
Technical Report: Universitat Politècnica de Catalunya, Software Department
http://www.lsi.upc.edu/dept/techreps/techreps.html

1

Semantics for Possibilistic Disjunctive Programs ∗
JUAN CARLOS NIEVES, ULISES CORTÉS

Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
(e-mail: {jcnieves,ia}@lsi.upc.edu)

MAURICIO OSORIO
Universidad de las Américas - Puebla

CENTIA
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

(e-mail: josorio@mail.udlap.mx)

3 November 2008

Abstract

We define a possibilistic disjunctive logic programming approach for modeling uncertain, incomplete
and inconsistent information. This approach introduces the use of possibilistic disjunctive clauses
which are able to capture incomplete information and incomplete states of a knowledge base at the
same time. This approach is computable and moreover allows encoding uncertain information by us-
ing either numerical values or relative likelihoods. In order to define the semantics of the possibilistic
disjunctive programs, three approaches are defined:

1. The first is strictly close to the proof theory of possibilistic logic and answer set models;
2. The second is based on partial evaluation, a fix-point operator and answer set models; and
3. The last is also based on the proof theory of possibilistic logic and pstable semantics.

In order to manage inconsistent possibilistic logic programs, a preference criterion between in-
consistent possibilistic models is defined; in addition, the approach of cuts for restoring consistency
of an inconsistent possibilistic knowledge base is adopted. The approach is illustrated by a medical
scenario.

KEYWORDS: Answer Set Programming, Uncertain Information, Possibilistic Reasoning.

1 Introduction

Uncertain and incomplete information is an unavoidable feature of daily decision-making.
In order to deal with uncertain and incomplete information intelligently, we need to be able
to represent it and reasoning about it.

∗ This is a revised and improved version of the papers:Semantics for Possibilistic Disjunctive Programs (Poster)
appeared in C. Baral, G. Brewka and J. Schipf (Eds), Ninth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR-07), LNAI 4483. Semantics for Possibilistic Disjunctive Logic pro-
grams which appears in S. Constantini and W. Watson (Eds), Answer Set Programming: Advantage in Theory
and Implementation (ICLP-07 Workshop). Pstable Semantics for Possibilistic Logic Programs which appears
in A. F. Gelbukh and A.F. Kuri (Eds), 6th Mexican International Conference on Artificial Intelligence (MICAI-
07), LNAI 4827.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. C. Nieves, M. Osorio, and U. Cortés

Answer Set Programming (ASP) is one of the most successful logic programming ap-
proaches in Non-monotonic Reasoning and Artificial Intelligence applications (Baral 2003;
Gelfond 2008). In (Nicolas et al. 2006), a possibilistic framework for reasoning under un-
certainty was proposed. This framework is a combination between ASP and possibilistic
logic (Dubois et al. 1994).

Possibilistic Logic is based on possibilistic theory where at the mathematical level, de-
grees of possibility and necessity are closely related to fuzzy sets (Dubois et al. 1994).
Thanks to the natural properties of possibilistic logic and ASP, Nicolas et al.’s approach
allows to deal with reasoning that is at the same time non-monotonic and uncertain. Nico-
las et al.’s approach is based on the concept of possibilistic stable model which defines a
semantics for possibilistic normal logic programs.

To say that possibilistic disjunctive logic programs are required for representing incom-
plete information could be questioned; however, Gelfond and Lifschiz observed in (Gel-
fond and Lifschitz 1991) that:

An important limitation of traditional logic programming as a knowledge representation tool, in
comparison with classical logic, is that logic programming does not allow us to deal directly with
incomplete information.

In order to overcome this limitation they suggested to include strong negation and disjunc-
tive clauses in ASP for dealing incomplete information. In possibilistic answer set pro-
gramming, one can also expect to use strong negation and possibilistic disjunctive clauses
for dealing with incomplete information. An important feature of the possibilistic disjunc-
tive clauses is that they are able to capture incomplete information and incomplete states
of a knowledge base at the same time.

Let us consider a medical domain, in order to illustrate a scenario where uncertain and in-
complete information is always presented. The particular medical domain that we consider
is human organ transplanting. In human organ transplanting, one of the most sophisticated
and complex processes is the organ donor selection. There are several factors that make
this process sophisticated and complex. For instance:

• the transplant acceptance criteria vary ostensibly between transplant teams from the
same geographical area and substantially between more distant transplantation teams
(López-Navidad et al. 1997). This means that the acceptance criteria applied in one
hospital could be invalid or at least arguable in another hospital.

• there are lots of factors that make unpredictable if an organ donor’s disease will be
diagnosed in the organ recipient. For instance, if an organ donor D has hepatitis,
then an organ recipient R could be infected by an organ of D. According to (López-
Navidad and Caballero 2003), there are cases where the infection can occur; however
the recipient can spontaneously clear the infection e.g., hepatitis. This means that an
organ donor’s infection can be present or not-present in the organ recipient. It is
worth to comment that there are infections which can be prevented by applying a
post-transplant treatment to the organ recipient.

• the clinical state of an organ recipient can be affected by several factors e.g., mal-
functions of the graft. This means that the clinical state of an organ recipient can

Semantics for Possibilistic Disjunctive Programs 3

be stable or unstable after the graft because the graft can have good graft functions,
delayed graft functions and terminal insufficient functions1.

It is worth mentioning that the transplant acceptance criteria may be dependant to the
kind of organ (kidney, heart, liver, etc.) that will be considered for transplanting and the
clinical situation of the potential organ recipients.

Let us consider the particular case of kidney transplantation with organ donors that have
a kind of infection e.g., endocarditis, hepatitis. As already stated, the clinical situation of
the potential organ recipients is relevant in the organ transplanting process. We will denote
the clinical situation of an organ recipient by the predicate cs(t, T), such that t can be
stable, unstable, 0-urgency and T denotes a moment in the time. Another important factor
that we will consider is the state of the organ’s functions. We will denote by the predicate
o(t, T) the state of the organ’s functions, such that t can be terminal-insufficient functions,
good-graft functions, delayed-graft functions, normal-graft functions and T denotes a mo-
ment in the time. Also, we will consider in our scenario the state of an infection in both
the organ recipient and the organ donor, this condition will be denoted by the predicates
r_inf(present, T) and d_inf(present, T) respectively such that T denotes a moment in
the time. The last predicate that we introduce, will be action(t, T) such that t can be trans-
plant, wait, post-transplant treatment and T denotes a moment in the time. This predicate
denotes the possible actions of a doctor. In Figure 12, a finite state automata is presented —
for a formal presentation of automata theory see, (Hopcroft et al. 2007). In this automata
each node represents a possible situation where an organ recipient can be found and the
arrows represent the possible doctor’s actions. Observe that we are assuming that in the
initial state the organ recipient is clinically stable and he does not have an infection; how-
ever, he has a kidney whose functions are terminal insufficient. From the initial state, the
doctor’s actions can be either to make a kidney transplantation or just wait3.

According to Figure 1, an organ recipient can be found in different situations after a
graft. In fact, the organ recipient may require another graft and the state of the infection
can be unpredictable. Let us introduce extended disjunctive clauses which describe some
situations presented in Figure 1

r_inf(present, T2) ∨ ¬r_inf(present, T2)← action(transplant, T),
d_inf(present, T), T2 = T + 1.

o(good_graft_funct, T2) ∨ o(delayed_graft_funct, T2)∨
o(terminal_insufficient_funct, T2) ← action(transplant, T), T2 = T + 1.

As syntactic clarification, we want to point out that ¬ is regarded as strong negation
which is not exactly the negation in classical logic. In fact, any atom negated by strong

1 Usually, when a doctor says that an organ has terminal insufficient functions, it means that there exists no
clinical treatment for improving the organ’s functions.

2 This finite state automata was built under the supervision of Francisco Caballero M. D. Ph. D. from the Hospital
de la Santa Creu I Sant Pau, Barcelona, Spain.

3 In the automata of Figure 1, we are not considering that there is a waiting list where the organ recipient waits
for an organ. This waiting list has different politics for assigning an organ to an organ recipient.

4 J. C. Nieves, M. Osorio, and U. Cortés

CS: stable

O:terminal

insufficient func.

Inf: not present

CS: stable

O: good

graft function

Inf: not present

CS: unstable

O:delayed graft

function

Inf:not present

CS: unstable

O:terminal

insufficient func.

Inf: not present

CS: 0_urgency

O:terminal

insufficient func.

Inf: not present

CS:dead

O:insufficient

functional

Inf:present

wait

wait

wait

transplant

CS: stable

O: normal graft

function

Inf: not present

wait

post

transplant

treatment

transplant

transplant

transplant

transplant

CS: stable

O: good

graft function

Inf: present

CS: unstable

O:delayed

graft function

Inf: present

CS: stable

O: normal

graft function

Inf: present

transplant

transplant

wait

post

transplant

treatment

transplant

Fig. 1. An automata of states and actions for considering infections in kidney organ transplanting.

negation will be replaced by a new atom as it is done in ASP. This means that a ∨ ¬a

cannot be regarded as a tautology.
Following with our medical scenario, we can see that the intended meaning of the first

clause is that if the organ donor has an infection, then the infection can be present or not-
present in the organ recipient, after the graft, and the intended meaning of the second one
is that the graft’s functions can be: good, delayed and terminal, after the graft. Observe
that these clauses are not capturing the uncertainty that is involved in each statement. For
instance, w.r.t. the first clause, one can wish to represent an uncertainty degree in order
to capture the uncertainty that is involved in this statement — remember that the organ
recipient can be infected by the infection of the donor’s organ; however, the infection can
be spontaneously cleared by the organ recipient as it is the case of hepatitis (López-Navidad
and Caballero 2003).

In psychology literature, one can find significant observations in order to model un-
certain information. For instance, Tversky and Kahneman have observed in (Tversky and
Kahneman 1982) that we commonly use statements such as “I think that . . . ”, “chances are
. . . ”, “it is probable that . . . ”, “it is plausible that . . . ”, etc., for supporting our decisions.
Observe that these statements have as common denominator adjectives which quantify the
information. These adjectives are of the form: probable, plausible, etc. Based on this ob-

Semantics for Possibilistic Disjunctive Programs 5

servation, we propose to use adjectives/labels of the same kind in order to quantify the
uncertain information of a knowledge base. The only formal requirement is that this set
of adjectives/labels must be a complete lattice. For instance, for the case of our medical
scenario a transplant coordinator4 can suggest a set of labels in order to quantify a medical
knowledge base and of course to define an order between those labels. Based on those la-
bels we can have possibilistic clauses as:

probable: r_inf(present, T2) ∨ ¬r_inf(present, T2)← action(transplant, T),
d_inf(present, T), T2 = T + 1.

Informally speaking, the reading of this clause is: if the organ donor has an infection, then
it is probable that the organ recipient can be infected or not after a graft.

In this paper, we will introduce the use of possibilistic disjunctive clauses which are able
to capture incomplete information and incomplete states of a knowledge base at the same
time. In order to capture the semantics of possibilistic disjunctive programs, we will present
three possible approaches. Two of these approaches will be based on answer set models and
the other one will be based on pstable models. As part of our study, we will present some
approaches for managing the inconsistency of a possibilistic knowledge. Also, we will take
care of the relationship that there is between the approach presented by Nicolas et al., in
(Nicolas et al. 2006) and our approach.

The rest of the paper is divided as follows:
In §3, the syntax of our possibilistic framework is presented. In §2 we give all the back-

ground and necessary notation. In §4, three approaches for defining the semantics of possi-
bilistic disjunctive programs are presented. In §5, some criteria for managing inconsistent
possibilistic logic programs are defined. In §6, we present a small discussion w.r.t. related
approaches to our work. Finally, in the last section, we present our conclusions and future
work.

2 Background

In this section we introduce all the necessary terminology and relevant definitions in order
to have a self-contained document. We assume that the reader has familiarity with basic
concepts of classic logic, logic programming and lattices.

2.1 Logic programs: Syntaxis

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬, not,⊥,>
(iii) auxiliary symbols : (,)

where ∨,∧,← are binary-place connectives, ¬, not are unary-place connective and ⊥
is zero-ary connective. The proposition symbols, ⊥ and > stand for the indecomposable

4 A transplant coordinator is an expert in all the process of transplanting (López-Navidad et al. 1997).

6 J. C. Nieves, M. Osorio, and U. Cortés

propositions, which we call atoms, or atomic propositions. Atoms negated by ¬ will be
called extended atoms.

Remark 1
We will use the concept of atom without paying attention if it is an extended atom or not.

The negation sign ¬ is regarded as the so called strong negation by the ASP’s literature
and the negation not as the negation as failure. A literal is an atom, a, or the negation of
an atom not a. Given a set of atoms {a1, ..., an}, we write not {a1, ..., an} to denote the
set of literals {not a1, ..., not an}. An extended disjunctive clause, C, is denoted:

a1 ∨ . . . ∨ am ← a1, . . . , aj , not aj+1, . . . , not an

where m ≥ 0, n ≥ 0, m + n > 0, each ai is an atom5. When n = 0 and m > 0 the clause
is an abbreviation of a1 ∨ . . .∨ am ← > such that > is the proposition symbol that always
evaluates to true; clauses of these form some times are written just as a1 ∨ . . .∨ am. When
m = 0 the clause is an abbreviation of ⊥ ← a1, . . . , aj , not aj+1, . . . , not an such that
⊥ is the proposition symbol that always evaluates to false. Clauses of this form are called
constraints (the rest, non-constraint clauses). An extended disjunctive program P is a finite
set of extended disjunctive clauses. By LP , we denote the set of atoms in the language of
P .

Sometimes we denote an extended disjunctive clause C by A ← B+, not B−, where A
contains all the head literals, B+ contains all the positive body literals and B− contains all
the negative body literals. When B− = ∅, the clause is called positive disjunctive clause.
A set of positive disjunctive clauses is called a positive disjunctive logic program. WhenA
is a singleton set, the clause can be regarded as a normal clause. A normal logic program
is a finite set of normal clauses. Finally, when A is a singleton set and B− = ∅, the clause
can be also regarded as a definite clause. A finite set of definite clauses is called a definite
logic program.

We will manage the strong negation (¬), in our logic programs, as it is done in ASP
(Baral 2003). Basically, it is replaced each extended atom ¬a by a new atom symbol a′

which does not appear in the language of the program. For instance, let P be the normal
program:

a ← q.
¬q ← r.
q ← >.
r ← >.

Then replacing each extended atom by a new atom symbol, we will have:

a ← q.
q′ ← r.
q ← >.
r ← >.

5 Notice that these atoms can be extended atoms.

Semantics for Possibilistic Disjunctive Programs 7

In order to disallow models with complementary atoms i.e., q and ¬q, usually it is added
a constraint of the form ⊥ ← q, q′ to the logic program. We will omit this constraint
in order to allow models with complementary atoms. However, the user could add this
constraint without losing generality.

When we treat a logic program as a theory, each negative literal not a is replaced by∼ a

such that ∼ is regarded as the negation in classic logic. Formulæ are constructed as usual
in classic logic by the connectives: ∨,∧,←,∼,⊥,>. A theory T is a finite set of formulæ.
By LT , we denote the signature of T, namely the set of atoms that occur in T.

Given a set of proposition symbols S and a theory Γ in a logic X . If Γ `X S if and only
if ∀s ∈ S Γ `X s.

2.2 Interpretations and models

In this section we define some relevant concepts w.r.t. semantics. The first basic concept
that we introduce will be interpretation.

Definition 1
Let T be a theory, an interpretation I is a mapping from LT to {0, 1} meeting the condi-
tions:

1. I(a ∧ b) = min{I(a), I(b)},
2. I(a ∨ b) = max{I(a), I(b)},
3. I(a ← b) = 0 if and only if I(b) = 1 and I(a) = 0,
4. I(∼ a) = 1− I(a),
5. I(⊥) = 0.
6. I(>) = 1.

It is standard to provide interpretations only in terms of a mapping from LT to {0, 1}.
Moreover, it is easy to prove that this mapping is unique by virtue of the definition by recur-
sion (van Dalen 1994). Also, it is standard to use sets of atoms to represent interpretations.
The set corresponds exactly to those atoms that evaluate to 1.

An interpretation I is called a (2-valued) model of the logic program P if and only if
for each clause c ∈ P , I(c) = 1. A theory is consistent if it admits a model, otherwise
it is called inconsistent. Given a theory T and a formula α, we say that α is a logical
consequence of T , denoted by T |= α, if every model I of T holds that I(α) = 1. It is a
well known result that T |= α if and only if T ∪ {∼ α} is inconsistent.

We say that a model I of a theory T is a minimal model if there does not exist a model
I ′ of T different from I such that I ′ ⊂ I . Maximal models are defined in the analogous
form.

2.3 Logic programming semantics

In this section, we will define two logic programming semantics: answer set semantics and
pstable semantics. Both semantics represent a two-valued semantics approach.

8 J. C. Nieves, M. Osorio, and U. Cortés

2.3.1 Answer set semantics

By using ASP, it is possible to describe a computational problem as a logic program whose
answer sets correspond to the solutions of the given problem. It represents one of the most
successful approaches of non-monotonic reasoning of the last two decades (Baral 2003).
The number of applications of this approach has been increased thanks to the efficient
implementations of the answer set solvers that exist.

The answer set semantics was first defined in terms of the so called Gelfond-Lifschitz
reduction (Gelfond and Lifschitz 1988) and it is usually studied in the context of syn-
tax dependent transformations on programs. The following definition of an answer set for
extended disjunctive logic programs generalizes the definition presented in (Gelfond and
Lifschitz 1988) and it was presented in (Gelfond and Lifschitz 1991): Let P be any ex-
tended disjunctive logic program. For any set S ⊆ LP , let PS be the positive program
obtained from P by deleting

(i) each rule that has a formula not a in its body with a ∈ S, and then
(ii) all formulæ of the form not a in the bodies of the remaining rules.

Clearly PS does not contain not (this means that PS is either a positive disjunctive logic
program or a definite logic program), hence S is called an answer set of P if and only if S
is a minimal model of PS . In order to illustrate this definition let us consider the following
example:

Example 1
Let us consider the set of atoms S := {b} and the following normal logic program P :

b ← not a. b ← >.
c ← not b. c ← a.

We can see that PS is:
b ← >. c ← a.

Notice that this program has three models: {b}, {b, c} and {a, b, c}. Since the minimal
model amongst these models is {b}, we can say that S is an answer set of P .

In the answer set definition, we will normally omit the restriction that if S has a pair of
complementary literals then S := LP . This means that we allow that an answer set could
have a pair of complementary atoms. For instance, let us consider the program P :

a. ¬a. b.
then, the only answer set of this program is : {a,¬a, b}. In Section 5, we will discuss how
we will manage the inconsistency in our logic programs.

It is worth mentioning that in literature there are several forms for handling an incon-
sistency program. For instance, by applying the original definition (Gelfond and Lifschitz
1991) the only answer set of P is: {a,¬a, b,¬b}. On the other hand, the DLV system (DLV
1996) returns no models if the program is inconsistent.

2.3.2 Pstable semantics

Pstable semantics is a recently introduced logic programming semantics which is inspired
in paraconsistent logics. This semantics is defined by a fixed point operator in terms of clas-

Semantics for Possibilistic Disjunctive Programs 9

sical logic. The expressiveness of pstable semantics is at least as the answer set semantics
for disjunctive logic program.

First, to define pstable semantics, we will introduce some basic concepts. By `C , we
denote logic consequence in classic logic. Given a normal program P, if M ⊆ LP , we
write P ° M when: P `C M and M is a classical 2-valued model of P .

Pstable semantics is defined in terms of a single reduction which is defined as follows:

Definition 2
(Osorio et al. 2006) Let P be a normal program and M a set of atoms. We define

RED(P, M) := {a ← B+, not (B− ∩M)|a ← B+, not B− ∈ P}
Let us consider the set of atoms M1 := {a, b} and the following normal program P1:

a ← not b, not c.
a ← b.
b ← a.

We can see that RED(P1,M) is:
a ← not b.
a ← b.
b ← a.

By considering the reduction RED, it is defined the pstable semantics for normal pro-
grams as follows:

Definition 3
(Osorio et al. 2006) Let P be a normal program and M a set of atoms. We say that M is a
pstable model of P if RED(P, M) ° M . We use Pstable to denote the semantics operator
of pstable models.

Let us consider again M1 and P1 in order to illustrate the definition. We want to ve-
rify whether M1 is a pstable model of P1. First, we can see that M1 is a model of P1,
i.e., ∀ c ∈ P1, M1 evaluates c to true. Now, we have to prove each atom of M1 from
RED(P1, M1) by using classical inference, i.e., RED(P1,M1) `C M1 . Let us consider
the proof of the atom a, which belongs to M1, from RED(P1,M1).

1. (a ∨ b) → ((b → a) → a) Tautology
2. ∼ b → a Premise from RED(P1,M1)
3. a ∨ b From 2 by logical equivalency
4. (b → a) → a From 1 and 3 by Modus Ponens
5. b → a Premise from RED(P1,M1)
6. a From 4 and 5 by Modus Ponens

Remember that the formula ∼ b → a corresponds to the normal clause a ← not b which
belongs to the program RED(P1, M1). The proof for the atom b, which also belongs to
M1, is similar to the proof of the atom a. Then we can conclude that RED(P1,M1) ° M1.
Hence, M1 is a pstable model of P1.

10 J. C. Nieves, M. Osorio, and U. Cortés

2.4 Possibilistic Logic

In this section, we will define some basic concepts of possibilistic logic for the case of
necessity-valued formulæ.

Possibilistic logic is a weighted logic introduced and developed in the mid-1980s, in the
setting of artificial intelligence, with the view to develop a simple an rigorous approach
to automated reasoning from uncertain or prioritized incomplete information. Possibilistic
logic is especially adapted to automated reasoning when the available information is per-
vaded with vagueness. In fact, possibilistic logic is a natural extension of classical logic
where the notion of total order/partial order is embedded in the logic.

For the case of necessity-valued formulæ, a necessity-valued formula is a pair (ϕ α)
where ϕ is a classical logic formula and α ∈ (0, 1] is a positive number. The pair (ϕ α)
expresses that the formula ϕ is certain at least to the level α, i.e., N(ϕ) ≥ α, where N

is a necessity measure modeling our possibly incomplete state knowledge (Dubois et al.
1994). α is not a probability (like it is in probability theory) but it induces a certainty (or
confidence) scale. This value is determined by the expert providing the knowledge base.
A necessity-valued knowledge base is then defined as a finite set (i.e., a conjunction) of
necessity-valued formulæ.

The following properties hold w.r.t. necessity-valued formulæ:

N(ϕ ∧ ψ) = min({N(ϕ), N(ψ)}) (1)

N(ϕ ∨ ψ) ≥ max({N(ϕ), N(ψ)}) (2)

if ϕ ` ψ then N(ψ) ≥ N(ϕ) (3)

Dubois et al., in (Dubois et al. 1994) introduced a formal system for necessity-valued
logic which is based in the following axioms schemata (propositional case):

(A1) (ϕ → (ψ → ϕ) 1)
(A2) ((ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ)) 1)
(A3) ((¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ) 1)

Inference rules:

(GMP) (ϕ α), (ϕ → ψ β) ` (ψ min{α, β})
(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Dubois et al., in (Dubois et al. 1994), basically we need a complete lattice
in order to express the levels of uncertainty in Possibilistic Logic. Dubois et al., extended
the axioms schemata and the inference rules for considering partially ordered sets. We
shall denote by `PL the inference under Possibilistic Logic without paying attention if the
necessity-valued formulæ are using either a totally ordered set or a partially ordered set for
expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical formula from
a possibilistic base was solved by an extended version of resolution for possibilistic logic
(see (Dubois et al. 1994) for details).

One of the main basic principle of possibilistic logic is that:

Semantics for Possibilistic Disjunctive Programs 11

Remark 2
The strength of a conclusion is the strength of the weakest argument used in its proof.

According to Dubois and Prade (Dubois and Prade 2004), the contribution of possibilis-
tic logic setting is to relate this principle (measuring the validity of an inference chain
by its weakest link) to fuzzy set-based necessity measures in the framework of Zadeh’s
possibilistic theory, since the following pattern then holds:

N(∼ p ∨ q) ≥ α and N(p) ≥ β imply N(q) ≥ min(α, β)

This interpretive setting provide a semantics justification to the claim that the weight at-
tached to a conclusion should be the weakest among the weights attached to the formulæ
involved in the derivation.

2.5 Lattices and order

In mathematics, especially order theory formalizes the intuitive concept of an ordering
or an arrangement of the elements of a set. Indeed, the study of order has let to a great
unification of results in algebra and logic. More recently, it has infused into theoretical
computer science, particularly into programming language semantics (Davey and Priestly
2002).

In this section, we will present some fundamental definitions of lattice theory in order to
make this document self contained (see (Davey and Priestly 2002) for more details).

Definition 4
Let Q be a set. An order (or partial order) on Q is a binary relation ≤ on Q such that, for
all x, y, z ∈ Q,

(i) x ≤ x

(ii) x ≤ y and y ≤ x imply x = y

(iii) x ≤ y and y ≤ z imply x ≤ z

These conditions are referred to, respectively, as reflexivity, antisymmetry and transitivity.

A setQ equipped with an order relation≤ is said to be an ordered set (or partial ordered
set). It will be denoted by (Q,≤).

Definition 5
Let (Q,≤) be an ordered set and let S ⊆ Q. An element x ∈ Q is an upper bound of S

if s ≤ x for all s ∈ S. A lower bound is defined dually. The set of all upper bounds of
S is denoted by Su (read as ‘S upper’) and the set of all lower bounds by Sl (read as ‘S
lower’).

If Su has a least element x, then x is called the least upper bound (LUB) of S. Equiva-
lently, x is the least upper bound of S if

(i) x is an upper bound of S, and
(ii) x ≤ y for all upper bound y of S.

12 J. C. Nieves, M. Osorio, and U. Cortés

The least upper bound of S exists if and only if there exists x ∈ Q such that

(∀y ∈ Q)[((∀s ∈ S)s ≤ y) ⇐⇒ x ≤ y],

and this characterizes the LUB of S. Dually, if Sl has a greatest element, x, then x is called
the greatest lower bound (GLB) of S. Since least element and greatest element are unique,
LUB and GLB are unique when they exist.

The least upper bound of S is called the supremum of S and it is denoted by sup S; the
greatest lower bound of S is also called the infimum of S and it is denoted by inf S.

Definition 6
Let (Q,≤) be a non-empty ordered set.

(i) If sup{x, y} and inf{x, y} exist for all x, y ∈ Q, then Q is called lattice.
(ii) If sup S and inf S exist for all S ⊆ Q, then Q is called a complete lattice.

Example 2
Let us consider the set of labels Q := {Certain, Confirmed, Probable, Plausible, Sup-
ported, Open}6 and let ¹ be a partial order such that the following set of relations holds:
{Open ¹ Supported, Supported ¹ Plausible, Supported ¹ Probable, Probable ¹
Confirmed, Plausible ¹ Confirmed, Confirmed ¹ Certain}. A graphic represen-
tation of S according to ¹ is showed in Figure 2. It is not difficult to see that (Q,¹) is a
lattice and even more it is a complete lattice.

Fig. 2. A graphic representation of a lattice where the following relations holds: {Open ¹
Supported, Supported ¹ Plausible Supported ¹ Probable, Probable ¹ Confirmed,
Plausible ¹ Confirmed , Confirmed ¹ Certain}.

6 This set of labels was taken from (Fox and Modgil 2006). In this paper, the authors argue that we can construct
a set of labels (they call those: modalities) in a way that this set provides a simple scale for ordering the claims
of our beliefs. We will use this kind of labels for quantifying the uncertainty degree of a statement.

Semantics for Possibilistic Disjunctive Programs 13

3 Syntax

In this section, we will define the general syntax for possibilistic disjunctive logic pro-
grams. This syntax will be based on the standard syntax of extended disjunctive logic
programs (see Section 2.1). First of all, we start defining some relevant concepts7.

In all the document, we will only consider finite lattices — remember that any finite
lattice is complete. This convention was taken based on the assumption that in real appli-
cations we will rarely have an infinite set of labels for expressing the incomplete state of a
knowledge base.

A possibilistic atom is a pair p = (a, q) ∈ A × Q, where A is a finite set of atoms and
(Q,≤) is a lattice. We apply the projection ∗ to any possibilistic atom p as follows: p∗ = a.
Given a set of possibilistic atoms S, we define the generalization of ∗ over S as follows:
S∗ = {p∗|p ∈ S}.

Now, we define the syntax of a valid possibilistic logic program. Let (Q,≤) be a lattice.
A possibilistic disjunctive clause R is of the form:

α : A ← B+, not B−
where α ∈ Q andA ← B+, not B− is an extended disjunctive clause as defined in Section
2.1. The projection ∗ for a possibilistic clause is R∗ = A ← B+, not B−. n(r) = α is
a necessity degree representing the certainty level of the information described by R. A
possibilistic constraint C is of the form:

T OPQ : ⊥ ← B+, not B−

where T OPQ is the top of the lattice (Q,≤) and ⊥ ← B+, not B− is a constrain as
defined in Section 2.1. As in possibilistic clauses, the projection ∗ for a possibilistic con-
straint is : C∗ = ⊥ ← B+, not B−. Observe that any possibilistic constraint must have
the top of the lattice (Q,≤), this restriction is motivated on the fact that like a constraint in
standard ASP, the purpose of a possibilistic constraint is to eliminate possibilistic models.
Hence, it is assumed that there does not exists doubt about the veracity of the information
captured by a possibilistic constraint.

A possibilistic disjunctive logic program P is a tuple of the form 〈(Q,≤), N〉, where
N is a finite set of possibilistic disjunctive clauses and possibilistic constraints. The gen-
eralization of ∗ over P is as follows: P ∗ = {r∗|r ∈ N}. Notice that P ∗ is an extended
disjunctive program. When P ∗ is a normal program, P is called a possibilistic normal pro-
gram. Also, when P ∗ is a positive disjunctive program, P is called a possibilistic positive
logic program and so on. A given set of possibilistic disjunctive clauses {γ, . . . , γ} is also
represented as {γ; . . . ; γ} to avoid ambiguities with the use of the comma in the body of
the clauses.

Given a possibilistic disjunctive logic program P = 〈(Q,≤), N〉, we define the α-cut
and the strict α-cut of P , denoted respectively by Pα and Pα, by

Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) ≥ α}
Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) > α}

7 Some concepts presented in this section extend some terms presented in (Nicolas et al. 2006).

14 J. C. Nieves, M. Osorio, and U. Cortés

Example 3
In order to illustrate a possibilistic program, let us go back to our scenario described in
Section 1. We will consider the lattice of Example 2; hence, let (Q,¹) be the lattice of
Figure 2 such that the relation A ¹ B means that A is less possible that B. The possibilistic
program P := 〈(Q,¹), N〉 will be the following set of possibilistic clauses:
In the introduction, we presented the following possibilistic clause:

probable: r_inf(present, T2) ∨ ¬r_inf(present, T2)← action(transplant, T),
d_inf(present, T), T2 = T + 1.

Remember that the intended meaning of the first clause is that if the organ donor has an
infection, then it is probable that the organ recipient can be infected or not after a graft.
The intended meaning of the following clause is that it is confirmed that the organ’s func-
tions can be: good, delayed and terminal after a graft.

confirmed: o(good_graft_funct, T2) ∨ o(delayed_graft_funct, T2)∨
o(terminal_insufficient_funct, T2) ← action(transplant, T), T2 = T + 1.

The intended meaning of the following clause is that it is confirmed that if the organ’s
functions are terminal insufficient then it is necessary a transplanting.

confirmed: action(transplant, T) ← o(terminal_insufficient_funct, T).

The intended meaning of the following clause is that it is plausible that the clinical situa-
tion of the organ recipient can be stable if the graft’s functions are good.

plausible: cs(stable, T) ← o(good_graft_funct, T).

The intended meaning of the following clause is that it is plausible that the clinical situa-
tion of the organ recipient can be unstable if the graft’s functions are delayed.

plausible: cs(unstable, T) ← o(delayed_graft_funct, T).

The intended meaning of the following clause is that it is plausible that the clinical situation
of the organ recipient can be of 0-urgency if the graft’s functions are terminal insufficient
after the graft.

plausible: cs(0-urgency, T2) ← o(terminal_insufficient_funct, T2),
action(transplant, T), T2 = T + 1.

The intended meaning of the following possibilistic constraint is that it is certain that the
doctor cannot do two actions at the same time.

certain: ⊥ ← action(transplant, T), action(wait, T).

Semantics for Possibilistic Disjunctive Programs 15

The intended meaning of the following possibilistic constraint is that it is certain that a
transplanting cannot be done if the organ recipient is dead.

certain: ⊥ ← action(transplant, T), cs(dead, T).

The initial state of the automata of Figure 1 is captured by the following possibilistic
clauses:

certain: d_inf(present, 0) ← >.
certain: ¬r_inf(present, 0) ← >.
certain: o(terminal_insufficient_funct, 0) ← >.
certain: cs(stable, 0) ← >.

4 Semantics

In §3, we defined the syntax for any possibilistic disjunctive program. Now, in this sec-
tion, we will study the semantics for these programs. Essentially, we have explored three
approaches for capturing the semantics of possibilistic disjunctive programs. The first two
are based on answer set models and the last one is based on pstable models. We start by
presenting the approaches which are based on answer set models.

We will consider sets of atoms as interpretations; hence, before to define the possibilis-
tic logic programming semantics, we will introduce two basic operations between sets of
possibilistic atoms and a relation of order between them.

Definition 7
Let A be a finite set of atoms and (Q,≤) be a lattice. Consider PS = 2A×Q the finite set
of all the possibilistic atoms sets induced by A and Q. ∀A,B ∈ PS , we define.

A uB = {(x,GLB({q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x,LUB({q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2,

(x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

This definition is almost the same as Definition 7 presented in (Nicolas et al. 2006).
The only difference is that in Nicolas et al.’s definition, the operators min and max are used
instead of the operators GLB andLUB for defining the operations u and t8. The following
proposition is a straightforward consequence of Proposition 6 of (Nicolas et al. 2006).

Proposition 1
(PS,v) is a complete lattice.

8 The operators u and t were defined as follows in (Nicolas et al. 2006):
A uB = {(x, min({q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B} and
A t B = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪ {(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, max({q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

16 J. C. Nieves, M. Osorio, and U. Cortés

4.1 A possibilistic semantics based on answer set models

We will define a possibilistic semantics which is strictly close to the proof theory of pos-
sibilistic logic and answer set models. Like answer set semantics’ definition, our approach
has as its base a syntactic reduction. In fact, this reduction is inspired in the Gelfond-
Lifschitz reduction.

Definition 8 (Reduction PM)
Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program, M be a set of atoms. P

reduced by M is the positive possibilistic disjunctive logic program:

PM := {(n(r) : A ∩M ← B+)|r ∈ N,A ∩M 6= ∅, B− ∩M = ∅,B+ ⊆ M}

where r∗ is of the form A ← B+, not B−.

Notice that (P ∗)M is not exactly the Gelfond-Lifschitz reduction. In fact, our reduc-
tion is stronger than Gelfond-Lifschitz reduction when P ∗ is a disjunctive program. For
instance, let us consider the following table.

P : P {c,b} : (P ∗){c,b} :
α1 : a ∨ b ← >. α1 : b ← >. a ∨ b ← >.
α2 : c ← not a. α2 : c ← >. c ← >.
α3 : c ← not b.

In the first column, the possibilistic program P is defined, in the second one the program
P is reduced by {c, b} (according to Definition 8) and in the third one the program P ∗ is
reduced by {c, b} (according to Gelfond-Lifschitz reduction). Observe that the reduction
of Definition 8 removes from the head of the possibilistic disjunctive clauses any atom
which does not belong to M . As we will see in Section 4.2, this property will be helpful
for defining a possibilistic semantics for possibilistic disjunctive programs based on a fix-
point operator.

Example 4
In order to continue with our medical scenario described in the introduction, let P be a
ground instance of the possibilistic program presented in Example 3:

probable: r_inf(present, 1) ∨ no_r_inf(present, 1)← action(transplant, 0),

d_inf(present, 0).

confirmed: o(good_graft_funct, 1) ∨ o(delayed_graft_funct, 1)∨
o(terminal_insufficient_funct, 1) ← action(transplant, 0).

confirmed: action(transplant, 0) ← o(terminal_insufficient_funct, 0).
plausible: cs(stable, 1) ← o(good_graft_funct, 1).
plausible: cs(unstable, 1) ← o(delayed_graft_funct, 1).
plausible: cs(0-urgency, 1) ← o(terminal_insufficient_funct, 1),

action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d_inf(present, 0) ← >.

Semantics for Possibilistic Disjunctive Programs 17

certain: no_r_inf(present, 0) ← >.
certain: o(terminal_insufficient_funct, 0) ← >.
certain: cs(stable, 0) ← >.

Observe that the variables of time T and T2 were instantiated with the values 0 and 1 re-
spectively; moreover, observe that the atoms¬r_inf(present, 0) and¬r_inf(present, 1)
were replaced by no_r_inf(present, 0) and no_r_inf(present, 1) respectively. This change
was applied in order to manage the strong negation.

Now, let S be the following possibilistic set:

S = {(d_inf(present, 0), certain), (no_r_inf(present, 0), certain),
(o(terminal_insufficient_funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good_graft_funct, 1), confirmed),
(cs(stable, 1), plausible), (no_r_inf(present, 1), probable)}.

We can see that PS∗ is:

probable: no_r_inf(present, 1)← action(transplant, 0), d_inf(present, 0).

confirmed: o(good_graft_funct, 1) ← action(transplant, 0).

confirmed: action(transplant, 0) ← o(terminal_insufficient_funct, 0).
plausible: cs(stable, 1) ← o(good_graft_funct, 1).
plausible: cs(unstable, 1) ← o(delayed_graft_funct, 1).
plausible: cs(0-urgency, 1) ← o(terminal_insufficient_funct, 1),

action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d_inf(present, 0) ← >.
certain: no_r_inf(present, 0) ← >.
certain: o(terminal_insufficient_funct, 0) ← >.
certain: cs(stable, 0) ← >.

Once a possibilistic logic program P has been reduced by a set of possibilistic literals
M , it is possible to test whether M is a possibilistic answer set of the program P by
considering the following definition.

Definition 9 (Possibilistic answer set)
Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program and M be a set of pos-
sibilistic atoms such that M∗ is an answer set of P ∗. M is a possibilistic answer set of P
if and only if PM∗ `PL M and @M ′ ∈ PS such that M ′ 6= M , P (M ′)∗ `PL M ′ and
M v M ′.

Example 5
Let P be again the possibilistic program of Example 3 and S be the possibilistic set of
atoms introduced in Example 4. First of all, we can see that S∗ is an answer set of the
extended disjunctive program P ∗. Hence, in order to prove that S is a possibilistic answer
set of P , we have to verify that PS∗ `PL S. This means that for each possibilistic atom

18 J. C. Nieves, M. Osorio, and U. Cortés

p ∈ S, PS∗ `PL p. We can see that it is straightforward that

PS∗ `PL {(d_inf(present, 0), certain), (no_r_inf(present, 0), certain),
(o(terminal_insufficient_funct, 0), certain),
(cs(stable, 0), certain)}

Now let us prove (cs(stable, 1), plausible) from PS∗ .

Premises from P S∗

1. o(terminal_insufficient_funct, 0) certain
2. o(terminal_insufficient_funct, 0) → action(transplant, 0) confirmed
3. action(transplant, 0) → o(good_graft_funct, 1) confirmed
4. o(good_graft_funct, 1) → cs(stable, 1). plausible
From 1 and 2 by GMP
5. action(transplant, 0) confirmed
From 3 and 5 by GMP
6. o(good_graft_funct, 1) confirmed
From 4 and 6 by GMP
7. cs(stable, 1). plausible

In this proof, we can also see the inference of the possibilistic atom (action(transplant, 0),
confirmed). The proof of the possibilistic atom (no_r_inf(present, 1), probable) is
similar to the proof of the possibilistic atom (cs(stable, 1), plausible). Therefore, we can
say that PS∗ `PL S is true. Now, notice that there does not exists a possibilistic set S′ such
that S′ 6= S, P (S′)∗ `PL S′ and S v S′; hence, we can conclude that S is a possibilistic
answer set of P .

Now what can we say from S about our medical scenario? We can say that if it is
confirmed that a transplanting is done with a donor with an infection, it is probable that
the recipient cannot be infected after the transplanting; moreover it is plausible that he can
be stable. It is worth mentioning that this optimistic conclusion is just one of the possible
scenarios that we can infer from the program P . In fact, the program P has six possibilistic
answer sets where we can find pessimistic scenarios such as it is probable that the recipient
is infected by the organ donor’s infection and; moreover, it is confirmed that the recipient
needs another transplanting.

Now, let us study some properties of the possibilistic answer set semantics. First, observe
that there is an important condition w.r.t. the definition of a possibilistic answer set. This is
that a possibilistic set S cannot be a possibilistic answer set of a possibilistic logic program
P if S∗ is not an answer set of the extended logic program P ∗. This condition guarantees
that any clause of P ∗ is satisfied by M∗. For instance, let us consider the possibilistic logic
program P :

0.4 : a. 0.6 : b.

and the possibilistic set S = {(a, 0.4)}. We can see that PS∗ `PL S; however, S∗ is not
an answer set of P ∗. Therefore, S could not be a possibilistic answer set of P . Hence,
a straightforward relation between the possibilistic answer semantics and the answer set
semantics is formalized by the following proposition.

Proposition 2

Semantics for Possibilistic Disjunctive Programs 19

Let P be a possibilistic disjunctive logic program. M is a possibilistic answer set of P iff
M∗ is an answer set of P ∗.

When all the possibilistic clauses of a possibilistic program P have as certain level the
top of the lattice that was considered in P , the answer sets of P ∗ can be directly generalized
to the possibilistic answer sets of P .

Proposition 3
Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program and T OPQ be the top
of the lattice (Q,≤). If ∀r ∈ P , n(r) = T OPQ, and M ′ is an answer set of P ∗, then
M := {(l, T OPQ)|l ∈ M ′} is a possibilistic answer set of P .

For the class of possibilistic normal logic programs which are built under a totally or-
dered set, our definition of possibilistic answer set is closely related to the definition of a
possibilistic stable model presented in (Nicolas et al. 2006). In fact, both semantics coin-
cide.

Proposition 4
Let P := 〈(Q,≤), N〉 be a possibilistic normal program such that (Q,≤) is a totally
ordered set and LP has no extended atoms. M is a possibilistic answer set of P if and only
if M is a possibilistic stable model of P .

In order to prove that the possibilistic answer set semantics is computable, we will in-
troduce a straightforward generalization of the possibilistic resolution rule introduced in
(Dubois et al. 1994):

(R) (c1 α1)(c2 α2) ` (R(c1, c2) GLB({α1, α2}))
where R(c1, c2) is any classical resolvent of c1 and c2 such that c1 and c2 are disjunctions
of literals. It is worth mentioning that it is easy to transform any possibilistic disjunctive
logic program P into a set of possibilistic disjunctions C. Indeed, C can be obtained as
follows:

C :=
⋃{(a1 ∨ . . . ∨ am∨ ∼ a1 ∨ · · · ∨ ∼ aj ∨ aj+1 ∨ . . . , an α)|

(α : a1 ∨ . . . ∨ am ← a1, . . . , aj , not aj+1, . . . , not an) ∈ P}

We remember to the reader that whenever we consider a possibilistic program as a theory,
each negative literal not a is replaced by ∼ a such that ∼ is regarded as the negation in
classic logic — in Example 6, the transformation of a possibilistic program into a set of
possibilistic disjunctions is shown.

The following proposition shows that the resolution rule (R) is sound.

Proposition 5
Let C be a set of possibilistic disjunctions, and C = (c α) be a possibilistic clause obtained
by a finite number of successive application of (R) to C; then C `PL C.

Like the possibilistic rule introduced in (Dubois et al. 1994), (R) is complete for refuta-
tion. We will say that a possibilistic disjunctive program P is consistent if P has at least a
possibilistic answer set. Otherwise P is said to be inconsistent. The inconsistency degree
of a possibilistic logic program P is Inc(P) = GLB({α|Pα is consistent }).

20 J. C. Nieves, M. Osorio, and U. Cortés

Proposition 6
Let P be a set of possibilistic clauses and C be the set of possibilistic disjunctions obtained
from P ; then the valuation of the optimal refutation by resolution from C is the inconsistent
degree of P .

The main implication of Proposition 5 and Proposition 6 is that (R) suggests a method
for inferring a possibilistic formula from a possibilistic knowledge base.

Corollary 1
Let P := 〈(Q,≤), N〉 be a possibilistic disjunctive logic program, ϕ be literal and C be a
set of possibilistic disjunctions obtained from N ∪ {(∼ ϕ T OPQ)}; then the valuation of
the optimal refutation from C is n(ϕ) i.e.P `PL (ϕ n(ϕ)).

Based on the fact that the resolution rule (R) suggests a method for inferring the neces-
sity value of a possibilistic formula, we can define the following function for computing
the possibilistic answer set models of an possibilistic program P .

Function Poss_Answer_Sets(P)
Let ASP (P ∗) be a function that computes the answer set models of the standard logic
program P ∗ e.g., DLV (DLV 1996).

Poss-ASP := ∅
For all S ∈ ASP (P ∗)

Let C be the set of possibilistic disjunctions obtained from PS .
S′ := ∅
for all a ∈ S

C ′ := C ∪ {(∼ a T OPQ)}
Search for a deduction of (R(¤) α) by applying repeatedly
the resolution rule (R) from C ′, with α maximal.
S′ := S′ ∪ {(a α)}

endfor
Poss-ASP := Poss-ASP ∪ S′

endfor
return(Poss-ASP).

The following proposition formalizes that the function Poss_Answer_Sets computes
all the possibilistic answer sets of a possibilistic logic program.

Proposition 7
Let P := 〈(Q,≤), N〉 be a possibilistic logic program. The set Poss-ASP returned by
Poss_Answer_Sets(P) is the set of all the possibilistic answer sets of P .

In order to illustrate this algorithm, let us consider the following example:

Example 6
Let P := 〈(Q,≤), N〉 be a possibilistic program such that Q := {0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1}, ≤ is the standard relation between rational numbers and N the
following set of possibilistic clauses:

Semantics for Possibilistic Disjunctive Programs 21

0.7 : a ∨ b ← not c.

0.6 : c ← not a, not b.

0.8 : a ← b.

0.9 : e ← b.

0.6 : b ← a.

0.5 : b ← a.

Firs of all, we can see that P ∗ has two answer sets: S1 := {a, b, e} and S2 := {c}. This
means that P has two possibilistic answer set models. Let us consider S1 for our example.
Then, one can see that PS1 is:

0.7 : a ∨ b ← >.
0.8 : a ← b.

0.9 : e ← b.

0.6 : b ← a.

0.5 : b ← a.

Then C := {(a∨b 0.7), (a∨ ∼ b 0.8), (e∨ ∼ b 0.9), (b∨ ∼ a 0.6), (b∨ ∼ a 0.5)}. In order
to infer the necessity value of the atom a, we add (∼ a 1) to C and a search for finding
an optimal refutation is applied. As we can see in Figure 3, there are three refutations,
however the optimal refutation is (¤ 0.7). This means that the best necessity value for the
atom a is 0.7.

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ a 1)

(b 0.7)

(a 0.7)

(0.7)

(b 0.6)
(b 0.5)

(a 0.6)
(a 0.5)

(0.6)
(0.5)

OPTIMAL

NON- OPTIMAL
NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ b 1)

(a 0.7)

(b 0.6)

(0.6)

(b 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~a 0.5) (~e 1)

(a 0.7)

(0.6)

(~a 0.6)

(~b 0.9)

(~a 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

Fig. 3. Possibilistic resolution: Search for an optimal refutation for the atom a.

In Figure 4, we can see the optimal refutation search for the atom b. As we can see the
optimal refutation is (¤ 0.6); hence the best necessity value for the atom b is 0.6.

In Figure 5, we can see that the best necessity value for the atom e is 0.6.
From the process of search, we can infer that a possibilistic answer set of the program

P is : {(a, 0.7), (b, 0.6), (e, 0.6)}.

4.2 Possibilistic answer sets based on partial evaluation

We have defined a possibilistic answer set semantics by considering the formal proof the-
ory of possibilistic logic. However, in standard logic programming there are several frame-

22 J. C. Nieves, M. Osorio, and U. Cortés

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ a 1)

(b 0.7)

(a 0.7)

(0.7)

(b 0.6)
(b 0.5)

(a 0.6)
(a 0.5)

(0.6)
(0.5)

OPTIMAL

NON- OPTIMAL
NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ b 1)

(a 0.7)

(b 0.6)

(0.6)

(b 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~a 0.5) (~e 1)

(a 0.7)

(0.6)

(~a 0.6)

(~b 0.9)

(~a 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

Fig. 4. Possibilistic resolution: Search for an optimal refutation for the atom b.

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ a 1)

(b 0.7)

(a 0.7)

(0.7)

(b 0.6)
(b 0.5)

(a 0.6)
(a 0.5)

(0.6)
(0.5)

OPTIMAL

NON- OPTIMAL
NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~ a 0.5) (~ b 1)

(a 0.7)

(b 0.6)

(0.6)

(b 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

(a v b 0.7) (a v ~b 0.8) (e v ~b 0.9) (b v ~a 0.6) (b v ~a 0.5) (~e 1)

(a 0.7)

(0.6)

(~a 0.6)

(~b 0.9)

(~a 0.5)

(0.5)
OPTIMAL

NON-OPTIMAL

Fig. 5. Possibilistic resolution: Search for an optimal refutation for the atom e.

works for analyzing, defining and computing logic programming semantics (Dix 1995a;
Dix 1995b). One of these approaches is based on program transformations, in fact there
are many studies around this approach e.g., (Brass and Dix 1999; Brass and Dix 1997;
Brass and Dix 1998; Dix et al. 2001). For the case of disjunctive logic program, one im-
portant transformation is partial evaluation (also called unfolding) (Brass and Dix 1999).

In this section, we will see that it is also possible to define a possibilistic disjunctive
semantics based on an operator which is a combination between partial evaluation for dis-
junctive logic programs and the infer rule GMP of possibilistic logic (see Section 2.4). This
semantics has the same behavior to the semantics based on the proof theory of possibilistic
logic.

We will start this section by defining a version of the general principle of partial evalua-
tion (GPPE) for possibilistic positive disjunctive clauses.

Definition 10 (Grade-GPPE (G-GPPE))
Let r1 be a possibilistic clause of the form α : A ← B+∪{B} and r2 a possibilistic clause
of the form α1 : A1 ← > such that B ∈ A1, then

G-GPPE(r1, r2) = (GLB({α, α1}) : A ∪ (A1 \ {B}) ← B+)

Observe that one of the possibilistic clauses which is considered by G-GPPE has an
empty body. For instance, let us consider the following two possibilistic clauses:

r1 = 0.7 : a ∨ b ← >.

Semantics for Possibilistic Disjunctive Programs 23

r2 = 0.9 : e ← b.

Then G-GPPE(r1, r2) = (0.7 : e∨ a ← >). Now, by considering G-GPPE, we will define
the operator T .

Definition 11

Let P be a possibilistic positive logic program. The operator T (P) is defined as follows:

T (P) := P ∪ {G-GPPE(r1, r2)|r1, r2 ∈ P}

In order to illustrate the operator T , let us consider the program PS1 of Example 6.

0.7 : a ∨ b ← >.
0.8 : a ← b.

0.9 : e ← b.

0.6 : b ← a.

0.5 : b ← a.

Hence, T (PS1) is:

0.7 : a ∨ b ← >. 0.7 : a ← >.
0.8 : a ← b. 0.7 : e ∨ a ← >.
0.9 : e ← b. 0.6 : b ← >.
0.6 : b ← a. 0.5 : b ← >.
0.5 : b ← a.

Notice that by considering the possibilistic clauses that were added to PS1 by T , one can
apply G-GPPE again. For instance, if we consider 0.6 : b ← > and 0.9 : e ← b from
T (PS1), G-GPPE infers 0.6 : e ← >. Indeed, T (T (PS1)) is:

0.7 : a ∨ b ← >. 0.7 : a ← >. 0.6 : a ← >.
0.8 : a ← b. 0.7 : e ∨ a ← >. 0.5 : a ← >.
0.9 : e ← b. 0.6 : b ← >. 0.6 : e ← >.
0.6 : b ← a. 0.5 : b ← >. 0.5 : e ← >.
0.5 : b ← a. 0.6 : b ∨ e ← >.

0.5 : b ∨ e ← >.

An important property of the operator T is that it always reaches a fix-point.

Proposition 8

Let P be a possibilistic disjunctive logic program. If Γ0 := T (P) and Γi := T (Γi−1) such
that i ∈ N , then ∃ n ∈ N such that Γn = Γn−1. We denote Γn by Π(P).

Let us consider again the possibilistic program PS1 . We can see that Π(PS1) is:

24 J. C. Nieves, M. Osorio, and U. Cortés

0.7 : a ∨ b ← >. 0.7 : a ← >. 0.6 : a ← >. 0.6 a ∨ e ← >
0.8 : a ← b. 0.7 : e ∨ a ← >. 0.5 : a ← >. 0.5 a ∨ e ← >
0.9 : e ← b. 0.6 : b ← >. 0.6 : e ← >.
0.6 : b ← a. 0.5 : b ← >. 0.5 : e ← >.
0.5 : b ← a. 0.6 : b ∨ e ← >.

0.5 : b ∨ e ← >.

Observe that in Π(PS1) there are possibilistic facts (possibilistic clauses with empty
bodies and one atom in their heads) with different necessity value. In order to infer the best
necessity value of each possibilistic fact, one can consider the least upper bound of these
values. For instance the best necessity value for the possibilistic atom a isLUB({0.7, 0.6, 0.5}) =
0.7. Based on this idea, we will define Semmin.

Definition 12
Let P be a possibilistic logic program and Facts(P, a) := {(α : a ← >)|(α : a ← >) ∈
P}. Semmin(P) := {(x, α)|Facts(P, x) 6= ∅ and α := LUB({n(r)|r ∈ Facts(P, x)})}
where x ∈ LP .

It is easy to see that Semmin(Π(PS1)) is {(a, 0.7), (b, 0.6), (e, 0.6)}. Now by consid-
ering the operator T and Semmin, we can define a semantics for possibilistic disjunctive
logic programs that will be called possibilistic-T answer set semantics.

Definition 13
Let P be a possibilistic disjunctive logic program and M be a set of possibilistic atoms
such that M∗ is an answer set of P ∗. M is a possibilistic-T answer set of P if and only if
M = Semmin(Π(PM∗

)).

In order to illustrate this definition, let us consider again the program P of Example 6 and
S = {(a, 0.7), (b, 0.6), (e, 0.6)}. As commented in Example 6, S∗ is an answer set of P ∗.
We have already seen that Semmin(Π(PS1)) is {(a, 0.7), (b, 0.6), (e, 0.6)}, therefore we
can say that S is a possibilistic-T answer set of P . Observe that the possibilistic-T answer
set semantics and the possibilistic answer set semantics coincide. In fact the following
proposition guaranties that both semantics are the same.

Proposition 9
Let P be a possibilistic disjunctive logic program and M a set of possibilistic atoms. M is
a possibilistic answer set of P if and only if M is a possibilistic-T answer set of P .

4.3 A possibilistic semantics based on pstable models

We have defined two semantics which capture the semantics for possibilistic disjunctive
logic programs. Since these semantics were defined as extensions of the standard answer
set semantics, there are some possibilistic logic programs which have no possibilistic an-
swer sets. For instance, a simple possibilistic program as

α : a ← not a

has no possibilistic answer set. In fact, the existence of one clause of this form will affect

Semantics for Possibilistic Disjunctive Programs 25

all the possibilistic knowledge base in such a way that the possibilistic knowledge base will
not have a possibilistic answer set.

In this section, we present a second approach for capturing the semantics of possibilistic
logic programs. This approach is based on pstable semantics (see Section 2.3.2). Pstable
semantics emerges from the fusion of paraconsistent logics and ASP. This semantics is
able to capture ASP; moreover, it is less sensitive (in the sense of inconsistency) than the
answer set semantics.

We will start this section defining pstable semantics for possibilistic normal programs
and after that we will show that this semantics is also able to capture the semantics of pos-
sibilistic disjunctive logic programs. Like possibilistic answer set semantics, possibilistic
pstable semantics is defined in terms of a syntactic reduction. This reduction is based on
Definition 2.

Definition 14
Let P be a possibilistic normal program and M a set of atoms. We define

PRED(P,M) := {(α : a ← B+, not (B− ∩M))|(α : a ← B+, not B−) ∈ P}
Let us consider the following example in order to illustrate this definition.

Example 7
First, let S be the set {(a, 0.6), (b, 0.7)} and P1 := 〈(Q,≤), N〉 be a possibilistic program
such that (Q,≥) is the lattice of Example 6 and N the following set of possibilistic clauses:

0.7 : a ← not b, not c.

0.6 : a ← b.

0.8 : b ← a.

Then, we can see that the program PRED(P1, S
∗) is:

0.7 : a ← not b.

0.6 : a ← b.

0.8 : b ← a.

By considering the reduction PRED, we define the possibilistic pstable semantics as
follows.

Definition 15 (Possibilistic Pstable Semantics)
Let P be a possibilistic normal logic program and M be a set of possibilistic atoms such
that M∗ is a pstable model of P ∗. We say that M is a possibilistic pstable model of P if and
only if PRED(P,M∗) `PL M and @M ′ such that M ′ 6= M , PRED(P,M∗) `PL M ′

and M v M ′.

Example 8
Let us continue with Example 7. We have already seen that PRED(P1, S

∗) is:

0.7 : a ← not b.

0.6 : a ← b.

0.8 : b ← a.

26 J. C. Nieves, M. Osorio, and U. Cortés

Then, we want to know if S is a possibilistic pstable models of P1. First of all, we have
already seen in Section 2.3.2 that S∗ is a pstable models of P ∗1 . Hence, we have to con-
struct a proof in possibilistic logic for (a, 0.6) and (b, 0.7). Let us consider the proof for
the possibilistic atom (a, 0.6):

1. (a ∨ b) → ((b → a) → a) 1 Tautology
2. ∼ b → a 0.7 Premise from PRED(P1, S)
3. a ∨ b 0.7 From 2 by possibilistic logical

equivalency
4. (b → a) → a) 0.7 From 1 and 3 by GMP
5. b → a 0.6 Premise from PRED(P1, S)
6. a 0.6 From 4 and 5 by GMP

Observe that the formula ∼ b → a 0.7 corresponds to the possibilistic normal clause
0.7 : a ← not b which belongs to the program RED(P1, S

∗). The proof for (b, 0.7) is
similar to the proof of (a, 0.6). Notice that @ S′ such that PRED(P1, S

∗) `PL S′ and
S v S′. Therefore, we can conclude that S is a possibilistic pstable models of P1.

Observe that the possibilistic program P1 is an example where the possibilistic pstable
semantics is different to both the possibilistic stable semantics (Nicolas et al. 2006) and
the possibilistic answer set semantics (Definition 9). In fact, P1 has no possibilistic stable
model neither possibilistic answer set.

Even thought, there are programs where the possibilistic pstable semantics does not
coincide with the possibilistic stable semantics neither with the possibilistic answer set
semantics, we can identify a relationship between the possibilistic answer set semantics
and the possibilistic pstable semantics.

Proposition 10
Let P be a possibilistic normal program. If M is a possibilistic answer set of P , then the
following conditions hold:

a) M∗ is a pstable model of P ∗.
b) there exists a possibilistic pstable mode M ′ of P such that M v M ′ and M∗ = M ′∗.

This proposition points out that whenever a possibilistic normal program has a pos-
sibilistic answer set M there exists a possibilistic pstable model M ′ such that the main
differences between M and M ′ are the necessity-values of their elements. For instance, let
us consider the following possibilistic program P :

0.3 : a ← >.
0.8 : a ← not a.

One can see that P has the possibilistic answer set M := {(a, 0.3)} and the possibilistic
pstable model M ′ := {(a, 0.8)}. It is clear that M∗ = M ′∗; however, M v M ′.

Remark 3
It is worth to comment that when P = 〈(Q,≤), N〉 is a possibilistic program which does
not contain extended atoms i.e.atoms of form ¬a, and (Q,≤) is a totally ordered set, it will
be also true that: If M is a possibilistic stable model of P , then the following conditions

Semantics for Possibilistic Disjunctive Programs 27

hold: 1.− M∗ is a pstable model of P ∗ and 2.− there exists a possibilistic pstable mode
M ′ of P such that M v M ′ and M∗ = M ′∗.

An interesting property of the possibilistic pstable semantics is that this semantics sup-
ports a kind of monotony w.r.t. the inference under possibilistic logic. In order to formalize
this property, we will say that P is equivalent to P ′ under the possibilistic pstable seman-
tics if and only if any possibilistic pstable model of P is also a possibilistic pstable model
of P ′ and vice versa.

Proposition 11
Let P be a possibilistic normal program. If P `PL (x α) then P is equivalent to P ∪
{(x α)} under the possibilistic pstable semantics.

Notice that neither the possibilistic answer set semantics nor the possibilistic stable se-
mantics (Nicolas et al. 2006) satisfy Proposition 11 i.e.if P `PL (x α), then P is not
equivalent to P ∪ {(x α)} under possibilistic answer set semantics neither under the pos-
sibilistic stable semantics. In order to show this, let us consider a simple possibilistic logic
program P :

α : a ← not a

It is clear that P `PL (a α). P has no a possibilistic stable model neither a possibilistic
answer set. However, P∪{(a α)} has a possibilistic stable model and a possibilistic answer
set which is the same in both cases and is {(a, α)}.

The possibilistic answer set semantics was defined for the family of possibilistic dis-
junctive logic programs. This means that the possibilistic clauses could have a disjunction
in their heads. Since the possibilistic pstable semantics was defined for possibilistic normal
programs, one can think that the possibilistic pstable semantics is less expressive than the
possibilistic answer semantics. However, by considering a simple mapping, one can extend
the definition of possibilistic pstable models for possibilistic normal programs in order to
define a semantics for possibilistic disjunctive logic programs.

An interesting result is that there exists a relationship between the possibilistic answer
sets of a possibilistic disjunctive logic program P and the possibilistic pstable models of
the possibilistic normal program TRAD(P) (defined below). In order to formalize this
result, we define some basic terms.

Given a possibilistic disjunctive logic program P := 〈(Q,≤), N〉, Pc will denote the set
of possibilistic constraints which belong to P and PN will denote the rest i.e.PN = P \Pc.

In order to see a possibilistic disjunctive logic program as a possibilistic normal logic
program, we will define a simple mapping of a possibilistic disjunctive logic programs into
a possibilistic normal logic programs.

Definition 16
Let P be a possibilistic disjunctive logic program and
(α : A ← B+, not B−) ∈ PN . We define

R(α : A ← B+, not B−) :=
⋃

a∈A
{(α : a ← B+, not (B− ∪ (A \ {a}))}

The generalization of R over P is as follows: R(P) :=
⋃

C∈P R(C).

28 J. C. Nieves, M. Osorio, and U. Cortés

For instance, R(0.7 : a ∨ b ← not c) := {0.7 : a ← not c, not b;
0.7 : b ← not c, not a}

By considering the mapping R, we define the function TRAD.

Definition 17
Let P be a possibilistic disjunctive logic program. We define TRAD(P) as:

TRAD(P) := R(PN) ∪ Pc

Now, by considering the function TRAD, we formalize that whenever a possibilistic
disjunctive logic program P has a possibilistic answer set M , there exists a possibilis-
tic pstable model M ′ of the possibilistic normal program TRAD(P) such that the main
differences between M and M ′ are the necessity-values of their elements.

Theorem 1
Let P be a possibilistic disjunctive program. If M is a possibilistic answer set of P , then it
implies that

a) M∗ is a pstable model of TRAD(P)∗.
b) there exists a possibilistic pstable mode M ′ of TRAD(P) such that M v M ′ and

M∗ = M ′∗.

Observe that this result is a generalization of the result of Proposition 10. In terms of
computability, since there is an algorithm for inferring pstable models (López 2006) and
the possibilistic pstable semantics is based on the proof theory of possibilistic logic, the
following proposition is a direct consequence of Proposition 7.

Proposition 12
Given a possibilistic program P := 〈(Q,≤), N〉 there exists an algorithm that computes
the set of possibilistic pstable models of P .

5 Inconsistency in possibilistic logic programs

In this section, we will motivate the relevance of considering inconsistent possibilistic
knowledge bases and we will introduce some criteria for managing inconsistent possi-
bilistic logic programs.

5.1 Relevance of inconsistent possibilistic logic programs

Inconsistent knowledge bases usually are regarded as an epistemic hell that have to be
avoided at all costs. However, many times it is difficult or impossible to stay away of man-
aging inconsistent knowledge bases. There are approaches, as it is the case of Paracon-
sistent Logics, which allow to infer inconsistent pseudo-models. For instance, in (Bueno
2006), Bueno argues that to pursue inconsistent systems is a useful device for a number of
reasons: (1) this is often the only way to explore inconsistent information without arbitrar-
ily rejecting precious data. (2) pursuing inconsistent systems is sometimes the only way
to obtain new information (particularly information that conflicts with deeply entrenched

Semantics for Possibilistic Disjunctive Programs 29

theories). As a result, (3) pursuing inconsistent belief systems allows us to make better
informed decisions regarding which bits of information to accept or reject in the end.

In order to illustrate a small example, where to explore inconsistent information can be
important to make a better informed decision, we will continue with the medical scenario
described in Section 1. In Example 4, we have already presented the grounded program
Pinfections of our medical scenario:

probable: r_inf(present, 1) ∨ no_r_inf(present, 1)← action(transplant, 0),

d_inf(present, 0).

confirmed: o(good_graft_funct, 1) ∨ o(delayed_graft_funct, 1)∨
o(terminal_insufficient_funct, 1) ← action(transplant, 0).

confirmed: action(transplant, 0) ← o(terminal_insufficient_funct, 0).
plausible: cs(stable, 1) ← o(good_graft_funct, 1).
plausible: cs(unstable, 1) ← o(delayed_graft_funct, 1).
plausible: cs(0-urgency, 1) ← o(terminal_insufficient_funct, 1),

action(transplant, 0).
certain: ⊥ ← action(transplant, 0), action(wait, 0).
certain: ⊥ ← action(transplant, 0), cs(dead, 0).
certain: d_inf(present, 0) ← >.
certain: no_r_inf(present, 0) ← >.
certain: o(terminal_insufficient_funct, 0) ← >.
certain: cs(stable, 0) ← >.

As commented in Example 4, in this program the atoms ¬r_inf(present, 0) and
¬r_inf(present, 1) were replaced by no_r_inf(present, 0) and no_r_inf(present, 1)
respectively. Usually in standard answer set programming, the constraints

⊥ ← no_r_inf(present, 0), r_inf(present, 0).
⊥ ← no_r_inf(present, 1), no_r_inf(present, 1).

must be added to the program for avoiding inconsistent answer sets. In order to comment
the role of this kind of constraints, let C1 be the following possibilistic constraints:

certain: ⊥ ← no_r_inf(present, 0), r_inf(present, 0).
certain: ⊥ ← no_r_inf(present, 1), no_r_inf(present, 1).

Also let us consider three new possibilistic clauses (denoted by Pv):

confirmed: v(kidney, 0) ← cs(stable, 1), action(transplant, 0).
probable: no_v(kidney, 0) ← r_inf(present, 1), action(transplant, 0).
certain: ⊥ ← not cs(stable, 1).

The intended meaning of the predicate v(t, T) is that the organ t is viable for transplanting
and T denotes a moment at the time. Observe that we replaced the atom ¬v(kidney, 0)
by no_v(kidney, 0). The reading of the first clause is that if the clinical situation of the

30 J. C. Nieves, M. Osorio, and U. Cortés

organ recipient is stable after the graft, then it is confirmed that the kidney is viable for
transplanting. The reading of the second one is that if the organ recipient is infected after
the graft, then it is plausible that the kidney is not viable for transplanting. The reading of
the possibilistic constraint is that we do not want to consider scenarios where the clinical
situation of the organ recipient is not stable. We will also consider the respective possibilis-
tic constrain of the atoms no_v(kidney, 0) and v(kidney, 0) (denoted by C2):

certain: ⊥ ← no_v(kidney, 0), v(kidney, 0).

Hence we define two programs

P := Pinfections ∪ Pv and Pc := Pinfections ∪ Pv ∪ C1 ∪ C2

Basically, the difference between P and Pc is that P allows inconsistent possibilistic mod-
els and Pc does not allow inconsistent possibilistic models.

Now let us consider the possibilistic answer sets of the programs P and Pc. We can see
that the program Pc has just one possibilistic answer set:

{(d_inf(present, 0), certain), (no_r_inf(present, 0), certain),
(o(terminal_insufficient_funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good_graft_funct, 1), confirmed),
(cs(stable,1), plausible), (no_r_inf(present,1), probable),
(v(kidney,0), plausible)}

This possibilistic answer set suggests that since it is plausible that recipient’s clinical situ-
ation can be stable after the graft, it is plausible that the kidney is viable for transplanting.
Observe that the possibilistic answer sets of P do not warn that the organ recipient could
be infected after the graft.

Let us consider the possibilistic answer set of the program P :

S1 := {(d_inf(present, 0), certain), (no_r_inf(present, 0), certain),
(o(terminal_insufficient_funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good_graft_funct, 1), confirmed),
(cs(stable,1), plausible), (no_r_inf(present,1), probable),
(v(kidney,0), plausible)}

S2 := {(d_inf(present, 0), certain), (no_r_inf(present, 0), certain),
(o(terminal_insufficient_funct, 0), certain), (cs(stable, 0), certain),
(action(transplant, 0), confirmed), (o(good_graft_funct, 1), confirmed),
(cs(stable,1), plausible), (r_inf(present,1), probable),
(v(kidney,0), plausible), (no_v(kidney,0), probable)}

P has two possibilistic answer sets: S1 and S2. S1 corresponds to the possibilistic answer
set of the program Pc and S2 is an inconsistent possibilistic answer set — because the
atoms (v(kidney,0), plausible) and (no_v(kidney,0), probable) appear in S2. Observe that
although S2 is an inconsistent possibilistic answer set, it contains important information

Semantics for Possibilistic Disjunctive Programs 31

w.r.t. the considerations of our scenario. S2 suggests that even thought it is plausible that
the clinical situation of the organ recipient can be stable after the graft, it is also probable
that the organ recipient can be infected by the infection of the donor’s organ.

Observe that essentially Pc is unable to infer the possibilistic answer set S2 by the pres-
ence of the possibilistic constraint:

certain: ⊥ ← no_v(kidney, 0), v(kidney, 0).

By defining this kind of constrains, we can guarantee that any possibilistic answer set
inferred from Pc will be consistent; however, one can omit important considerations w.r.t.
a decision-making problem. In fact, we agree with Bueno (Bueno 2006) that to consider
inconsistent systems, as inconsistent possibilistic answer sets, some times is the only way
to explore inconsistent information without arbitrarily rejecting precious data.

5.2 Inconsistency degrees of possibilistic sets

For managing inconsistent possibilistic answer set, it is necessary to define a criterion of
preference between possibilistic answer sets. In order to define a criterion between possi-
bilistic answer sets, we will define the concept of inconsistency degree of a possibilistic
set. We say that a set of possibilistic atoms S is inconsistent (resp. consistent) if and only
if S∗ is inconsistent (resp. consistent) i.e.there exists atom a such that a,¬a ∈ S∗.

Definition 18
Let A be a finite set of atoms and extended atoms,(Q,≤) be a lattice and S ∈ 2A×Q. The
inconsistent degree of S is defined as follows:

InconsDegre(S) :=
{ BOT Q if S∗ is consistent
GLB({α|Sα is consistent}) otherwise

where BOT Q is the bottom of the lattice (Q,≤) and Sα := {(a, α1) ∈ S|α1 ≥ α}.

For instance, the possibilistic answer set S2 of our example above has an inconsistency
degree of confirmed. Based on the inconsistency degree of possibilistic sets, we can define
a criterion of preference between possibilistic answer sets.

Definition 19
Let P = 〈(Q,≤), N〉 be a possibilistic program and M1, M2 two possibilistic answer set
of P . We say that M1 is weakest-inconsistent than M2 if and only if InconsDegre(M1) <

InconsDegre(M2).

For our example above, it is obvious that S1 is weakest-inconsistent than S2. In general
terms, we will say that a possibilistic answer set M1 is preferred than M2 if and only if
M1 is weakest-inconsistent than M2. This means that any consistent possibilistic answer
set will be preferred than any inconsistent possibilistic answer set.

So far we have commented only the case of inconsistent possibilistic answer set. How-
ever, there are possibilistic programs that are inconsistent because they have no possibilistic
answer sets neither possibilistic pstable models. For instance, let us consider the following
possibilistic program Pinc (we are assuming the lattice of Example 6):

32 J. C. Nieves, M. Osorio, and U. Cortés

0.3 : a ← not b.

0.5 : b ← not c.

0.6 : c ← not a.

Observe that P ∗inc has no answer sets neither pstable models; hence, Pinc has no possibilis-
tic answer sets neither possibilistic pstable models.

5.3 Restoring inconsistent possibilistic knowledge bases

In order to restore consistency of an inconsistent possibilistic knowledge base, possibilistic
logic deletes the set of possibilistic formulæ which are lower than the inconsistent degree
of the inconsistent knowledge base. By considering this idea, the authors of (Nicolas et al.
2006) defined the concept of α-cut for possibilistic logic programs. Based on Definition 14
of (Nicolas et al. 2006), we define its respective generalization for our approach.

Definition 20
Let P be a possibilistic logic program

- the strict α-cut is the subprogram P>α = {r ∈ P |n(r) > α}
- the consistency cut degree of P :

ConsCutDeg(P) :=
{ BOT Q if P ∗ is consistent
GLB({α|Pα is consistent}) otherwise

where BOT Q is the bottom of the lattice (Q,≤).

Notice that the consistency cut degree of a possibilistic logic program identifies the
minimum level of certainty for which a strict α-cut of P is consistent. As Nicolas et al.,
remarked in (Nicolas et al. 2006), by the non-monotonicity of the framework it is not
ensure that a higher cut is necessarily consistent.

In order to illustrate these ideas, let us consider again the program Pinc. First, we can
see that ConsCutDeg(Pinc) = 0.3; hence, the subprogram PConsCutDeg(Pinc) is:

0.5 : b ← not c.

0.6 : c ← not a.

Observe that this program has a possibilistic answer set which is {(c, 0.6)}9. Hence thanks
to the strict α-cut of P , one is able to infer information from Pinc

We have commented two kinds of inconsistency in our approach,

• one which arises from the presence of complementary atoms in a possibilistic answer
set (or a possibilistic pstable model) and

• the other one which arises from the non-existence of possibilistic answer set (or
possibilistic pstable models) of a possibilistic logic program.

9 Remember that any possibilistic answer set is also a possibilistic pstable model.

Semantics for Possibilistic Disjunctive Programs 33

For managing the inconsistency of possibilistic answer sets, we have defined a criterium
of preference between possibilistic answer sets — of course that this criterium is also
applied to possibilistic pstable models. For managing the non-existence of possibilistic
answer set (or possibilistic pstable models) of a possibilistic logic program P , we have
adopted the approach suggested by Nicolas et al., in (Nicolas et al. 2006) of cuts for getting
subprograms of P which are consistent.

It worth to comment that in some cases, it is possible to apply α-cuts in order to avoid
inconsistent possibilistic answers. For instance, let P be the following possibilistic pro-
gram:

0.9 : a ← >.
0.9 : ¬a ← >.
0.8 : b ← >.

We can see that ConsCutDeg(P) = 0.9; hence, if we apply a strict α-cut to P , we will
get an empty program. On the other hand, if we allow an inconsistent possibilistic answer
set, we get {(a, 0.9), (¬a, 0.9), (b, 0.8)}. As one can see, 0.8 : b ← > is not involved
in the inconsistency of P . Hence, it is not necessary to loss this information. We believe
that an inconsistent possibilistic answer set could be more informative answer than a null-
possibilistic answer set for an expert.

6 Related Work

Logic programming with uncertainty is an extensively research area. In fact, it has pro-
ceeded along various research lines of logic logic programming. An interesting historical
recollection in this topic was recently presented by V. S. Subrahmanian in (Subrahmanian
2007). In this recollection he highlights some phases in the evolution of the topic from the
viewpoint of a committed researcher.

Research on logic programming with uncertainty has dealt with various approaches of
logic programming semantics, as well as different applications. Most of the approaches in
the literature employ one of the following formalisms:

• annotated logic programming, e.g., (Kifer and Subrahmanian 1992).
• probabilistic logic, e.g., (Ng and Subrahmanian 1992; Lukasiewicz 1998; Kern-

Isberner and Lukasiewicz 2004).
• fuzzy set theory, e.g., (van Emden 1986; Rodríguez-Artalejo and Romero-Dáz 2008;

Nieuwenborgh et al. 2007).
• multi-valued logic, e.g., (Fitting 1991; Lakshmanan 1994).
• evidence theoretic logic programming, e.g., (Baldwin 1987).
• possibilistic logic, e.g., (Dubois et al. 1991; Alsinet and Godo 2002; Alsinet and

Godo 2000; Alsinet et al. 2008; Nicolas et al. 2006).

Basically, these approaches differ in the underlying notion of uncertainty and how un-
certainty values, associated to clauses and facts, are managed.

As stated on §1, we are interested on modeling quantitative expressions such that these

34 J. C. Nieves, M. Osorio, and U. Cortés

expressions could capture the available information especially when this information is in-
complete, uncertain and inconsistent. As far of this paper we have defined a logic program-
ming approach with uncertainty which captures uncertain values by considering complete
lattices. The use of lattices for capturing uncertain values is not new, maybe one of the
most influential approach in this context was suggest by Fitting in (Fitting 1991). In (Fit-
ting 1991), Fitting showed that interlaced bilattices provide a simple and elegant setting
for the consideration of logic programming extensions allowing for incomplete or contra-
dictory answers. On the theoretical level he showed that his approach is a considerable
unification of several approaches.

An interesting observation of Fitting is that in the abstract level all interlaced bilattices
are quite natural; however not all are appropriate for computer implementation. By Propo-
sition 4.1 of (Fitting 1991), we know that given two complete lattices C and B, B(C, D)
is an interlaced bilattice10. It is not difficult to see that essentially the semantics of a pos-
sibilisitic disjunctive logic program P = 〈(Q,≤), N〉 is defined in the domain of the in-
terlaced bilattice B({0, 1},Q). Since the possibilisitic semantics defined in this paper are
computable, our approach is restricted to computable interlaced bilattices. Observe that by
considering a complete lattice Q′ different to {0, 1}, we can explore new logic program-
ming semantics for our approach by considering multi-valued logics defined under Q′ and
Fitting’s approach. Of course that this issue requires a deep analysis to understand how
Fitting’s approach and our approach are related. It is worth to comment that in (Alsinet and
Godo 2000), a possibilistic logic programming approach is defined over the many-valued
Gödel logic. The syntax of this approach is restricted to a Horn-clause sublanguage of the
many-valued Gödel logic; hence it is unable to capture default negation and disjunctive
clauses.

To prioritize logic clauses, as it is done in our possibilistic approach, can be also re-
garded as a preference relation between rules. In fact, by considering the certainty degrees
as preferences, it was defined two criteria for restoring inconsistent possibilistic knowl-
edge bases in §5. Observe that these criteria are based on the notion of maximal consistent
subsets of premises. In other words, we try to recover the maximal consistent subset of pos-
sibilistic clauses from an inconsistent possibilistic program to infer consistent information.
The use of qualitative preferences in logic programming has been suggested by authors
as G. Brewka in (Brewka 2004). The Brewka’s approach is also motivated from the fact
that a variety of applications numerical information is hard to obtain. To have a correct
understanding of the relationship between Brewka’s approach and our approach requires a
deep analysis.

7 Conclusions and future work

The most common forms for modeling knowledge are based on symbolic logic. Even
thought, the diversity of formal languages is wide and the question of how to model uncer-
tain information has caused much heated debate. Maybe, the most common form of repre-
senting uncertain information is based on probability theory (Halpern 2005). In fact, we can

10 See (Fitting 1991) for details.

Semantics for Possibilistic Disjunctive Programs 35

find successful approaches based on probability theory as Bayesian Networks. However,
there are several authors which disagree with probability theory for modeling uncertain
information.

• McCarthy and Hayes in (McCarthy and Hayes 1969) pointed out that attaching prob-
abilities to a statement has objections. For example, they say that

The information necessary to assign numerical probabilities is not ordinary available. There-
fore, a formalism that required numerical probabilities would be epistemologically inade-
quate.

• Halpern has remarked in (Halpern 2005) that probability has its problems. For one
thing, the numbers are not always available. For another, the commitment to numbers
means that any two events must be comparable in terms of their probabilities: either
one event is more probable than the other, or they have equal probability.

• Dubois and Prade in (Dubois and Prade 2004) have pointed that there are at least
three worth noticing difficulties when casting the probability calculus into a logic
framework for handling uncertain information.

Since probability has its problems for modeling uncertain information, it is not surpris-
ing that many other approaches of uncertainty have been considered in computer science
literature.

In the mid-1980s, it was introduced a logic framework called Possibilistic Logic (Dubois
et al. 1994). Possibilistic logic is a logic of uncertainty tailored for reasoning under incom-
plete evidence and partially inconsistent knowledge. In this approach all the formulæ are
attached by degrees of uncertain. These degrees are quantifications of necessity or pos-
sibility of the corresponding possibilistic formulæ. At the mathematical level, degrees of
possibility and necessity are closely related to fuzzy set and, possibilistic logic is espe-
cially well adapted to automated reasoning when the available information is pervaded
with vagueness. In general terms, we can say that possibilistic logic is a tool for reasoning
under uncertainty based on the idea of ordering rather than counting, on the contrary to
probabilistic logic (Dubois et al. 1994).

An important feature of possibilistic logic is that the degrees of uncertainty of a possi-
bilistic formula do not belong necessarily to a totally ordered set. This feature allows to
explore a diversity of uncertain degrees e.g.non-numerical uncertain degrees. In psychol-
ogy literature, we can find significant observations which are worth mentioning when we
are designing an approach for modeling uncertain information. Tversky and Kahneman
have observed in (Tversky and Kahneman 1982) 11, that many decisions that we make in
our common life are based on beliefs concerning the likelihood of uncertain events. In fact,
we commonly use statements such as “I think that . . . ”, “chances are . . . ”, “it is proba-
ble that . . . ”, “it is plausible that . . . ”, etc., for supporting our decisions. In this kind of
statements usually we appeal to our experience or our commonsense. It is not surprising to
think that a reasoning based on these kind of statements could reach to biased conclusions.
However, these conclusions could reflect an expert’s experience or commonsense. Pelletier

11 It is worth mentioning that Kahneman (an author of (Kahneman et al. 1982)) is the winner of the 2002 Nobel
Prize in Economics for having integrated insights from psychological research into economic science, espe-
cially concerning human judgment and decision-making under uncertainty

36 J. C. Nieves, M. Osorio, and U. Cortés

and Elio pointed out in (Pelletier and Elio 2002) that people simply have tendencies to ig-
nore certain information because of the (evolutionary) necessity to make decisions quickly.
This gives rise to “biases” in judgments concerning what they “really” want to do.

In this paper, we introduced a possibilistic disjunctive logic programming approach. This
approach introduces the use of possibilistic disjunctive clauses which are able to capture
incomplete information and incomplete states of a knowledge base at the same time.

In particular, we have defined three approaches for capturing the semantics of the possi-
bilistic disjunctive programs:

• the first is strictly close to the proof theory of possibilistic logic and answer set
models;

• the second is based on partial evaluation and a fix-point operator; and
• the last is also based on the proof theory of possibilistic logic and pstable semantics.

Based on the flexibility of possibilistic logic for defining degrees of uncertainty, we have
illustrated in this paper that it is possible to consider non-numerical degrees for capturing
uncertain information. In particular, we have discussed the use of non-numerical degrees
of uncertainty in a medical scenario.

For managing the inconsistency of possibilistic models, we have defined a criterium
of preference between possibilistic answer sets. Also, for managing the non-existence of
possibilistic answer set (or possibilistic pstable models) of a possibilistic logic program P ,
we have adopted the approach suggested by Nicolas et al., in (Nicolas et al. 2006) of cuts
for getting subprograms of P which are consistent.

As part of our future work, we have considered to define an extension of our possibilistic
approach in order to deal reasoning about actions under uncertainty. In fact in (Nieves et al.
2007), we have already defined our first ideas in order to define an action language which
is called APoss.

References

ALSINET, T., CHESÑEVAR, C. I., GODO, L., AND SIMARI, G. R. 2008. A logic programming
framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and
Systems 159, 10, 1208–1228.

ALSINET, T. AND GODO, L. 2000. A Ccomplete Calculus for Possibilistic Logic Programming
with Fuzzy Propositional Variable. In Proceedings of the Sixteen Conference on Uncertainty in
Artificial Intelligence. ACM Press, 1-10.

ALSINET, T. AND GODO, L. 2002. Towards an automated deduction system for first-order possi-
bilistic logic programming with fuzzy constants. Int. J. Intell. Syst. 17, 9, 887–924.

BALDWIN, J. F. 1987. Evidential support logic programming. Fuzzy Sets and Systems 24, 1 (Octu-
ber), 1–26.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge.

BRASS, S. AND DIX, J. 1997. Characterizations of the disjunctive stable semantics by partial eval-
uation. J. Log. Program. 32, 3, 207–228.

BRASS, S. AND DIX, J. 1998. Characterizations of the disjunctive well-founded semantics: Conflu-
ent calculi and iterated gcwa. J. Autom. Reasoning 20, 1, 143–165.

BRASS, S. AND DIX, J. 1999. Semantics of (Disjunctive) Logic Programs Based on Partial Evalua-
tion. Journal of Logic Programming 38(3), 167–213.

Semantics for Possibilistic Disjunctive Programs 37

BREWKA, G. 2004. Answer sets: From constraint programming towards qualitative optimization. In
Logic Programming and Nonmonotonic Reasoning, 7th International Conference, LPNMR 2004,
Fort Lauderdale, FL, USA, January 6-8, 2004, Proceedings, V. Lifschitz and I. Niemelä, Eds.
Lecture Notes in Computer Science, vol. 2923. Springer, 34–46.

BUENO, O. 2006. Knowledge and Inquiry : Essays on the Pragmatism of Isaac Levi. Cambridge
Studies in Probability, Induction and Decision Theory. CAMBRIDGE UNIVERSITY PRESS,
Chapter Why Inconsistency Is Not Hell: Making Room for Inconsistency in Science, 70–86.

DAVEY, B. A. AND PRIESTLY, H. A. 2002. Introduction to Lattices and Order, Second ed. Cam-
bridge University Press.

DIX, J. 1995a. A classification theory of semantics of normal logic programs: I. strong properties.
Fundam. Inform. 22, 3, 227–255.

DIX, J. 1995b. A classification theory of semantics of normal logic programs: II. weak properties.
Fundam. Inform. 22, 3, 257–288.

DIX, J., OSORIO, M., AND ZEPEDA, C. 2001. A general theory of confluent rewriting systems for
logic programming and its applications. Ann. Pure Appl. Logic 108, 1-3, 153–188.

DLV, S. 1996. Vienna University of Technology. http://www.dbai.tuwien.ac.at/proj/dlv/.

DUBOIS, D., LANG, J., AND PRAD, H. 1991. Towards possibilistic logic programming. In ICLP,
K. Furukawa, Ed. The MIT Press, 581–595.

DUBOIS, D., LANG, J., AND PRADE, H. 1994. Possibilistic logic. In Handbook of Logic in Ar-
tificial Intelligence and Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain
Reasoning, D. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Oxford University Press, Oxford,
439–513.

DUBOIS, D. AND PRADE, H. 2004. Possibilistic logic: a retrospective and prospective view. Fuzzy
Sets and Systems 144, 1, 3–23.

FITTING, M. 1991. Bilattices and the semantics of logic programming. Journal of Logic Program-
ming 11, 1&2, 91–116.

FOX, J. AND MODGIL, S. 2006. From arguments to decisions: Extending the Toulmin view. In
Arguing on the Toulmin model: New essays on argument analysis and evaluation, D. Hitchcock
and B. Verheij, Eds. Springer Netherlands, 273–287.

GELFOND, M. 2008. Handbook of Knowledge Representation. Elsevier, Chapter Answer Sets,
285–316.

GELFOND, M. AND LIFSCHITZ, V. 1988. The Stable Model Semantics for Logic Programming. In
5th Conference on Logic Programming, R. Kowalski and K. Bowen, Eds. MIT Press, 1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385.

HALPERN, J. Y. 2005. Reasoning about uncertainty. The MIT Press.

HOPCROFT, J. E., MOTWANI, R., AND ULLMAN, J. D. 2007. Introduction to Automata Theory,
Languages and Computation, 3/E. Addison Wesley Higher Education.

KAHNEMAN, D., SLOVIC, P., AND TVERSKY, A. 1982. Judgment under uncertainty:Heuristics
and biases. Cambridge Univertisy Press.

KERN-ISBERNER, G. AND LUKASIEWICZ, T. 2004. Combining probabilistic logic programming
with the power of maximum entropy. Artificial Intelligence 157, 1-2, 139–202.

KIFER, M. AND SUBRAHMANIAN, V. S. 1992. Theory of generalized annotated logic programming
and its applications. J. Log. Program. 12, 3&4, 335–367.

LAKSHMANAN, L. V. S. 1994. An epistemic foundation for logic programming with uncertainty.
In FSTTCS. 89–100.

LÓPEZ, A. 2006. Implementing pstable. In Workshop in Logic, Language and Computation,
R. Dávila, M. Osorio, and C. Zepeda, Eds. Vol. 220. CEUR Workshop Proceedings.

38 J. C. Nieves, M. Osorio, and U. Cortés

LÓPEZ-NAVIDAD, A. AND CABALLERO, F. 2003. Extended criteria for organ acceptance: Strategies
for achieving organ safety and for increasing organ pool. Clinical Transplantation, Blackwell
Munksgaard 17, 308–324.

LÓPEZ-NAVIDAD, A., DOMINGO, P., AND VIEDMA, M. A. 1997. Professional characteristics of
the transplant coordinator. In XVI International Congress of the Transplantation Society. Trans-
plantation Proceedings, vol. 29. Elsevier Science Inc, 1607–1613.

LUKASIEWICZ, T. 1998. Probabilistic logic programming. In ECAI. 388–392.
MCCARTHY, J. AND HAYES, P. J. 1969. Some philosophical problems from the standpoint of artifi-

cial intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie, Eds. Edinburgh University
Press, 463–502. reprinted in McC90.

NG, R. T. AND SUBRAHMANIAN, V. S. 1992. Probabilistic logic programming. Inf. Comput. 101, 2,
150–201.

NICOLAS, P., GARCIA, L., STÉPHAN, I., AND LAFÈVRE, C. 2006. Possibilistic Uncertainty Han-
dling for Answer Set Programming. Annal of Mathematics and Artificial Intelligence 47, 1-2
(June), 139–181.

NIEUWENBORGH, D. V., COCK, M. D., AND VERMEIR, D. 2007. An introduction to fuzzy answer
set programming. Ann. Math. Artif. Intell. 50, 3-4, 363–388.

NIEVES, J. C., OSORIO, M., CORTÉS, U., CABALLERO, F., AND LÓPEZ-NAVIDAD, A. 2007.
Reasoning about actions under uncertainty: A possibilistic approach. In In proceedings of CCIA,
C. Angulo and L. Godo, Eds.

OSORIO, M., ARRAZOLA, J. R., AND CARBALLIDO, J. L. 2008. Logical Weak Completions of
Paraconsistent Logics. Journal of Logic and Computation doi: 10.1093/logcom/exn015.

OSORIO, M., NAVARRO, J. A., ARRAZOLA, J. R., AND BORJA, V. 2005. Ground Nonmonotonic
Modal Logic S5: New Results. Journal of Logic and Computation 15, 5, 787–813.

OSORIO, M., NAVARRO, J. A., ARRAZOLA, J. R., AND BORJA, V. 2006. Logics with Common
Weak Completions. Journal of Logic and Computation 16, 6, 867–890.

PELLETIER, F. J. AND ELIO, R. 2002. Scope of Logic, Methodology and Philosophy of Science.
Synthese Library, vol. 1. Dordrecht: Kluwer Academic Press, Chapter Logic and Computation,
137–156.

RODRÍGUEZ-ARTALEJO, M. AND ROMERO-DÁZ, C. A. 2008. Quantitative Logic Programming
revisited. In 9th International Symposium, FLOPS, J. Garrigue and M. Hermenegildo, Eds. LNCS,
vol. 4989. Springer-Verlag Berlin Heidelberg, 272–288.

SUBRAHMANIAN, V. S. 2007. Uncertainty in logic programming. Association for Logic Program-
ming (ALP), Newsletter 20, 2 (May/June).

TARSKI, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5, 2, 285–309.

TVERSKY, A. AND KAHNEMAN, D. 1982. Judgment under uncertainty:Heuristics and biases.
Cambridge Univertisy Press, Chapter Judgment under uncertainty:Heuristics and biases, 3–20.

VAN DALEN, D. 1994. Logic and structure, 3rd., aumented edition ed. Springer-Verlag, Berlin.
VAN EMDEN, M. H. 1986. Quantitative deduction and its fixpoint theory. Journal of Logic Pro-

gramming 3, 1, 37–53.

Appendix: Proofs

In this annex we give the proof of most of the results given in this paper.

Proposition 2 Let P be a possibilistic disjunctive logic program. M is a possibilistic
answer set of P iff M∗ is an answer set of P ∗.

Semantics for Possibilistic Disjunctive Programs 39

Proof
The proof is straightforward by the possibilistic answer set’s definition.

Proposition 3 Let P = 〈(Q,≤), N〉 be a possibilistic disjunctive logic program and
T OPQ be the top of the lattice (Q,≤). If ∀r ∈ P , n(r) = T OPQ, and M ′ is an answer
set of P ∗, then M := {(l, T OPQ)|l ∈ M ′} is a possibilistic answer set of P .

Proof
We know that if M is a possibilistic answer set of P , then M∗ is an answer set of P ∗ (by
Proposition 2) and NM∗ `PL M . Now, since (GMP) (ϕ T OPQ), (ϕ → ψ T OPQ) `PL

(ψ T OPQ), then any formula inferred from P by GMP will have T OPQ as necessity-
value. Then, if M ′ is an answer set of P ∗, then {(l, T OPQ)|l ∈ M ′}will be a possibilistic
answer set of P .

Proposition 4 Let P := 〈(Q,≤), N〉 be a possibilistic normal program such that (Q,≤)
is a totally ordered set and LP has no extended atoms. M is a possibilistic answer set of P
if and only if M is a possibilistic stable model of P .

Proof
(Sketch) It is not difficult to see that when P is a possibilistic normal program, then the
syntactic reduction of Definition 8 and the syntactic reduction of Definition 10 from (Nico-
las et al. 2006) coincide. Then the proof is reduced to possibilistic definite programs. But,
this case is straightforward, since essentially GMP is applied for inferring the possibilistic
models of the program in both approaches.

Proposition 5 Let C be a set of possibilistic disjunctions, and C = (c α) be a possibilistic
clause obtained by a finite number of successive application of (R) to C; then C `PL C.

Proof
(The proof is similar to the proof of Proposition 3.8.2 of (Dubois et al. 1994)) Let us
consider two possibilistic clauses: C1 = (c1 α1) and C2 = (c2 α2), the application of
R yields C ′ = (R(c1, c2) GLB({α1, α2})). By classic logic, we known that R(c1, c2) is
sound; hence the key point of the proof is to show that n(R(c1, c2)) ≥ GLB({α1, α2}).

By definition of necessity-valued clause, n(c1) ≥ α1 and n(c2) ≥ α2, then n(c1∧c2) =
GLB({n(c1), n(c2)}) ≥ GLB({α1, α2}). Since c1∧c2 `C R(c1, c2), then n(R(c1, c2)) ≥
n(c1∧c2) (because if ϕ `PL ψ then N(ψ) ≥ N(ϕ)). Thus n(R(c1, c2)) ≥ GLB({α1, α2});
therefore (R) is sound. Then by induction any possibilistic formula inferred by a finite num-
ber of successive applications of (R) to C is a logical consequence of C.

Proposition 6 Let P be a set of possibilistic clauses and C be the set of possibilistic
disjunctions obtained from P ; then the valuation of the optimal refutation by resolution
from C is the inconsistent degree of P .

40 J. C. Nieves, M. Osorio, and U. Cortés

Proof
(The proof is similar to the proof of Proposition 3.8.3 of (Dubois et al. 1994)) By possi-
bilistic logic, we know that C `PL (⊥ α) if and only if (Cα)∗ is inconsistent in the sense
of classic logic. Since (R) is complete in classic logic, then there exists a refutation R(¤)
from (Cα)∗. Thus considering the valuation of the refutation R(¤), we obtain a refuta-
tion from Cα such that n(R(¤)) ≥ α. Then n(R(¤)) ≥ Inc(C). Since (R) is sound then
n(R(¤)) cannot be strictly greater than Inc(C). Thus n(R(¤)) is equal to Inc(C). Ac-
cording to Proposition 3.8.1 of (Dubois et al. 1994), Inc(C) = Inc(P), thus n(R(¤)) is
also equal to Inc(P).

Proposition 7 Let P := 〈(Q,≤), N〉 be a possibilistic logic program. The set Poss-ASP
returned by Poss_Answer_Sets(P) is the set of all the possibilistic answer sets of P .

Proof
The result follows from the following facts:

1. The function ASP computes all the answer set of P ∗.
2. If M is a possibilistic answer set of P iff M∗ is an answer set of P ∗ (Proposition 2).
3. By Corollary 1, we know that the possibilistic resolution rule R is sound and complete for

computing optimal possibilistic degrees.

Proposition 8 Let P be a possibilistic disjunctive logic program. If Γ0 := T (P) and
Γi := T (Γi−1) such that i ∈ N , then ∃ n ∈ N such that Γn = Γn−1. We denote Γn by
Π(P).

Proof
It is not difficult to see that the operator T is monotonic, then the proof is direct by Tarski’s
Lattice-Theoretical Fixpoint Theorem (Tarski 1955).

Proposition 9 Let P be a possibilistic disjunctive logic program and M a set of possibilis-
tic atoms. M is a possibilistic answer set of P if and only if M is a possibilistic-T answer
set of P .

Proof
Two observations:

1. By definition, it is straightforward that if M1 is a possibilistic answer set of P , then there
exists a possibilistic-T answer set M2 of P such that M∗

1 = M∗
2 and viceversa.

2. Since G-GPPE can be regarded as a macro of the possibilistic rule (R), we can conclude
by Proposition 5 that G-GPPE is sound.

Let M1 be a possibilistic answer set of P and M2 be a possibilistic-T answer set of
P . By Observation 1, the central point of the proof is to prove that if (a, α1) ∈ M1 and
(a, α2) ∈ M2 such that M∗

1 = M∗
2 , then α1 = α2.

The proof is by contradiction. Let us suppose that (a, α1) ∈ M1 and (a, α2) ∈ M2 such
that M∗

1 = M∗
2 and α1 6= α2. Then there are two cases α1 < α2 or α1 > α2

Semantics for Possibilistic Disjunctive Programs 41

α1 < α2 : Since G-GPPE is sound (Observation 2), then α1 is not the optimal necessity-
value for the atom a, but this is false by Corollary 1.

α1 > α2 : If α1 > α2 then there exists a possibilistic claus α1 : A ← B+ ∈ P (M1)
∗

that
belongs to the optimal refutation of the atom a and it was not reduced by G-GPPE. But
this is false because G-GPPE is a macro of the resolution rule (R).

Proposition 10 Let P be a possibilistic normal program. If M is a possibilistic answer
set of P , then the following conditions hold:

a) M∗ is a pstable model of P ∗.
b) there exists a possibilistic pstable mode M ′ of P such that M v M ′ and M∗ = M ′∗.

Proof
a) The proof is straightforward by Theorem 4.4 of (Osorio et al. 2006) (The Theorem 4.4

of (Osorio et al. 2006) says that given a normal logic program P and a set of atoms M ,
if M is an answer set of P then M is a pstable model of P).

b) First of all observe that the following relation is true:

PM∗ ⊆ PRED(P, M) (4)

By a), it is direct that if M is a possibilistic answer set of P , then there exists a possi-
bilistic pstable model M ′ such that M∗ = M ′∗. Hence, if (a, α1) ∈ M , then a ∈ M ′∗

such that (a, α2) ∈ M ′. Therefore, the relevant part of prove is to show that α1 ≤ α2.
The proof is by contradiction: Let us suppose that α2 < α1, by definition of possi-
bilistic answer set and pstable model, PM∗ `PL (a, α1) and PRED(P,M) `PL

(a, α2) such that α1 and α2 are optimal. Since PM∗ ⊆ PRED(P, M), hence then
PRED(P, M) `PL (a, α1). Therefore, α2 is not the optimal value of a w.r.t. PRED(P,M).
This is a contradiction, because α2 is the optimal value of a w.r.t. PRED(P, M) by def-
inition of the possibilistic pstable semantics.

Proposition 11 Let P be a possibilistic normal program. If P `PL (x α) then P is
equivalent to P ∪ {(x α)} under the possibilistic pstable semantics.

Proof
Some observations;

a) By Theorem 7.11 of (Osorio et al. 2005) and Theorem 5.1 of (Osorio et al. 2006), we
can see that: If P ∗ `C x then P ∗ is equivalent to P ∗ ∪ {x} under the pstable semantics
i.e.Pstable(P ∗) = Pstable(P ∗ ∪ {x})

b) By definition of the possibilistic pstable semantics: M is a possibilistic pstable model
of P then M∗ is a pstable model of P ∗.

c) By definition of the syntactic reduction PRED, it is easy to see that: Given a possi-
bilistic normal program P and a set of atoms M : PRED(P∪(a, α), M) = PRED(P, M)∪
{(a, α)}.

42 J. C. Nieves, M. Osorio, and U. Cortés

d) In (Dubois et al. 1994), it was proved that: P `PL (x α) iff Pα `PL (x α).

We use poss_Pstable to denote the semantics operator of the possibilistic pstable se-
mantics. Then we have to prove that

poss_Pstable(P) = poss_Pstable(P ∪ {(x α)})
=> We have to prove that if M ∈ poss_Pstable(P) then M ∈ poss_Pstable(P ∪
{(x α)}).
Proof: M ∈ poss_Pstable(P) iff M∗ ∈ Pstable(P ∗) (by b) iff M∗ ∈ Pstable(P ∗ ∪
{x}) (by a). Hence, there exists M ′ ∈ poss_Pstable(P ∪ {(x α)}) such that M∗ =
M ′∗.
Let us suppose that M 6= M ′, this means that there exists (a, α1) ∈ M and (a, α2) ∈
M ′ such that α1 6= α2.
If α1 6= α2, then there two cases:

α1 > α2: If α1 > α2, then PRED(P, M∗)α1 ⊂ PRED(P ∪ {(a, α)},M ′∗)α2 (re-
member that PRED(P∪(a, α), M) = PRED(P,M)∪{(a, α)}). Since PRED(P, M∗)α1 `PL

(a α1) and PRED(P ∪ (a, α), M ′∗)α2 `PL (a α2), hence α2 is not the optimal ne-
cessity value of a inferred from PRED(P∪{(a, α)},M ′∗)α2 . This is a contradiction,
because M’ is a possibilistic Pstable model of P ∪ (a, α).

α1 < α2: If α1 < α2, then PRED(P, M ′∗)α2 ⊂ PRED(P, M∗)α1 and α < α1.
Hence α2 = α. Then Pα2 ⊂ Pα1 . Since Pα2 `PL (x α2), then Pα2 `PL (a α2).
Therefore Pα1 `PL (a α2). Then α1 is not the optimal necessity value for a inferred
from PRED(P,M)α1 . This is a contradiction, because M is a possibilistic Pstable
model of P .

Therefore α1 = α2, this means that M = M ′.
<= We have to prove that if M ∈ poss_Pstable(P∪{(x α)}) then M ∈ poss_Pstable(P).

The proof is similar to the previous case.

Theorem 1 Let P be a possibilistic disjunctive program. If M is a possibilistic answer set
of P , then it implies that

a) M∗ is a pstable model of TRAD(P)∗.
b) there exists a possibilistic pstable mode M ′ of TRAD(P) such that M v M ′ and

M∗ = M ′∗.

Proof
a) The proof is straightforward by Theorem 5.3 of (Osorio et al. 2008) (The Theorem 5.3

of (Osorio et al. 2008) says that if M is an answer set of P ∗ then M is a pstable model
of (TRAD(P))∗. The authors of (Osorio et al. 2008) use the concept of “closed under
d-shift”; but this concept is nothing else that the consideration of the mapping TRAD

without the possibilistic values).
b) Direct by a) and Proposition 10.

Semantics for Possibilistic Disjunctive Programs 43

Proposition 12 Given a possibilistic program P := 〈(Q,≤), N〉 there exists an algorithm
that computes the set of possibilistic pstable models of P .

Proof
The algorithm is the same to the algorithm presented in the proof of Proposition 7. The
only difference is that instead of using an algorithm for computing the answer sets of P ∗,
it is used an algorithm for computing the pstable models of P ∗ e.g., the algorithm presented
in (López 2006).

