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Abstract— When asked if ants rest or if they work untiringly
all day long, most people would probably respond that they had
no idea. In fact, when watching the bustling life of an ant hill it
is hard to imagine that ants take a rest from now and then. How-
ever, biologists discovered that ants rest quite a large fraction
of their time. Surprisingly, not only single ants show alternate
phases of resting and being active, but whole ant colonies exhibit
synchronized activity phases that result from self-organization.
Inspired by this self-synchronization behaviour of ant colonies,
we develop a mechanism for self-synchronized duty-cycling in
mobile sensor networks. In addition, we equip sensor nodes
with energy harvesting capabilities such as, for example, solar
cells. We show that the self-synchronization mechanism can be
made adaptive depending on the available energy.

I. I NTRODUCTION

In contrary to the general belief that ants are always busy,
different species of ants have been observed to spend a
large portion of their time resting; see, for example, [17],
[9], [7], [4]. For example, ants of the speciesL. acervorum
rest about 72% of their time. Moreover, not only individual
ants present patterns of alternate activation, but also whole
colonies show synchronized patterns of activity ([8], [14],
[3]). In addition, activity phases are not just synchronized, but
self-synchronizedbecause no external signal has been found
as a possible cause of colony synchronization. Delgado and
Soĺe [5] modelled this behaviour of ant colonies by means
of fluid neural networks. With their model they were able to
show that synchronized activity pattern enable the colony to
accomplish tasks more efficiently.

In this work we use the self-synchronization behaviour
of ant colonies for the development of a self-synchronized
duty-cycling mechanism for mobile sensor networks. Sensor
networks ([19], [20]) aim to monitor large areas and to
analyze complex phenomena for extended periods of time.
Recent hardware advances produced sensors for a wide range
of physical data such as light intensity, humidity, temperature
and the oxygen level, as well as for the characteristics
of objects such as direction and speed. This means that
sensor networks can be used for many different tasks such
as environmental monitoring, patient monitoring in health
care, industrial machinery surveillance, etc. Some of these
applications require the nodes of a sensor network to be
distributed within wide areas without power sources, as, for

example, forests and seas. Moreover, sensor nodes might be
mobile. Therefore, they are often equipped with batteries,
which makes energy a scarce resource.

Several approaches can be found in the literature for
extending the lifetime of a sensor network that is subject
to energy limitations. A rather recent approach is referredto
asenergy harvesting(see, for example, [15], [12], [11]). The
idea is to transform light or vibrations into energy that can
be used to recharge the batteries. However, energy harvesting
alone might not be enough for obtaining a sufficiently long
network life time. An approach that aims at saving energy
is duty-cycling (see, for example, [2], [6]). Hereby, sensor
nodes periodically switch between energy intensive states
and low energy states. Nodes in energy intensive states can
perform all normal duties of a sensor node, whereas nodes in
low energy states are restricted to certain functions in order
to save energy.

Recently, some researchers made an attempt at combining
dynamic duty-cycling with energy harvesting capabilities.
Most of these works (see, for example, [10], [13]) require
an apriori known energy profile. Such techniques require
the energy source to exhibit little variations, which is, in
many occasions, not very realistic. A recent work from
Vigorito et al. [18] considers adaptive control techniques
for adjusting duty-cycling without any apriori given energy
profile. The main disadvantage of this approach is that it
still considers each node separately and, although better
performance and network lifetime is obtained, the lack of
synchronizity between the nodes may imply that the network
is restricted to certain applications. This is were the approach
that we present in this paper comes into play. As mentioned
before, our approach offers adaptive, self-synchronized duty-
cycling.

Finally, let us remark that the study presented in this
work is done entirely from the swarm intelligence point
of view. It can be seen as a first feasibility study. We are
perfectly aware of the fact that the proposed mechanism
might be required to change when being adapted to real
sensor networks.

The outline of this work is as follows. In Section 2 we
shortly outline the model of ants’ self-synchronization be-
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haviour. In Section 3 we propose a first system together with
experimental results, whereas Section 4 presents a system
with a slightly different behaviour, again accompanied by
results. Finally, in Section 5 we offer conclusions and an
outlook to future work.

II. SIMULATING ANTS’ SELF-SYNCHRONIZATION

BEHAVIOUR

Delgado and Solé [5] simulated the self-synchronization
behaviour of ant colonies by means offluid neural networks
(FNN) [1]. The FNN proposed in [5] consists of a set of
k automata or so-calledneuron-ants. At each time stept ∈
N, the state of each automatoni ∈ {1, . . . , k} is described
through a continuous state variableSi(t) ∈ R. Depending
on Si(t), an automatoni is eitheractiveor inactive. This is
expressed by the binary variableai(t). Whenai(t) = 1 the
automatoni is active, and inactive otherwise. The value for
these binary variables is determined as follows:

ai(t) := Φ(Si(t) − θact) , (1)

whereθact is the so-called activation threshold, andΦ(x) = 1
if x ≥ 0, andΦ(x) = 0 otherwise.

Automata are located on the nodes of a two-dimensional
L×L grid with periodic boundary conditions. At each time
step, active automata may decide to stay where they are, or
they may move to one of the four neighbor sites with equal
probability. Grid sites may be occupied by more than one
automaton. Moreover, at each time step the state variable of
each automaton is updated as follows:

Si(t + 1) := tanh[ghi(t)] , (2)

where g is a gain parameter andhi(t) can be defined in
diverse ways to obtain different behaviours. Note that the
value of g determines how fast the value of variableSi(t)
diminishes. Once an automaton becomes inactive, it can
return to the active state either due to local interactions (see
Eq. 2) or spontaneously with probabilitypa and activity level
Sa.

Finally, at each time stept the mean activity of the system
is measured as follows:

A(t) :=
1

k

k
∑

j=1

aj(t) ∈ [0, 1] (3)

Note that, the greaterA(t) the more automata are active at
time t. Self-synchronization behaviour is characterized by
an oscillating value ofA(t) over time; see, for example,
Figure 1. The authors of [5] experimentally showed that they
were able to obtain self-synchronization behaviour if the term
hi(t) of Eq. 2 included interactions with automata that are
located near automatoni:

hi(t) := Si(t) +
∑

i6=j∈Ni(t)

Sj(t) , (4)

whereNi(t) is the set of automata that are located in one of
the eight nearest neighbour sites on the grid. Moreover, in
order to obtain the desired behaviour they used the following
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Fig. 1. Evolution of the system activity (A(t)) of the FNN over time

parameter settings:g = 0.1, θact = 10−16, Sa = 0.01,
pa = 0.001, and a numberk of automata such thatρ =
k/L2 ' 0.2. Hereby,ρ is called density. The algorithm for
the simulation of the FNN (form time steps) is shown in
Algorithm 1.

Algorithm 1 Fluid Neural Network proposed in [5].

1: Initialize states:Si(t) := Sa, i = 1, . . . , k
2: for t = 1, . . . ,m do
3: for all automatai = 1, . . . , k do
4: Calculateai(t) (see Eq. 1)
5: if ai(t) = 0 then
6: Draw a random numberp ∈ [0, 1]
7: if p ≤ pa then
8: Si(t) := Sa

9: ai(t) := 1
10: end if
11: end if
12: end for
13: for all automatai = 1, . . . , k do
14: if ai(t) = 1 then
15: Decide randomly to stay at the current location

or to move to one of the four neighbor sites
16: end if
17: end for
18: Update state variables of all automata in parallel (see

Eqs. 2 and 4)
19: end for

III. A DAPTATION TO SENSORNETWORKS: SYSTEM I

The main goal of this work is to study the feasibility
of self-synchronized duty-cycling in mobile sensor networks
inspired by the self-synchronization mechanism of real ant
colonies as described in the previous section. We assume that
sensor nodes are equipped with energy harvesting devices
such as photovoltaic cells. Therefore, we not only aim at self-
synchronization, but also at anadaptiveduty-cycling mech-
anism depending on the available energy at any moment.

In the following we describe our system as an extension
of the FNN described in the previous section. This system
will be denoted bySystem I, in contrast to a modified system
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à

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

rst

u

v

wx

y

z{|}

~

�

��

�

�

�

�

�

���

�

�

�

�

�

�
�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

 

¡

¢

£¤

¥

¦

§

¨

©ª

«

¬

®̄

°

±

²³

´

µ

¶

·

¹̧

º»¼

½¾

¿

ÀÁ

Â
Ã

ÄÅ

ÆÇ

ÈÉ

Ê

Ë

Ì

Í

Î

Ï

ÐÑÒ

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à
á

âã
ä

å

æ

ç

è

é

êë

ì

í

î

ïð

ñ

ò
ó

ô

õ

ö

÷

ø

ù

ú

û

ü

ý

þ

ÿ����

�

�

�

�

�

	




�

�

��

�

�

�

�

�

��

���

�

�

�

��

�

 

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

0

1

2

3

4

5

6

78

9

:

;

<

=

>

?@

A

B

C

DEF

G

H

I

J

K

L

M

N

O

P

Q

R

S

T
U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h
i

j

k

l

mn

o

p

q

r

s

t

uv

w

x

y

z{

|

}

~

�

�
�

�

�

�

�

�

�

��
�

�

��

�

�

�
�

�

�

�

��

�

�

�

�

�

���
�

 
¡

¢

£

¤

¥
¦

§

¨

©

ª

«

¬®

¯

°

±

²

³

´

µ

¶

·

¹̧º

»¼½

¾

¿

À

Á

Â

ÃÄ

Å

Æ

Ç

È

É

Ê

ËÌ

Í

Î

Ï

Ð

Ñ

Ò

Ó

ÔÕÖ

×Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

â

ã

ä

åæ

ç

èé

ê

ë

ìí

î

ï

ð

ñ

ò

ó

ô

õ

ö

÷

ø

ù

ú

ûü

ý

þ

ÿ

��

�

�
�

�

�

�

�

	



�

�



�

�

�

���

��

���

�

�

�

�

��

�

 

!

"

#

$

%

&

'

(

)

*
+

,

-

.

/

0

1

2
3

45

6

7

8

9

:

;

<
=

>

?

@

A

B

C

D

E

FG

H

I

JKL

M

NOPQR

S
T

U
V

W

X

Y

Z

[

\
]

^

_

`

a

bc

d

e

fg
h

i

j

k

l

m

nop

q

r

s

t

u

v
w

x

y

z

{

|

}

~

���

�

�

�

�

�

���

��

��

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

 

¡¢

£¤

¥
¦

§

¨

©ª

«

¬



®

¯

°

±

²

³
´

µ

¶

·

¸

¹

º

»

¼½

¾

¿

ÀÁ

Â

Ã

ÄÅÆ

Ç

È

É

Ê

Ë

Ì

ÍÎ

Ï

Ð

Ñ

ÒÓ

Ô

ÕÖ
×
Ø

Ù

Ú

Û

Ü

Ý

Þ

ß

à

á

â

ã

äåæ

ç

è

é

ê

ë

ì

í
î

ï

ðñ

òó

ô

õ

ö
÷

øùú

û

ü
ý

þÿ

�

�

�

�

�

�

�

�

�

	




�

�



��

�

�

�

�

�

���

�

�

�

�

�

�

�

�

 

!

"

#

$

%&'

(

)

* +

,-.

/0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I
J

K

L

M
N

O

P

Q

R

ST

U

V

W

X

Y

Z[\

]

^
_

à

b

c
d

e

f

g

h

i

j

k

l

m

n

op

q

r

s

t

u

v

w

x

yz

{

|

}

~

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 

¡

¢

£

¤

¥

¦

§

¨

©ª

«

¬



®

¯

°

±

²³́

µ

¶·

¸

¹

º

»

¼

½

¾

¿

À

Á

Â
Ã

Ä

ÅÆ

Ç

ÈÉ

Ê

Ë
Ì
Í

Î

Ï

Ð

ÑÒÓ

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

Ü

Ý

Þ

ßà

áâ

ã

ä

å

æ

ç

è

é

ê

ë

ì

í

î

ïð

ñ

ò

ó

ôõö

÷

ø

ù

ú

û

üý

þ

ÿ

��

�

�
�

�

�
�

�

	




�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

��

��

 
!

"
#

$

%

&

'

(
)

*

+

,

-

.

/01

2

3

4

5
6

7

8

9

:

;

<

=

>?

@
A

B

C

D

EF

G

H

I

JK

L

MNO

P
QR

ST
U

V

W

X

Y

Z

[

\

]

^

_

`

a

b

c

d

e

f

g

h

ij

k

l

m

n o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

�� �
�

�

�

�

�

�

��

�

�

�

�
�

�

��

�

��

�

�

��

�

�

�

�

�

��

 

¡¢£

¤

¥

¦

§

¨ ©

ª

«¬



®
¯
°

±²

³´

µ

¶

·

¸

¹
º

»

¼

½

¾

¿

À

Á
Â

Ã

ÄÅ

Æ

Ç

È

É

ÊË

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

Ô

Õ

Ö

×

Ø

Ù

Ú

Û

ÜÝÞ

ß

à

áâ

ã

äåæç

è

é

êë

ì

í

î

ï

ð

ñòó

ô

õ

ö

÷

ø

ù
ú

û

ü

ý

þ

ÿ

�

�

� �

�

�

�

�

�

	




�

�

�

�

�

�

�

�
�

�

��

��

�

�

��

�

�

 

!

"#

$%&

'(

)

*+

,

-

./

01

2
3

4

5

6

7

8

9

:;<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

LM
N

O

P

Q

R

S

TU

V

W

X

YZ

[

\

]

^

_

`

a

b

c

d

e

f

g

h

ijk
lm

n

o

p

q

r

s

t

u

v

wxy

z

{

|

}

~

��

���

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 

¡¢

£

¤

¥

¦

§

¨

©ª

«

¬



®̄°

±

²

³

´

µ

¶

·

¸

¹

º

»

¼

½

¾
¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò
Ó

Ô

Õ

Ö

×Ø

Ù

Ú

Û

Ü

Ý

Þ

ßà

á

â

ã

äå

æ

ç

è

é

ê
ë

ì

í

î

ï

ð

ñ

òó
ô

õ

ö÷

ø

ù

ú
û

ü

ý

þ

ÿ�

�

�

�

�

�

���
	



�

�



�

�
�

�

�

�

�

�

���

�

�

�

�

�

�

�

 

!

"#$

%&'

(

)

*

+

,

-.

/

0

1

2

3

4

56

7

8

9

:

;

<

=

>?@

AB

C

D

E

F

G

H

I

J

K

L

M

N

OP

Q

RS

T

U

VW

X

Y

Z

[

\

]

^

_

`

a

b

c

d

ef

g

h

i

jk

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{|}

~�

���

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

 

¡

¢

£

¤

¥

¦
§

¨

©

ª

«

¬



®

¯

°±

²

³

µ́¶

·

¹̧º»¼

½

¾

¿

À

Á

Â

Ã

Ä

Å

Æ

Ç

È

É

Ê

Ë

ÌÍ

Î

Ï

ÐÑ

Ò

Ó

Ô

Õ

Ö

×

ØÙÚ

Û

Ü

Ý

Þ

ß

à
á

â

ã

ä

å

æ

ç

è

éêë

ì

í

î

ï

ð

ñòó

ôõ

ö÷

øù

ú

û

ü

ý

þ

ÿ

�

�

��

�

�

�

�

�

	




��

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�
�

�

 

!

"

#

$

%

&'

(

)

*+

,

-

./0

1

2

3

4

5

6

78

9

:

;

<=
>

?@
AB

C

D

E

F

G

H

I

J

K

L

M

NOP

Q

R

S

T

U

V

W
X

Y

Z[

\]

^

_

`
a

bcd

e

f
g

hi

j

k

l

m

n

o

p

q

r

s

t

u

v

w

xy

z

{

|

}

~

���

�

�

�

�

�

�

�

�

�
�

�

�

�

���

�

�

� �

���

��

�

�

�

�

�

 

¡

¢

£

¤

¥

¦

§

¨

©
ª

«

¬



®

¯

°

±

²

³
´

µ

¶
·
¸

¹

º

»

¼

½¾

¿

À

Á

Â

Ã

ÄÅÆ

Ç
È
É

ÊË

Ì

ÍÎ

Ï

Ð

Ñ

Ò

Ó

Fig. 2. r-disk graph with 1000 nodes andr = 0.06

outlined in the following section. First, the environment of
the sensors will be modelled by anr-disk graphG = (V,E)
with n nodes, instead of anL × L grid. More specifically,
we generated anr-disk graph by choosing for each of the
n nodes randomly a location in[0, 1] × [0, 1]. An edge
(vs, vl) (s < l) is introduced between each two nodesvs

and vl such thatd(vs, vl) ≤ r, whered(vs, vl) denotes the
Eucledian distance between the locations ofvs and vl. At
each time stept, each of the sensors resides on one of
the nodes ofG. The node on which a sensori resides at
time stept is henceforth denoted bypi(t). Moreover, active
nodes may either stay were they are, or they may move to
one of the neighbor nodes in graphG. Note that we chose
this mobility model for simplicity reasons. Our system,
however, could work with any other existing mobility
model (see [16]). Finally, the densityρ is now calculated
as k/n. Figure 2 shows anr-disk graph. Circles symbolize
sensors that are active, and squares represent inactive sensors.

We used a simple energy model that can be explained
as follows. Each sensori has a battery. The battery level
of sensori at time t is denoted bybi(t) ∈ [0, 1]. Hereby,
bi(t) = 1 corresponds to a full battery. Moreover, sensors
are equipped with omni-directional antennas with a variable
transmission radius. The transmission radius of sensori at
time stept is denoted byri(t). With respect to ther-disk
graph and the variable transmission radii, we redefined the
set of neighborsNi(t) of a sensori at time stept as follows:

Ni(t) := {j | d(pi(t), pj(t)) ≤ rj(t)} (5)

In words, the neighbors of a sensori are the sensorsj
that have a transmission radius such thati can recieve their
transmission. See Figure 3 for an example.

At each time stept, each sensori consumes a certain
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Fig. 3. Example for determining the neighborhoodNi(t) of a sensori (see
Eq. 5). Ni(t) = {j, r, l}, becausei is covered by the transmission radius
of sensorsj, r and l. Note that circles represent active sensors, whereas
squares represent inactive ones.

amount of energy that depends on its current state. Sensors
that areinactive consumeesleep of battery resources. Being
inactive represents a state in which a sensor does nothing
except for listening to incoming communcication. In contrast,
a sensori that is active at time stept consumes an amount
of energy that depenends on its current transmission radius:

ei(t) := eawake· (1 + ri(t)) (6)

Note thatesleepandeawakeare parameters that depend strongly
on the technical properties of the sensors used and on the
tasks that sensors must execute.

Finally, the energy harvesting capabilities enable the sen-
sors to produce a certain amount of energy at each time step
t. As an example, we assume that sensor are equipped with
solar cells, and that the light source at time stept has an
intensity of s(t) ∈ [0, 1]. Hereby,s(t) = 0 corresponds to
absolute darkness. Sensors can transform a fractionf of this
intensity into energy:

eharv
i (t) := f · s(t) (7)

The variable transmission radius of the sensors is a key
component of our system. It will be used to adapt duty-
cycling to changing energy availabilities. More specifically,
the transmission radius of a sensori at time t depends on
the battery levelbi(t) and in general also on the densityρ of
the system. After experimenting with the system we decided
for the following way of calculating the transmission radius:

ri(t) := rc + ξ(ρ) · bi(t)
2 (8)

whererc is a parameter andξ(ρ) is a factor that depends on
ρ in the following way:

ξ(ρ) := ρ2 − 0.35ρ + 0.125 (9)

This function was chosen by simple interpolation such that
the behaviour of the system is similar for any (reasonable)
densityρ.

Finally, Algorithm 2 shows how the mobile sensor network
is simulated.



Algorithm 2 Mobile Sensor Network Simulation
1: Initialize batteries:bi(1) = 1, i = 1, . . . , k
2: Initialize states:Si(t) := Sa, i = 1, . . . , k
3: for t = 1, . . . ,m do
4: for all sensorsi = 1, . . . , k do
5: Calculateai(t) (see Eq. 1)
6: if ai(t) = 0 then
7: Draw a random numberp ∈ [0, 1]
8: if p ≤ pa then
9: Si(t) := Sa

10: ai(t) := 1
11: end if
12: end if
13: end for
14: for all sensorsi = 1, . . . , k do
15: bi(t) := bi(t) + eharv

i (t)
16: ri(t) := rc + ξ(ρ) · bi(t)

2

17: end for
18: Update all state variables in parallel (see Eqs. 2 and 4)
19: for all sensorsi = 1, . . . , k do
20: if ai(t) = 1 then
21: Decide randomly to stay at the current node or to

move to one of the neighboring nodes in graph
G

22: bi(t) := bi(t) − ei(t)
23: else
24: bi(t) := bi(t) − esleep

25: end if
26: end for
27: end for

A. Experimental Evaluation of System I

All experiments that we present in this paper have been
obtained with 100 sensors moving on a randomly generated
r-disk graph with 1000 nodes andr = 0.06. This corresponds
to a density ofρ = 0.1. However, remember that due to Eq. 8,
the sensor system will behave in a similar way also for other
densities.

Concerning the lenght of a time stept, we have chosen
it to be one minute. This means that a day consists of1440
time steps. Moreover, we have used the following function
for modelling the light intensities for energy harvesting:

s(t) =











0, if 0 ≤ ṫ < 420
1−cos( ṫ−420

1140−420
·2π)

2 , if 420 ≤ ṫ < 1140
0, if 1140 ≤ ṫ < 1440

(10)
whereṫ = t mod 1440. Note that this function can be seen
as a model of the sun light intensities of a day (0:00 a.m–
24:00 p.m.). However, notice that our system should be able
to adapt to any light intensity function. The one that we used
is easily replaceable and should only be seen as an example.

Although this work focuses mainly on the swarm in-
telligence aspects and neglects many technicalities of real
sensor networks, we still aim at a rather realistic setting of

the involved parameters. For example, we want to avoid a
parameter setting such that the batteries are always nearly
full. Neither do we want that energy harvesting is not enough
to sustain the network even when energy is saved. In fact,
for our experiments, we have decided that the capacities of
the batteries should be able to keep all the energy harvested
by the system in a single day, but no more. This goal can be
achieved with a setting off = 0.0027. For the derivation
of this parameter setting see Appendix A. Finally, notice
that each experiment described in the following consists ofa
simulation over five days:t = 0, . . . , 7200. In general, except
for the first day, the system exhibits the same behaviour every
day. The behaviour on the first day is slighty different, be-
cause all sensors start off with a full batery, being active.For
each experiment we will show the representative behaviour
of the system on the 3rd day.

A summary of the parameter settings used is shown in
Table I. With these parameter settings we have conducted a
first experiment. In Fig. 4(a) we show the behaviour of the
system in terms of the measureA(t) for each time stept
(see Eq. 3). Note that the occurance of peaks indicates self-
synchronization. Additionally, Fig. 4(a) shows the evolution
of the light intensity (denoted in the legend assun) and the
average battery level (denoted asbattery). Clearly, during
the night (that is, no light intensity) the average battery level
decreases, and the peaks of system activity become smaller.
This shows that the system adaptively tries to save energy.
However, at all times we can notice self-synchronization
among the sensors. During the day (that is, at the presence
of light intensity) the batteries refill and the peaks of system
activity grow. Moreover, when batteries are nearly full there
is no need for switching to the inactive state and sensors are
permanently active.

In a second experiment we wanted to study the possibility
of having a system that behaves exactly the same as the
system described in the first experiment, except of the fact
that peaks are shorter and more frequent. In terms of duty-
cycling this means that the frequencey of changing between
the active and the inactive state increases, while the time
of being active (before switching again to the inactive state)
decreases. In order to obtain this behaviour we increased the
wake-up probability (pa = 0.01) and reduced parameterg
(see Eq. 2). Figure 4(b) shows that the behaviour is exactly
as desired.

Finally, we wanted to study the behaviour of the system
when no energy can be harvested. The simulation results are
shown in Fig. 4(c). It is evident that with decreasing battery
level, the system tries to save more and more energy, that
is, the hight of the activity peaks decreases constantly. After
around two days of operation, the sensor network runs out
of battery.

In addition, we have considered an energy consumption
scheme in which sensors, in general, consume much more
energy. This was done in order to analyze the generality and
adaptability of the system. The new scheme is characterized



TABLE I

PARAMETER SETTINGS FORSYSTEM I.

pa Sa θact rc f eawake esleep g
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(b) Behaviour of System I withpa = 0.01 andg = 0.01
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(c) Behaviour of System I, no energy harvesting

Fig. 4. Adaptive self-synchronization obtained with System I

by doubling the values ofesleep and eawake, that is, we
choseesleep = 0.0004 and esleep = 0.002. Moreover, we
increased substantially the increase in energy that must be
spent when the transmission radius grows. More specifically,
we exchanged Eq. 6 with the following one:

ei(t) := eawake· (1 + 10 · ri(t)) (11)

The behaviour of the resulting system is shown in Fig. 5. It
can be seen that the system nicely adapts to the changed en-
ergy scheme by trying to save more energy. When comparing
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Fig. 5. Behaviour of System I, changed energy scheme

TABLE II

PARAMETER SETTINGS FORSYSTEM II.

pa
c Sa θact rc f eawake esleep g

0.00005 0.01 10−16 0.2 0.0027 0.001 0.0002 0.05

Fig. 5 with Fig. 4(a) it can be noticed that the activity peaks
are generally lower, and the average battery level is lower as
well.

IV. A DAPTATION TO SENSORNETWORKS: SYSTEM II

The behaviour of System I as described in the previous
section is such that with decreasing battery level, the hight
of the activity peaks decreases while the frequency of the
peaks does not change. However, for some applications it
might be useful to obtain a behaviour such that activity
peaks always reach 1.0, that is, in each activity peak there is
a time in which all sensors of the system are active, while
energy saving is obtained by a changing peak frequency.

For this purpose we changed the system described in the
previous section as follows. First, instead of a fixed activation
probability pa we introduced for each sensori a variable
activation probability that is computed as follows:

pa
i (t) := pa

c · (1 + 100 · bi(t)
4) , (12)

where pa
c is a base-probability that we set to0.00005.

Furthermore, we use a fixed transmission radiusrc instead of
a variable one as in System I. A summary of the parameter
settings for System II is presented in Table II.

A. Experimental Evaluation of System II

We repeated the first three experiments conducted for
System I also for System II. The simulation results for the
parameter settings as shown in Table II are presented in
Fig. 6(a). The graphic shows the desired behaviour of activity
peaks of full height, whereas energy saving is achieved by
changing the peak frequency.

As in the previous section we wanted to study if the
system can be changed such that the peaks are shorter and
more frequent. For that purpose we changed the setting of
parameterspa

c andg as follows:pa
c = 0.0001 andg = 0.01,

that is, we increased the activation probability, and decreased
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(b) Behaviour of System II withpa
c = 0.0001 andg = 0.01
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Fig. 6. Adaptive self-synchronization obtained with System II

the value of parameterg. The simulation results are shown
in Fig. 6(b). The behaviour of the system basically remains
the same, apart from the fact that peaks are now shorter and
more frequent.

The third experiment is characterized by no light intensity
at all, which prohibits energy harvesting. As it can be seen
in Fig. 6(c), the frequency of the peaks decreases until the
system runs out of energy after around one day and 14 hours.

Finally, we performed a first experiment for studying if
our system also works in static sensor networks. This is
an important issue, because the majority of sensor network
applications deals with sensors without moving capabilities.
For that purpose we equally distributed 100 sensors in the
square [0, 1] × [0, 1]. More specifically, we assigned the
sensors to locations(0.05 + i · 0.1, 0.05 + j · 0.1), i, j =
0, . . . , 9. System II with slightly changed parameter settings
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Fig. 7. Behaviour of System II for a static sensor network

(rc = 0.15 and pa
c = 0.00002) obtained the behaviour that

is shown in Fig. 7. Clearly, the system self-synchronizes
and adapts to changing energy situations. However, the
application to static networks most be studied in more detail
before general claims can be made.

V. CONCLUSIONS

Inspired by the self-synchronization of activity periods in
real ant colonies, we have proposed a mechanism for self-
synchronized duty-cycling in mobile sensor networks with
energy harvesting capabilities. Both duty-cycling and energy
harvesting are important facilities for prolonging the lifetime
of a wireless sensor network. We proposed two slightly
different systems. The first one was characterized by a quite
regular duty-cycling, whereas the hight of the activity peaks
depended on the current average battery level of the sensors.
The second system exhibitied always high activity peaks,
whereas the frequency of these peaks changed depending on
the current energy situation.

The study presented in this paper should be seen as a
first feasibility study. We are aware of the fact that when
designing a similar system for real sensor networks, there
are strong technical constraints to be taken into account. In
the future we plan, first, to better understand the system that
we proposed. For example, it would be interesting to study
if the system also works when simulated asynchronously.
Furthermore, it would be very interesting to study the effects
of different light intensities in different areas of the network
at the same time. After dealing with these short term goals
we certainly plan to adapt our system to real sensor networks.
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APPENDIX A

In the following we explain the setting of parameterf
that contols the amount of energy that can be harvested.
Remember that for our experiments we have decided that
the capacities of the batteries should be able to keep all
the energy harvested by the system in a single day, but no
more. This goal can be formally expressed by the equation
f ·I = 1, wheref is the fraction of the light intensity that can
be harvested and1 represents the capacity of the batteries.
Moreover,

I =

∫

oneday
s(t) . (13)

Functions() (as defined in Eq. 10) is different to0 only in
the interval [420, 1140]. Moreover, our system works with
discrete time steps. Therefore:

I =
1440
∑

420

1 − cos( t−420
1140−420 · 2π)

2
(14)

Solving the calculus we get thatI = 360. With Eq. 13, we
obtain

f =
1

I
=

1

360
≈ 0.002778 . (15)

Note that when replacing functions() by another one, the
value off must be adjusted with respect to the new function.
Also notice that we can modify the value off , for example,
for the case that the capacity of a battery is twice the energy
that can be obtained from the sun in one day, or similar.


