11520 22 49 17m 18 17 1h10m
BOUNDEDPIPELINE(4) 81 135 14 9 0s 8 5 0s
BOUNDEDPIPELINE(5) 243 459 17 11 1s 10 6 1s
BOUNDEDPIPELINE(6) 729 1539 27 19 6s 12 7 6s
BOUNDEDPIPELINE(7) 2187 5103 83 68 110m 14 8 48s
BOUNDEDPIPELINE(8) 6561 16767 34 23 8m 16 9 12m
BOUNDEDPIPELINE(9) 19683 54765 37 23 46m 18 10 1h50m

TABLE 2
Synthesis of parameterized benchmarks

[5] R. Bergenthum, J. Desel, R. Lorenz, and S.Mauser. Process mining
based on regions of languages. In Proc. 5th Int. Conf. on Business
Process Management, pages 375–383, Sept. 2007.

[6] R. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Transactions on Computer-Aided Design, 35(8):677–691,
1986.

[7] B. Caillaud. Synet : A synthesizer of distributable bounded Petri-
nets from finite automata. http://www.irisa.fr/s4/tools/synet/,
2002.

[8] J. Carmona, J. Cortadella, and M. Kishinevsky. A region-based
algorithm for discovering Petri nets from event logs. In M. Du-
mas, M. Reichert, and M. C. Shan, editors, BPM, volume 5240 of
Lecture Notes in Computer Science, pages 358–373. Springer, 2008.

[9] J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev,
L. Lavagno, and A. Yakovlev. A symbolic algorithm for the
synthesis of bounded Petri nets. In van Hee and Valk [33], pages
92–111.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press and McGraw-Hill Book Company,
1989.

[11] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. De-
riving Petri nets from finite transition systems. IEEE Transactions
on Computers, 47(8):859–882, Aug. 1998.

[12] P. Darondeau. Unbounded Petri net synthesis. In J. Desel,
W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages
413–438. Springer, 2003.

[13] P. Darondeau. Distributed implementations of Ramadge-Wonham
supervisory control with Petri nets. Decision and Control, 2005
and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE
Conference on, pages 2107–2112, Dec. 2005.

[14] P. Darondeau. Private communication, 2008.
[15] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta

Inf., 33(4):297–315, 1996.
[16] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of

Speed-Independent Circuits. ACM Distinguished Dissertations. MIT
Press, 1989.

[17] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part
I, II. Acta Informatica, 27:315–368, 1990.

[18] J. Engelfriet. Determinacy - (observation equivalence = trace
equivalence). Theor. Comput. Sci., 36:21–25, 1985.

[19] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace
semantics for petri nets. Inf. Comput., 117(1):98–114, 1995.

[20] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. An event
structure semantics for general petri nets. Theor. Comput. Sci.,
153(1&2):129–170, 1996.

[21] R. M. Karp and R. E. Miller. Parallel program schemata. Journal
of Computer and System Sciences, 3:147–195, 1969.

[22] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Sixth Annual ACM Symposium
on Principles of Distributed Computing, pages 137–151, Vancouver,
British Columbia, Canada, Aug. 1987.

[23] R. S. Mans, M. H. Schonenberg, M. Song, W. M. P. van der Aalst,
and P. J. M. Bakker. Process mining in healthcare - a case study.
In L. Azevedo and A. R. Londral, editors, HEALTHINF (1), pages
118–125. INSTICC - Institute for Systems and Technologies of
Information, Control and Communication, 2008.

[24] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[25] M. Mukund. Petri nets and step transition systems. Int. Journal

of Foundations of Computer Science, 3(4):443–478, 1992.
[26] S. M. Nowick and D. L. Dill. Automatic synthesis of locally-

clocked asynchronous state machines. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 318–321. IEEE Computer
Society Press, Nov. 1991.

[27] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn,
Institut für Instrumentelle Mathematik, 1962. (technical report
Schriften des IIM Nr. 3).

[28] M. H. ter Beek, C. A. Ellis, J. Kleijn, and G. Rozenberg. Syn-
chronizations in team automata for groupware systems. Computer
Supported Cooperative Work, 12(1):21–69, 2003.

[29] W. van der Aalst, V. Rubin, H. Verbeek, B. van Dongen, E. Kindler,
and C. Günther. Process mining: A two-step approach to balance
between underfitting and overfitting. Technical Report BPM-08-
01, BPM Center, 2008.

[30] W. M. P. van der Aalst and C. W. Günther. Finding structure in
unstructured processes: The case for process mining. In T. Basten,
G. Juhás, and S. K. Shukla, editors, ACSD, pages 3–12. IEEE
Computer Society, 2007.

[31] W. M. P. van der Aalst and H. M. W. E. Verbeek. Process mining in
web services: The websphere case. IEEE Data Eng. Bull., 31(3):45–
48, 2008.

[32] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik. Process discovery using integer linear program-
ming. In van Hee and Valk [33], pages 368–387.

[33] K. M. van Hee and R. Valk, editors. Applications and Theory of
Petri Nets, 29th International Conference, PETRI NETS 2008, Xi’an,
China, June 23-27, 2008. Proceedings, volume 5062 of Lecture Notes
in Computer Science. Springer, 2008.

[34] A. Weijters, W. van der Aalst, and A. A. de Medeiros. Process
mining with the heuristics miner-algorithm. Technical Report
WP 166, BETA Working Paper Series, Eindhoven University of
Technology, 2006.

