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Terrain modeling is a fast growing field with many applications such as computer graphics,
resource management, Earth and environmental sciences, civil and military engineering, sur-
veying and photogrammetry and games programming. One of the most widely used terrain
model is the Digital Elevation Model (DEM). A DEM is a simple regularly spaced grid of
elevation points that represent the continuous variation of relief over space. DEMs require
simple storage and are compatible with satellite data. However, they do not easily account
for overhangs.

In this work we report on the Grounded Heightmap Tree, a new data structure for terrain
representation built as a generalization of the DEM. The new data structure allows to natu-
rally represent terrain overhangs. We illustrate the performance of the Grounded Heightmap
Tree when applied to represent terrains that undergo big changes.

1 INTRODUCTION

Terrain modeling is a fast growing field with many applications such as computer graphics,
resource management, Earth and environmental sciences, civil and military engineering, sur-
veying and photogrammetry and games programming. Since, in general, terrain models store
huge amount of data, and applications must be highly responsive, having a model that allows
quick answers to the queries on it would be paramount.

One of the terrain models most widely used is the Digital Elevation Model (DEM), also known
as heightmap, that requires simple storage, is compatible with satellite data and allow good
and simple surface analysis. On the other, they are slow to compute and are severely limited
by the need of the uniform sampling and do not easily account for overhangs.

This work reports on the development of a new data structure, called Grounded Heightmap
Tree. to model and deal with terrains that change at a high rate to capture, for example, big
changes resulting from geotectonic events. It is a generalization of the heightmap model and
accounts for hangovers.
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Figure 1: Digital Elevation Model. Left) Heightmap. Right) 3D terrain wireframe.

The manuscript is organized as follows. In Section 2 we briefly review the terrain models
reported in the literature. In Section 3 we present the new terrain model along with the
basic operations we have defined on it. The implementation and the preliminary results are
presented in Section 4. We close with a brief summary in Section 5.

2 TERRAIN MODELS

Basically, terrain models belong to one one of three categories: Digital Elevation Models
(DEM), Triangulated Irregular Networks (TIN) and Fractal Models. DEMs have been applied
to represent terrains over uniformly distributed sample points. TINs allow representing real
terrains with a high fidelity over irregular networks of sample points. Fractal Models are used
to represent terrain models randomly generated.

2.1 Digital Elevation Model

DEMs are based on a simple structure named heightmap also known as heightfield. A
heightmap is simply a 2D array of values which give the terrain elevations for ground po-
sitions sampled at regularly spaced horizontal intervals. Each value in the array represents
the height of the terrain at that value’s position. See Figure 1, [6]. For example, if the cell at
(2, 3) has a value of 2, then the terrain contains the point (2, 3, 2).

On the one hand, DEMs require simple storage, are compatible with satellite data and allow
good and simple surface analysis. On the other, they are slow to compute and are severely
limited by the need of the uniform sampling and do not easily account for overhangs.

2.2 Triangulated Irregular Networks

A TIN is a DEM with a network of non-overlapping triangles whose vertices are placed at
randomly located terrain points. These triangles are formed usually under Delaunay criterion.
Irregular spaced sample points are measured with more points in areas of rough terrain and
fewer in smooth terrain which results in an accurate representation of the terrain. Figure 2
shows a TIN, [4].

Pros of the TINS are that they need fewer points than DEMs for the same accuracy, their
resolution naturally adapts to terrain roughness. Among the drawbacks we find that initial
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Figure 2: Triangulated Irregular Network.

construction is time consuming and some operations do not have efficient algorithms.

2.3 Fractal Models

Historically, fractals have been the second technique representation chosen by terrain render-
ing and visualization researchers. Examples of methods to generate fractal terrain models
are diamond-square algorithm, fault algorithm and the hill algorithm. These techniques take
as input a 2D array whose cells are properly initialized, and iteratively transforms it until a
final terrain representation is reached.

2.3.1 Diamond-square Technique

The diamond-square algorithm is a method for generating highly realistic heightmaps for
computer graphics, [5]. It is a three-dimensional implementation of the one-dimensional
midpoint displacement algorithm which produces two-dimensional landscapes. Let us recall
this algorithm.

The one-dimensional midpoint displacement algorithm starts with a single horizontal line
segment. Then the midpoint of the line segment is computed and the old segment is replaced
by the segments resulting from displacing in Y the midpoint by a random amount. Finally
the range for possible random displacements is reduced. These steps are recursively applied
to the line segments in the model until reaching the final model. Figure 3 illustrates the
proces.

With this technique in mind, now we recall the diamond-square technique. We assume that
the 2D array of points to hold the heigthmap is empty, square and with dimension 2" + 1
with n > 1. In what follows, a square is a set of four points as illustrated in Figure 4 Left,
and a diamond is a set of four points as illustrated in Figure 4 Middle. For the diamonds we
consider that the 2D array heightmap is circular as depicted in Figure 4 Right.

The technique is illustrated in Figure 5 on a simple example with a 5x5 2D array. The

Figure 3: One-dimensional midpoint-displacement algorithm.



Figure 4: Diamond-square. Left: Square. Middle: Diamond. Rigth: Circular diamond.

starting point for the iterative technique sets the four corner points to the same height value.
In Figure 5a the four corners are highlighted in black. Notice that what we have got is a
square. Then there are two different possible steps: the diamond step or the square step.

The diamond step takes a square and generates a random value at the square midpoint, where
the two diagonals meet. The midpoint value is calculated by averaging the four corner values,
plus a random amount. This gives us diamonds when we have multiple squares arranged in
a grid. See Figure 5b.

The square step takes a diamond and generates a random value at the center of the diamond.
The midpoint value is calculated by averaging the corner values, plus a random amount
generated in the same range as used for the diamond step. This gives us squares again. See
Figure 5c. Since the array is circular, the midpoint corresponding to a diamond straddling
over the array boundary gives value to two points on opposite sides of the array as illustrated
in hollow points in Figure 6.

Now the algorithm iterates performing one diamond step, one square step and a reduction of
the random values range until the length of the squares side is smaller than a given threshold.
Figure 7 depicts the iterative process to generate de 3D terrain model.

2.3.2 Fault Formation

This technique is a very simple one, yet its results, although not the best, are pretty good,
[3]. The technique is not limited to planar height fields, being also applicable to spheres
to generate artificial planets. Hugo Elias [2], has posted tutorials on the application of this
algorithm to spheres.

To start with we have a planar height field, where all points have zero height. Then we select
a random line which divides the terrain in two parts (in general these parts will be different
in size). The points to one side of the line will have their height displaced upwards, whereas
the points on the other side will have their heights displaced downwards. Figure 8 illustrates
the first iteration of the technique.

The cross points will have their height decreased, whereas the star points will have their
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Figure 5: Diamond-square algorithm.



Figure 6: Diamond straddling over array boundaries.

height increased. So now we have a terrain with two distinct heights. If we keep dividing the
terrain like this then we will get something that has valleys, mountains and so on. Figure 9
illustrates the process where the 2D array is recursively splitted.

2.3.3 Hill Technique

The hill technique can be seen as a kind of fault formation where the straight line used to
divide the terrain is replaced with an sphere. The basic idea is simple, [6]. Start with a flat
terrain (initialize all height values to zero). Pick a random point on or near the terrain, and a
random radius between some predetermined minimum and maximum. Carefully choosing this
min and max will make a terrain rough and rocky or smooth and rolling. Raise a hill on the
terrain centered at the point, having the given radius. Repeat the two previous steps as many
times as necessary. Notice that the number of iterations chosen will affect the appearance of
the terrain.

Raising a hill is simple. A hill is kind of a rounded hump shape. The bigger the radius is, the
taller the hill gets. Mathematically, it is a parabola revolved around the centerpoint, which
reaches zero at the radius. Figure 10 depicts on the left an isolated hill and on the right the
model after performing several iterations.

To generate a complete terrain, two things must be kept in mind. First, the equation shown
above will yield a negative result if the point being calculated is farther from the centerpoint
than the radius. When this happens, the negative value is ignored. Second, when two hills
overlap their heights are added to each other. This gives nice amorphous lumps instead of
obvious perfectly round bumps.

3 THE GHT MODEL

As presented in Section 2, heightmaps offer a good balance between complexity and perfor-
mance. However, this balance is broken when trying to capture terrains with overhangs. The
GHT model presented in this work is a generalization of the heightmaps that easily accounts
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Figure 7: 3D terrain model generated with the diamond-square technique.




Figure 8: Fault formation. Dividing the height field.

Figure 9: Fault formation. Terrain height map evolution as the number of iterations increases.
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Figure 10: Left: Isolated hill. Right: The model after several iterations.



for both overhangs and tunnels while basically keeping the simplicity of heightmaps. It is
specially well suited to capture terrains built through a sculpting process from an initial 2D
grid of terrain elevations.

3.1 Definitions

The model definition is rather simple. The grounded heightmap tree is a tree where the nodes
are grounded heightmaps and the edges are pointers to other grounded heightmaps.

A grounded heightmap is a ground plane along with an axis alligned 2D array of data cells.
The ground plane is defined by a point and the direction vector. Each data cell contains a
height measured with respect to the ground plane along its direction vector, and a pointer
to some data cell in a different grounded heightmap. To properly manage carvings and
hangovers, the GHT model includes the type tag which distinguishes whether a grounded
heightmap is an outdoor area, is an indoor area (carving or hangover) or is a heightmap which
defines the transition between indoor and outdoor areas. Figure 11 shows the GHT datatype
definition using C-like notation.

3.2 Model Construction

Constructing a GHT model starts with just one grounded heightmap whose ground plane is
the XZ plane with the Y axis as direction vector, and whose 2D array of values gives the
terrain elevations with respect the ground plane. No overhangs are included. The height data
can be defined, for example, by hand or captured from satellite data. The links to grounded
heightmaps are all null.

The initial GHT model is edited by applying a series of basic operations or events. The
algorithm in Figure 12 illustrates this process. If ght is a properly initialized GHT model
and e is the event to be applied, first the heightmap, hmap, on which the editing will take
place is identified. hmap is the deepest heightmap in the GHT model such that includes the
terrain region affected by the event and whose cells contain either a height or a valid link
to a grounded heightmap. Then a set of new heightmaps configured according to the type
of event, that we will define later on, is created. These heightmaps contain also information
needed to place them with respect to the hmap heightmap. To apply the event means to
assign to the new nodes the information that locally describes the terrain according to the
event considered. Finally the new heightmaps are attached to the GHT model through the
hmap.

Procedure ApplyEvent () considers two families of events: geotectonic and carvings. Geotec-
tonic events include linear and radial erosions and, normal, inverse and lateral faults. Carvings
include tunnels and caves. Each basic operation is defined by a set of parameters and the
effect on the terrain will depend on the specific values assigned to them when the operation
is triggered. Next we detail how each family of events is applied.

Figure 13 illustrates the geometry generated by the geotectonic events we consider. Linear
erosion needs four grounded heightmaps and is defined by two points and an scalar. Points
fix the position and length of the erosion, the scalar fixes the erosion depth. Radial erosion
needs one grounded heightmap and is defined as an ellipsoid given by the radii and center.



typedef struct{

DataArray data;
GroundPlane gplane;
GroundedHeightmap *child;
TerrainType type;

} GroundedHeightmap;
typedef DataArray DataCell [1..N][1..N];
typedef struct{

int height;
LinkGHM 1link;

} DataCell;

typedef struct{
CelllIndex index;
GroundedHeightmap *gh;

} LinkGHM;

typedef struct{
int 1i;
int j;

} CelllIndex;
typedef struct{
Point3D point;
Vector3D mnormal;
} GroundPlane;
typedef struct{
float x, y, z;
} Point3D;
typedef struct{
float x, y, z;
} Vector3D;
typedef enum {
QUTDOOR, INDOOR, BORDER
} TerrainType;

Figure 11: Grounded Heightmap datatype.

procedure DispatchEvent (ght, e)
hmap := IdentifyHmap (ght, e)
newheightmaps := CreateHeightmaps (hmap, e)
ApplyEvent (hmap, e, newheightmaps)
AttachNewHeightmaps (hmap, newheightmaps)
endprocedure

Figure 12: Editing the GHT.
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Figure 13: Geotectonic operations on GHT models.

Parameters in faults are defined by two points that define position and length, plus an scalar
that fixes the terrain surface area affected by the event. Normal and inverse faults need three
grounded heightmaps and lateral faults need two grounded heightmaps.

The algorithm in Figure 14 describes how geotectonic events are dealt with. First for each
new heightmap in the event, the boundaries of the affected local terrain region are projected
onto the XZ plane. Then for each cell in the 2D array of the new heightmap within the
projected boundaries of the affected region, we apply the following process. If the current
new heightmap and hmap have the same orientation and the hmap cell is a height, the new
heightmap cell value is the height in hmap. If the hmap cell is a link, the new heightmap cell
is a link to the considered hmap cell.

When the new heightmap and hmap have different orientations the situation is a little bit more
complex. We have to assign to the cells in the new heightmap values taken from hmap. Since
the groundplane of the new heightmap is at an angle with the hmap groundplane, in general,
the 2D cell array of the new heightmap has more cells than that of hmap. Height values for
the extra cells in the new heightmap are computed applying a simple linear interpolation.

After defining a new heightmap, those cells in hmap whose values have been transferred to
the new heightmap no longer represent a valid height. Therefore the links in hmap point to
the corresponding cells in the new heightmap. Finally to preserve GHT continuity each cell
in the boundary of a new heightmap is linked to the neighbor cell in another heightmap.

Carving events are defined in two steps. First a protovolume is defined by sweeping a cross
section along a rectilinear axis. Then the carving is generated by subtracting the protovolume
from the terrain model.

The protovolume is characterized by two points, a polygonal cross section, and two scalars.
The two points define both the axis and span of the protovolume. The polygonal cross section
defines the carving cross shape. Each scalar is used to scale respectively the cross section to
its actual size at the beginning and at the end of the protovolume. The number of grounded
heightmaps in a carving tunnel is the number of sides in the polygonal cross section plus two
heightmpas that define the indoor-outdoor borders. The groundplanes of these heightmaps
are coincident with the XZ plane. In the carving cave, we have one heightmap that defines
the cave entry and another one that defines the cave end. Carving events can be applied only
on the GHT root node since so far we only support them on the XZ plane. Figure 15 left
illustrates the shape generated by tunnel carving. Figure 15 right depicts the shape generated
by carving a cave.

The carving process algorithm its outlined in Figure 16. First the algorithm extracts from
the event heightmaps, newheightmaps, those that define the carving walls, iheightmaps, and



procedure GeotectonicEvent (hmap, e, newheightmaps)
for hm in newheightmaps do
bound := ComputeBoundary (hm, e)
if SameOrientation(hmap, hm) then
FillData(hmap, hm, e, bound)
else
FilllnterpolatedData(hmap, hm, e, bound)
endif
UpdateHmap(hmap, hm)
PreserveGHT Continuity (hmap, hm, e, bound)
endfor
endprocedure

Figure 14: Geotectonic event algorithm.

Figure 15: Carving events.
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procedure CarvingEvent(ght, e, newheightmaps)
BorderInnerNodes (newheightmaps, iheightmaps,
bheightmaps)
for hm in bheightmaps do
bound := ComputeBorderBoundary (ght, hm, e)
FillBorderData(ght, hm, e, bound)
LinkRootToBorder(ght, hm, e, bound)
UpdateHmap(ght, hm)
endfor
for hm in iheightmaps do
bound := ComputelnnerBoundary (ght, hm, e)
FillNoiseData(hm, bound)
endfor
LinkBorderTolnner(bheightmaps, iheightmaps)
LinkRingInner (iheightmaps)
endprocedure

Figure 16: Carving process algorithm.

the heightmaps of the indoor-outdoor borders, bheightmaps.

For each indoor-outdoor border heightmap, first the set of cells that define the heights for
the carving cross section, bound, is computed. To preserve model continuity, bound cells are
linked to their neigbour cells in hm. Heightmap cells where the cross section is projected are
assigned as empty cells. After defining a border heightmap, those cells in hm corresponding
to empty cells in the border heightmap must be labeled as null links.

For each wall heightmap first the set of cells that defines the height values is computed. Then
the heights are defined as a smooth noise.

Finally, to preserve continuity, border-inner and inner-inner heighmaps links are stablished.

4 IMPLEMENTATION AND RESULTS

The algorithms have has been implemented on a Pentium M 1.73 GHz, with 1GB RAM,
nVidia Geforce Go 6600 with 256 MB. The graphics API used was OpenGL and the GLUT
library was used for events and window management. Digital elevation models consisted of
heightfields with 128x128 cells.

To test the model performance, we have conducted two sets of experiments that we briefly
describe in what follows. Related pictures and videos are available at [1].

4.1 Single Events

The first set of experiments consisted in applying a number of single events on a given terrain.
Each event was applied on a fresh terrain. Figure 17 illustrates the results generated by linear
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Figure 17: Linear and radial erosions. Left) Ground heightmap planes. Middle) 3D wireframe
view. Right) 3D solid view.

and radial erosions and Figure 18 the results generated by the normal and inverse faults.

Figure 19 illustrates the results generated by carving a tunnel while Figure 20 shows the
terrain after carving a cave.

Figure 21 shows the final terrain generated after applying two tunnel operations. On the left
a 3D wireframe of the terrain is shown. On the right the terrain has been rendered applying
textures on a skybox background.

4.2 Sequence of Events

The second set of experiments included a number of overlapping events applied in sequence
to a given terrain yielding a complex model.

Pictures in the first row of Figure 22 show on the left side the fresh terrain as a wireframe
and on the right side as a solid 3D view. In the middle row, Figure 22 shows the resulting
terrain after applying a series of single editing operations. In the bottom, Figure 22 depicts
the set of ground planes in the GHT model corresponding to the fresh terrain plus the series
of operations.

The GHT tree structure corresponding to the terrain model shown in Figure 22 is given
in Figure 23. Cells in gray are those that store the height according to the local ground
plane. Cells in red are links to other GHT nodes. Blue cells are those cells whose data is not
significative.

As a proof of concept, we have developed a small application to edit a fresh terrain by applying
radial erosions. Each erosion is defined as the result of crashing a material particle on the
terrain surface according to a fixed erosion law. Figure 24 shows the rain of material particles,
depicted in yellow, crashing on the terrain represented from left to right by the ground planes,
a wireframe and a textured terrain.

Figure 18: Normal and inverse faults. Left) Ground heightmap planes. Middle) 3D wireframe
view. Right) 3D solid view.

12



Figure 19: Carving tunnels. Left) Heightmap plane wireframe. Middle) 3D wireframe. Right)
3D solid view.

Figure 20: Carving caves. Left) Heightmap plane wireframe. Middle) 3D wireframe. Right)
3D solid view.

Figure 21: Terrain with two tunnels. Left) 3D wireframe view. Right) Textured 3D solid
view with skybox.

13



Figure 22: Complex model. Up left) Original heightmap 3D wireframe. Up right) Original
heightmap 3D solid view. Middle left) Wireframe after applying some events. Middle right)
Solid view after applying some events. Bottom) Set of ground planes in the final GHT.

-
T —

=

Figure 23: GHT tree of a complex model.

Figure 24: Landscape generated by shooting on a fresh terrain.
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5 SUMMARY

In this work we have proposed the Grounded Heightmaps Tree (GHT) as a new terrain model
which is a generalization of heightmaps that overcomes limitations inherent to them like
capturing terrain overhangs and carvings.

Besades, we have defined a set of operations to allow editing the terrain. There are two
falimilies of operations: geotectonic events and carvings. The first family has been designed
to mimic geotectonic events like linear and radial erosions; normal, inverse and lateral faults.
The second family includes carving tunnels and caves.

We have conducted a series of experiments to test the model and associated operations per-
formance. Preliminary results show that they are both effective and efficient.
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