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Abstract. We study Network Max-Congestion Games (NMC games,
for short), a class of network games where each player tries to minimize
the most congested edge along the path he uses as strategy. We focus
our study on the complexity of computing a pure Nash equilibria in
weighted NMC games. We show that, for single-commodity games with
non-decreasing delay functions, this problem is in P when either all the
paths from the source to the target node are disjoint or all the delay
functions are equal. For the general case, we prove that the computation
of a PNE belongs to the complexity class PLS through a new technique
based on semi-potential functions and a slightly modified definition of
the usual local search neighborhood. We further apply this technique to
a different class of games (which we call Pareto-efficient) with restricted
cost functions. Finally, we also prove some PLS-hardness results, showing
that computing a PNE for Pareto-efficient NMC games is indeed a PLS-
complete problem.

1 Introduction

During the last years, a great effort has been devoted to the development of
mathematical tools for the modelling of computer networks such as the Internet.
Given the decentralized and non-cooperative nature of these networks, Game
Theory [1] arises as one of the most suitable instruments to characterize the
behaviour of its selfish users1. Network Congestion Games, for instance, provide
a useful means of studying the behaviour of such users when they try to minimize
the total congestion of the network paths through which they route their packets.
One of the fundamental and most studied concepts of Game Theory is that of
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1 As stated by C. Papadimitriou on his seminal paper [2], “... the mathematical tools
and insights most appropriate for understanding the Internet may come from a fusion
of algorithmic ideas with concepts and techniques from Mathematical Economics and
Game Theory”.
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the Nash Equilibrium [3], which intends to describe stable states of the system,
i.e. states in which no user has an incentive to unilaterally change his route in
the network.

In this article, we study a model of network games which has not received
much attention until the moment, and which we call Network Maximum Con-
gestion Games (NMC games). In this class of games, players try to minimize
the congestion of the most congested link (instead of the sum of congestions of
all links, as it happens in classical Network Congestion Games) of the network
path they use. We believe that the study of this new model may be useful in a
context where the bandwidth of the network is limited and users want to route
their packets through paths with minimum bandwidth usage. Our study is fo-
cused on the analysis of the computational complexity of computing pure Nash
Equilibria (PNE) in some types of Network Congestion Games.

Statement of results. We consider the general case where all players may have
different weights, as well as different kinds of delay functions. We show that the
cost functions, which depend essentially on these weights and delay functions,
strongly affect the complexity of the PNE computation.

After giving some formal definitions in Sect. 2, in Sect. 3 we study the prob-
lem of computing a PNE for weighted single-commodity NMC games with non-
decreasing delay functions. If we consider only network topologies where all the
(s-t) paths are disjoint, then the problem can be solved in polynomial time. For
general network topologies, the problem remains polynomial-time computable
as long as all the edges have identical delay functions. For general NMC games,
though, we prove that the same problem belongs to PLS. Since there are games
of this kind which have no potential function [4], our proof relies on an alterna-
tive technique based on what we call semi-potential functions and on a particular
neighborhood structure. As far as we know, this is the first time that the prob-
lem of computing a PNE for a game is expressed as a local search problem in
which the cost function to be minimized is not a potential function.

In Sect. 4, we investigate the hardness of computing a PNE for a different
kind of NMC games, which we call Pareto-efficient games and which have the
property that no player can worsen the cost that other players assume by im-
proving his own strategy. Following the aforementioned technique, we show that
Pareto-efficient games always have a PNE and that its computation can also be
expressed as a PLS optimization problem. Furthermore, we prove that is is a
PLS-complete problem through a PLS-reduction from the Maxcut problem.

Related Work. With respect to the class of Network Congestion Games, most of
the issues we study here have already been addressed. Any unweighted Conges-
tion Game (including those defined over networks) possesses at least one Pure
Nash Equilibria [5], whereas there exist weighted games with piecewise delay
functions which possess no PNE [6]. However, weighted games with linear delay
functions do always possess a PNE [7]. The computation of a Pure Nash Equi-
libria can be carried out in polynomial time in single-commodity unweighted



Network Congestion Games, while the same problem is, in general Network Con-
gestion Games, PLS-complete (see [8] for the first proof or [9] for a simpler but
later one).

With respect to Network Max-Congestion games, their study has been ini-
tialized in [10, 4, 11, 12]. All these papers analyze the existence of PNE as well as
other aspects. Libman and Orda [10] prove the existence of a PNE for weighted
single-commodity NMC games with increasing delay functions. They also ana-
lyze parallel links games with a broad class of residual capacity functions, a case
where max-congestion games cannot be distinguished from traditional conges-
tion games. Fotakis et al. [13] deal with weighted parallel links NMC games with
a specific type of linear delay functions, and show that a PNE always exists and
can be computed in polynomial time.

Caragiannis et al. [4] present some results with respect to the existence and
complexity of PNE for NMC games with again a specific type of linear delay
functions. It is shown that these games always have PNE, and that the com-
putation of the best PNE is NP-complete for weighted single-commodity NMC
games but can be done in polynomial time for unweighted NMC games where
all users share either the source or the target nodes.

Finally, Banner and Orda [11] consider both weighted NMC games with
splittable and unsplittable traffic, the former being games where the players can
split their traffic among different paths, the latter being our scenario. They prove
the existence of PNE for both cases when the delay functions are continuous and
increasing, and show that best response dynamics for the unsplittable case always
converge, though it may take an exponential number of steps to do so. They also
investigate the efficiency of the PNE with respect to the social optimum and show
that computing an optimal PNE is NP-hard.

2 Definitions and Preliminaries

A Strategic game can be formally defined as a tuple Γ = (N, (Pi)i∈N , (ci)i∈N )
where N is a set of n ≥ 2 players and, for each player i ∈ N , Pi is a set of
actions or strategies available to him and ci : Π = P1 × · · · × Pn → R his cost
function. Each element π of this set Π is said to be a strategy profile (profile,
for short) and reflects the choice of each player. Given a profile π = (p1, . . . , pn),
we say that pi ∈ Pi is the strategy chosen by player i ∈ N in π, while ci(π) is
the cost assumed by the same player under that same profile π. We denote by
(π−i, p) the strategy profile resulting from replacing by p the strategy of player
i in π.

If the cost functions of a strategic game are defined in such a way that all
the improving movements that a player may do provoke no harm to the other
players, that is, if for any profile π, player i and strategy p ∈ Pi it holds that
ci(π−i, p) < ci(π) ⇒ ∀j ∈ N cj(π−i, p) ≤ cj(π), then we say that the game is
Pareto-efficient.



A strategy profile π = (p1, . . . , pn) is a Pure Nash Equilibrium (PNE) if for
each player i ∈ N and for each strategy p ∈ Pi that player i may adopt, it
holds that ci(π) ≤ ci(π−i, p) (that is, all players are satisfied with their current
strategies).

Both weighted Congestion Games and Max-Congestion Games are strategic
games defined by a tuple Γ = (N,E, (Pi)i∈N , (wi)i∈N , (de)e∈E), where now the
set of actions Pi ⊆ 2E available to each player i ∈ N is composed by a number of
subsets of the set of resources E. In addition, each player i has a weight wi ∈ IN+.
We say that a (max-) congestion game is unweighted if all players have equal
weight2. Finally, each resource e ∈ E has a delay function de : IN→ IR, which we
assume to be polynomial-time computable. When considering only games with
non-decreasing delay functions, we call them non-decreasing delay games.

In this two classes of games, the cost function is given implicitly by means
of these weights and delay functions. We say that, under a given strategy profile
π = (p1, . . . , pn), the load λe(π) of the resource e ∈ E is the total weight of
the players using it, λe(π) =

∑
{i∈N | e∈pi} wi, and the delay (or the congestion)

caused by resource e is de(λe(π)). The cost assumed by the players is then
computed as a function of the delays caused by the different resources he is
using. For congestion games, the cost assumed by player i under profile π is
ci(π) =

∑
e∈pi

de(λe(π)), whereas for max-congestion games this cost is defined
as ci(π) = maxe∈pi

de(λe(π)).

Network Congestion Games and Network Max-Congestion Games are con-
gestion games where the sets of strategies of the players are concisely rep-
resented by means of a directed graph. These games are defined by a tuple
Γ = (N,G, ((si, ti))i∈N , (wi)i∈N , (de)e∈E(G)), where G is a directed graph, the
resources are the edges of the graph and the set Pi ⊆ 2E(G) of strategies avail-
able to each player i ∈ N is the set of all paths from his origin node si to his
destination node ti (that is, the set of all (si-ti) paths, where by (s − t) path
we mean path from s to t). Note that these paths are not given explicitly. As
before, we denote by λe(π) the load of edge e in the strategy profile π, and
each edge causes a delay de(λe(π)). The cost assumed by player i under pro-
file π is ci(π) =

∑
e∈pi

de(λe(π)) when we are dealing with network congestion
games, whereas this cost is ci(π) = maxe∈pi

de(λe(π)) in the case of network
max-congestion games.

When all players have the same pair of nodes (si, ti) = (s, t), we say that the
network (max-) congestion game is single-commodity ; otherwise, we say that it
is multi-commodity. We will also consider the specific case of single-commodity
games called parallel links network [14], where the graph is made up exclusively
of a set of edges between the nodes s and t.

The function φ : Π → IR is said to be an ordinal potential for a strategic
game Γ = (N, (Pi)i∈N , (ci)i∈N ) if for every π ∈ Π, i ∈ N , p ∈ Pi, it holds that

2 From now on, we will refer to weighted games unless explicitly stated.



ci(π−i, p) < ci(π) ⇔ φ(π−i, p) < φ(π), and it is said to be an exact potential if
for every π ∈ Π, i ∈ N , p ∈ Pi, it holds that ci((π−i, p))− ci(π) = φ((π−i, p))−
φ(π). It can be easily seen that every game that possesses an ordinal potential
function (which is called an ordinal potential game) has a PNE [15]. It is also
well-known that every unweighted congestion game is a potential game (i.e., a
game possessing an exact potential function) [5], and that every (finite) potential
game is isomorphic to an unweighted congestion game [15].

Finally, an optimization problem with a given neighborhood structure be-
longs to the complexity class PLS (for Polynomial-time Local Search) [16] if (a)
all solutions are polynomially bounded and an initial solution can be computed
in polynomial time, (b) the cost of any solution can be computed in polynomial
time and (c) given a solution, we must be able in polynomial time to decide if it
is locally optimal with respect to the given neighborhood structure and, if not,
to compute a neighboring solution with better cost.

3 Non-decreasing Delay NMC Games

We first study NMC games with non-decreasing delay functions, and identify
some cases for which the computation of a PNE can be done in polynomial
time.

3.1 A polynomial time upper bound for some particular cases

We present an algorithm that computes PNE profiles for some kinds of weighted
single-commodity non-decreasing delay. The algorithm BDP (for Best Disjoint
Path) proceeds in two phases. First, it computes a maximal set M of (s − t)
disjoint paths, and then it assigns players to paths in M step by step: at each
step, the player i with maximum weight (from the set of players still unassigned)
is assigned to the path p ∈ M that yields him the minimum cost, that is, the
path that minimizes the value maxe∈p de(λe(π) + wi), where π is the (partial)
strategy profile we are constructing. Let’s now analyze the properties of the
profiles computed by the algorithm.

Lemma 1. After each iteration of the BDP algorithm, no player already as-
signed to some path in the (partial) profile π has an incentive to change his
strategy for another path from M .

Proof. The claim obviously holds after the first iteration. By induction, suppose
that it also holds for the (partial) profile πk obtained after the k-th iteration, let
i be the player assigned to path p on the iteration k + 1 and let us consider the
profile πk+1 = (πk

−i, p) computed after this (k+1)-th iteration. By construction,
player i is satisfied with his strategy in πk+1.

Let’s now suppose that for some player j already assigned to p in πk there
is an incentive to change his strategy to another path p′ ∈M . This means that
maxe∈p′ de(λe(πk)+wj) < maxe∈p de(λe(πk)+wi). Since wi ≤ wj and the delay



functions are non-decreasing, maxe∈p′ de(λe(πk)+wi) ≤ maxe∈p′ de(λe(πk)+wj),
but this implies that maxe∈p′ de(λe(πk) + wi) < maxe∈p de(λe(πk) + wi), which
contradicts the fact that p has been chosen to minimize this last value. Thus, no
player assigned to p has incentive to change his strategy.

Now, let us suppose that for some player j assigned to a path p′ 6= p ∈ M
there is an incentive to change his strategy to another path in M . The cost
induced by paths different than p has clearly remained unchanged from πk to
πk+1 (since we are considering only disjoint paths), while the cost induced by
path p cannot be lower in πk+1 than in πk, for the delay functions are non-
decreasing. Thus, this contradicts our inductive hypothesis that all players in πk

were satisfied with their path. Hence, all players in πk+1 are satisfied. ut

For graphs where all the (s − t) paths are disjoint (which include parallel
links), the set M computed by the BDP algorithm coincides with the set of all
the strategies available to players. Hence, the computed profile is a PNE.

Corollary 1. For single-commodity NMC games where the graph consists only
of a number of (s− t) disjoint paths, the profile computed by the BDP algorithm
is a PNE.

Also, if we consider general graph topologies but we restrict the delay func-
tions of the edges to be identical, we have that, although there may be strategies
other than the disjoint paths, none of them will yield a better cost.

Corollary 2. For single-commodity NMC games where all the delay functions
are identical, the profile computed by the BDP algorithm is a PNE.

Proof. Notice that the profiles computed by the algorithm have the property
that, for any path p ∈ M , all edges e ∈ p have the same load λe. Thus, we
now have that the delay induced by all edges of p is equal. Since M is maximal,
any (s − t) path p′ shares at least one edge e with some path p ∈ M , and this
edge e induces a delay equal to the delay induced by the whole path p. Hence,
a player choosing p′ would have to assume a cost at least as large as if he chose
p, which (by the previous lemma) is no better than the cost of the path he has
been assigned to in π. ut

Given that a maximal set of disjoint paths can be obtained in polynomial
time and that our algorithm runs also in polynomial time, we can state the
following theorem.

Theorem 1. A PNE can be computed in polynomial time for both (a) Weighted
single-commodity NMC games with identical non-decreasing delay functions and
(b) Weighted single-commodity NMC games with non-decreasing delay functions
where all the (s− t) paths of the graph are disjoint.



3.2 A PLS upper bound for the general case

Now we move to the study of multi-commodity NMC games. The next lemma
states that there exists a total ordering among strategy profiles that has an
important property.

Lemma 2. Let A(π) be a tuple A(π) = (ci1(π), ci2(π), . . . cin
(π)) such that

ci1(π) ≥ ci2(π) ≥ · · · ≥ cin
(π). Let <l: INn → INn be the usual (total) lex-

icographical order defined over all possible pairs of tuples A(π), A(π′). Let Γ
be a non-decreasing delay NMC game and π, π′ two strategy profiles such that
π = (π−i, p) and π′ = (π−i, p

′) for some strategies p 6= p′ of player i. Then,

ci(π′) < ci(π)⇒ A(π′) <l A(π)

Proof. The proof of the statement follows from the proof of Theorem 3 in [11]
(which can be directly generalized to the case of arbitrary non-decreasing delay
functions). ut

This ordering suggests a natural way to prove the existence of PNE profiles.

Theorem 2 ([11]). Any non-decreasing delay NMC game has a PNE.

Proof. Since Π is finite, there must exist a profile π∗ ∈ Π such that ∀π ∈
Π A(π∗) <l A(π). Suppose that, in π∗, a player i has incentive to change his
strategy to p′; then, by Lemma 2 we have that A(π∗−i, p

′) <l A(π∗), a contradic-
tion. Thus, π∗ is a PNE. ut

Notice that, unlike what happens with unweighted congestion games, there
exist unweighted non-decreasing delay NMC games which have no potential func-
tion [4], so the existence of PNE profiles cannot be proved directly by means of
this potential function. Furthermore, the absence of a potential function also
prevents us to directly prove (as it can be proved for congestion games, see [8])
that the computation of a PNE for this kind of games is in PLS.

However, consider the function γ that maps each profile π to the value of
A(π) seen as a n-digit number in base D + 1 (that is, γ(π) =

∑
0≤j≤nA(π)j ·

(D+1)j), where D = maxe∈E de(W ) and W =
∑

i∈N wi. It can be seen that γ is
computable in polynomial time and that A(π′) <l A(π)⇔ γ(π′) < γ(π), for any
π, π′ ∈ Π. Recalling Lemma 2 and the definition of an ordinal potential function,
it thus seems appropriate to call this function a semi-potential function, since it
meets only one of the two implications of the definition. The use of this function
(together with a special definition of the neighborhood structure of the search
problem, as we will see) allows us to prove the aforementioned membership in
PLS.

Theorem 3. Computing a PNE for weighted multi-commodity non-decreasing
delay NMC belongs to PLS.



Proof. Consider the search problem of finding a local optimum of γ, where the
set of feasible solutions contains all valid strategy profiles of our game and the
neighborhood N(π, Γ ) of a solution π is the set of all profiles π′ where exactly
one player has changed his strategy for a better one:

N(π, Γ ) = {π′ ∈ Π | ∃i ∈ N ∃p ∈ Pi π
′ = (π−i, p) ∧ ci(π′) < ci(π)}

Notice that this last condition (ci(π′) < ci(π)) implies that (i) the neigh-
borhood of π is empty if and only if π is a PNE and (ii) For any neighbor
π′ ∈ N(π, Γ ) of a given profile π, it holds that γ(π′) < γ(π) (by definition of γ
and Lemma 2). Thus, finding a PNE is equivalent to finding a local minimum
of the function γ with respect to the neighborhood defined above.

This search problem belongs to PLS, since (a) an initial solution can be
produced in polynomial time by assigning to every player an arbitrary strategy,
(b) The cost γ(π) of any profile π can be computed in polynomial time. (c)
deciding whether N(π, Γ ) = ∅ (i.e. π is a local optimum) or, if this is not the
case, computing a strategy profile π′ ∈ N(π, Γ ) s.t. γ(π′) < γ(π) can be done
in polynomial time using a modification of the Dijkstra algorithm where the
shortest path computation is done considering that the length of an edge e is
de(λe(π)) and the length of a path p is maxe∈p de(λe(π)). ut

Notice that the previous proof can be immediately generalized to the case of
general max-congestion games. We only have to see that, since the representation
of the game explicitly contains the set of actions for each player, deciding if a
given profile is a local optimum with respect to the neighborhood can be done
in polynomial time by computing the cost of all neighbors of the profile.

As we stressed before, the neighborhood used in the above proof is not the
neighborhood that one may initially think of when considering the nature of
games (see, for instance, [8, 17]), where the neighbors of a given profile π are all
profiles π′ = (π−i, p) (for some i ∈ N and p ∈ Pi). Given that max-congestion
games are not potential games and that we only have at our disposal a semi-
potential function, we have to restrict the neighbors to those profiles where the
deviating player improves his cost in order to get a search problem whose local
optima coincide with the PNE profiles of the game.

Finally, let us say that the requirement of the delay functions being non-
decreasing is essential to the proof of Lemma 2, so the above technique can
not be trivially extended to games with arbitrary delay functions. In the next
section, though, we will see a particular class of games with delay functions
that are not restricted to be non-decreasing which does actually possess a semi-
potential function. This will allow us to prove that the problem of computing a
PNE for this class of games belongs to PLS.

4 Hard NMC Games

Let σ denote the function σ(π) =
∑

i∈N ci(π). For Pareto-efficient games, we
have that whenever a player changes his strategy to decrease his cost, the cost



assumed by the rest of players does not increase. Thus, the sum of all costs
strictly decreases.

Proposition 1. Let Γ be a Pareto-efficient game and π, π′ two strategy profiles
such that π = (π−i, p) and π′ = (π−i, p

′) for some strategies p 6= p′ of player i.
Then,

ci(π′) < ci(π)⇒ σ(π′) < σ(π)

Note that the implication holds only in one direction, so all we can say about
σ is that it is a semi-potential function, but not a potential one. The existence
of this function makes it possible to use the same proof ideas that we used in the
previous section to prove both the existence of PNE profiles and the membership
in PLS of the problem of computing them in this kind of games.

Theorem 4. Any Pareto-efficient game has a PNE.

Proof. The proof is analogous to the proof of theorem 2; the profile π∗ that
minimizes σ(π∗) is again a PNE. ut

The problem of computing a PNE for Pareto-efficient NMC games can be
seen to be equivalent to the problem of finding a local optimum of the function
σ.

Theorem 5. Computing a PNE for weighted multi-commodity Pareto-efficient
NMC is in PLS.

Proof. This problem is equivalent to the problem of finding a local minimum of
the function σ with respect to the neighborhood defined in the proof of theorem 3.

Notice that this result can be directly extended to Pareto-efficient strategic
games the sets of strategies of each player are explicitly given.

Corollary 3. Computing a PNE for Pareto-efficient strategic games is in PLS.

Although the Pareto-efficiency may seem too strong a restriction, we next
prove that the computation of a PNE for Pareto-efficient weighted parallel links
NMC games is a PLS-hard problem. The proof is based on a PLS-reduction from
the Maxcut problem with the flip neighborhood, for which finding a local opti-
mum is known to be PLS-hard [18]. In this problem, we are given an undirected
graph with weights on the edges and we have to find a partition of the nodes
into two disjoint sets A and B such that the cut of the partition (i.e. the sum of
weights of edges between nodes assigned to different sets) cannot be increased
by changing one single node from A to B or vice versa.

Theorem 6. Computing a PNE for weighted Pareto-efficient parallel links NMC
games is PLS-hard.



Proof. Let’s define WT as the sum of weights of all edges and WA (and analo-
gously, WB) as the sum of weights of edges with both endpoints in A (B). Then,
the value of the cut is WT − (WA + WB), and maximizing it is equivalent to
minimizing WA +WB , since WT is fixed.

Now, given a Maxcut instance, we can define a weighted parallel links max-
congestion game in the following way. There’s one player for every node of the
original graph, and the weight of each player is used as a means of identifying
that player. Thus, the weight wi of player i is a binary number of length n where
the i-th digit is 1 and the rest of the digits are 0. The graph G of the game is a
simple graph with two nodes, s and t, and two parallel links e1 and e2 from s to
t. Finally, the delay function of both edges is defined as

d(l) =
∑

1≤i<j≤n
s.t. li=lj=1

wi,j +
∑

1≤i<j≤n
s.t. li=lj=0

wi,j

where li is the i-th digit of l and wi,j is the weight of edge (i, j). Intuitively,
player i choosing edge e1 can be thought of as node i being assigned to set A
(equivalently for edge e2 and set B). The delay of both edges is then WA +WB .
Thus, in any PNE the value WA +WB cannot be decreased by one player moving
from one edge to the other, so the partition of nodes of the Maxcut problem
induces a maximum cut with respect to the flip neighborhood. Besides, the
game is clearly Pareto-efficient, so the proof is complete. ut

The previous reduction implies the PLS-hardness of the computation of a
PNE for (a) weighted parallel links NMC games with arbitrary delay functions
(which strongly contrasts with the fact that the same problem is in P if we
only allow non-decreasing delay functions, see Theorem 1), (b) Pareto-efficient
weighted network congestion games (since there is no distinction between parallel
links NMC games and parallel links network congestion games) and (c) general
Pareto-efficient strategic games.

5 Discussion and Open Problems

We have presented a number of results related to the complexity of comput-
ing PNE strategy profiles, mainly for NMC games but also for general Pareto-
efficient strategic games. On one hand, we have identified some types of single-
commodity games for which the computation of a PNE profile can be done in
polynomial time, and we have provided an algorithm to carry out this compu-
tation. These are weighted single-commodity non-decreasing delay NMC games
where either all the delay functions are identical or all the (s − t) paths of the
graph are disjoint. Note that this result incidentally extends the class of paral-
lel links congestion games for which the computation of a PNE was known to
be in P [7], which now also includes games with arbitrary non-decreasing delay
functions.



On the other hand, we have seen that the computation of PNE for two broad
classes of NMC games (namely, non-decreasing delay NMC games and Pareto-
efficient NMC games) is a PLS problem; we believe that the technique we have
used to prove so can be extended to other classes of games for which there exists
a function such as the one presented in proposition 1, provided that some other
natural assumptions hold (for instance, we must be able to decide in polynomial
time if a given profile is a PNE or, if not, to compute a profile where one player
improves his cost). Thus, this semi-potential function technique may be useful to
prove PNE existence and PLS membership when polynomial-time computable
potential functions do not exist (or are not known to exist).

Finally, we have proved that there are some kinds of NMC games for which
computing a PNE profile is PLS-complete, though it remains open the question
about the hardness of this problem for general non-decreasing delay NMC games.
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