
Studying the grounded semantics by using a
suitable codi�cation

Juan Carlos Nieves a Mauricio Osorio b Ulises Cortés a

aTechnical University of Catalonia, Software Department (LSI), Spain
bUniversidad de las Américas - Puebla, CENTIA, México

Abstract

One of the most representative semantics of Dung's approach is the grounded se-
mantics. This semantics captures a skeptical approach, this means that given an ar-
gumentation framework the grounded semantics always identi�es a single set of argu-
ments, called grounded extension. It worth mentioning that the grounded semantics
approach is one of the most useful argumentation approaches in real argumentation-
based systems
As argumentation can be abstractly de�ned as the interaction of arguments for and

against some conclusion, a reasoning based on an abstract argumentation semantics
for describing the interaction arguments is as important as to �nd an extension of
an argumentation framework.
In this paper, we introduce a novel formal argumentation method based on normal

programs and rewriting systems which is able to

• describe the interaction of arguments during the process of inferring an extension,
and

• de�ne extensions of the grounded semantics based on speci�c rewriting rules which
perform particular kind of reasoning as in reasoning by cases.

Moreover, we point out that our codi�cation of an argumentation framework as a
normal program is a suitable codi�cation for studying other abstract argumentation
semantics as are the stable semantics and the preferred semantics.

Email addresses: jcnieves@lsi.upc.edu (Juan Carlos Nieves),
osoriomauri@googlemail.com (Mauricio Osorio), ia@lsi.upc.edu (Ulises
Cortés).

Technical Report: Technical University of Catalonia, Software Department (LSI)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The main purpose of argumentation theory is to study the fundamental mech-
anism, humans use in argumentation, and to explore ways to implement this
mechanism on computers. During the last years, argumentation has been gain-
ing increasing importance in Multi-Agent Systems (MAS), mainly as a vehicle
for facilitating rational interaction (i.e. interaction which involves the giving
and receiving of reasons). A single agent may also use argumentation tech-
niques to perform its individual reasoning because it needs to make decisions
under complex preferences policies, in a highly dynamic environment.

Although several approaches have been proposed for argument theory, Dung's
approach presented in [13], is a unifying framework which has played an in�u-
ential role on argumentation research and Arti�cial Intelligence (AI). Dung's
approach is regarded as an abstract model where the main concern is to �nd
the set of arguments which are considered as acceptable. The strategy for
inferring the set of acceptable arguments is based on abstract argumentation
semantics. The kernel of Dung's framework is supported by four abstract argu-
mentation semantics: stable semantics, preferred semantics, grounded seman-
tics, and complete semantics. From these semantics, the main semantics for
collective acceptability are the grounded semantics and the preferred semantics
[22,2]. The �rst one represents a skeptical approach, since for a given argumen-
tation framework it always identi�es a single extension, called grounded exten-
sion. The preferred semantics instead represents a credulous approach, since
for a given argumentation framework it identi�es a set of extensions which are
called preferred extensions. It is worth mentioning that the grounded exten-
sion is included in all the preferred extensions. This property supports the fact
that the grounded semantics is most adequate than the preferred semantics
for developing skeptical reasoning [3]. Also we can say that the grounded se-
mantics approach is one of the most useful argumentation approaches in real
argumentation-based systems [10,22,1,14].

Since Dung's framework was introduced in [13], it was showed that this ap-
proach can be viewed as a special form of logic programming with negation as
failure. In fact, this result was used for introducing a general logic program-
ming method for generating metainterpreters for argumentation theory. One
vital step of this method is to �nd a �exible and suitable translation of an
argumentation framework to a logic program in order to capture the kernel of
Dung's framework.

To �nd suitable translations for argumentation theory based on logic pro-
gramming is close related to �nd suitable codi�cations of an argumentation
framework as logic program. This is because there is a strong relationship
between the codi�cation and the logic programming semantics which will be

2

considered for characterizing the abstract argumentation semantics. For in-
stance, the codi�cation proposed by Dung in [13] is able to characterize the
grounded semantics with the Well-Founded Semantics (WFS [15]) and the
stable semantics with answer set models [16]. However it is not able to char-
acterize the preferred semantics.

It is quite obvious that a suitable codi�cation of an argumentation framework
should not only permit to characterize abstract argumentation semantics, but
also it ought to permit to perform a deep study about an abstract argumen-
tation semantics.

But, what is a suitable codi�cation for argumentation theory? Based on the
fact the grounded semantics and the preferred semantics are the main seman-
tics for the argumentation community [22,2], one can impose that a suitable
codi�cation must be able, at least, to characterize both. Also, since the sta-
ble semantics could be regarded as an intermediate semantics between the
grounded semantics and the preferred semantics, one could expect that a suit-
able codi�cation must characterize the stable semantics. An extra point about
a suitable codi�cation is that since some authors have been pointed out that
these semantics have some drawbacks [22,9,4], it is important that a suitable
codi�cation must allow to de�ne extensions of these semantics.

The main issue of this paper is to explore a suitable codi�cation which is
enough �exible for characterizing the grounded semantics, the stable seman-
tics and the preferred semantics. In particular, we present a frame of exten-
sions of the grounded semantics which are intermediate semantics between the
grounded semantics and the preferred semantics. All these semantics have as a
common point a suitable logic program and the only di�erence between them
is the logic programming semantics which is applied to the logic program. One
of the outstanding properties of these semantics is that they are polynomial
time computable.

Also by taking advantage of our suitable codi�cation, we are able to introduce
a novel formal argumentation method based on normal programs and rewriting
systems which is able to:

• describe the interaction of arguments during the process of inferring an
extension and,

• de�ne extensions of the grounded semantics based on speci�c rewriting rules
which perform particular kind of reasoning as in reasoning by cases.

The rest of the paper is structured as follows: In �2, we present some basic
concepts of logic programming, argumentation theory and rewriting systems.
In �3, we motivate the concept of suitable codi�cation of an argumentation
framework. After that in �4, a suitable codi�cation based on normal programs
is introduced. In �5, some extensions of the grounded semantics based on

3

our suitable codi�cation are presented. In �6, we present how to visualize the
interaction of arguments based on rewriting systems. In �7, we present a small
variation of the suitable codi�cation presented in �3. Finally, we present our
conclusions and proposals for future work.

2 Background

In this section, we �rst de�ne the syntax of a valid logic program, after that
we de�ne a characterization of Well-Founded Semantics (WFS) in terms of
rewriting systems and �nally we present some basic concepts of argumentation
theory.

2.1 Logic programs: Syntax

A signature L is a �nite set of elements that we call atoms. A literal is an
atom, a, or the negation of an atom ¬a. Given a set of atoms {a1, . . . , an},
we write ¬{a1, . . . , an} to denote the set of literals {¬a1, . . . ,¬an}. A normal
clause is of the form: a0 ← a1, . . . , aj,¬aj+1, . . . ,¬an, where ai is an atom,
0 ≤ i ≤ n. When n = 0 the normal clause is an abbreviation of a0 ← >,
where > and⊥ are the ever true and ever false propositions respectively. A
normal program is a �nite set of normal clauses. Sometimes, we denote a clause
C by a ← B+,¬B−, where B+ contains all the positive body literals and B−
contains all the negative body literals. We also use body(C) to denote B+,¬B−.
When B− = ∅, the clause C is called de�nite clause. A de�nite program is a
�nite set of de�nite clauses. We denote by LP the signature of P , i.e. the set
of atoms that occurs in P. Given a signature L, we write ProgL to denote the
set of all the programs de�ned over L.

2.2 Well-Founded Semantics

First of all, we present some de�nitions w.r.t. 3-valued logic semantics.

A partial interpretation based on a signature L is a disjoint pair of sets 〈I1, I2〉
such that I1∪I2 ⊆ L. A partial interpretation is total if I1∪I2 = L. Given two
interpretations I = 〈I1, I2〉, J = 〈J1, J2〉, we set I ≤k J if, by de�nition, Ii ⊆
Ji, i = 1, 2. Clearly ≤k is a partial order. We may also see an interpretation
〈I1, I2〉 as the set of literals I1∪¬I2. When we look at interpretations as sets of
literals then ≤k corresponds to ⊆. A general semantics SEM is a function on
ProgL which associates with every program a partial interpretation. Given a

4

signature L and two semantics SEM1 and SEM2, we de�ne SEM1 ≤k SEM2 if
for every program P ∈ ProgL, SEM1(P) ≤k SEM2(P). What are the minimal
requirements we want to impose on a semantics? Certainly we want the to
have the requirement that facts, i.e. rules with empty bodies, treated as being
true. Dually, if an atom does not occur in any head, then its negation should be
true. This gives rise to the following de�nition, which will play an important
role later.

De�nition 1 (SEM) For any logic program P , we de�ne HEAD(P) = {a| a ←
B+, ¬B− ∈ P} � the set of all head-atoms of P . We also de�ne SEM(P) =
〈P true, P false〉, where P true := {p| p ← > ∈ P} and P false := {p| p ∈
LP\HEAD(P)}.

We will use a characterization of WFS which is de�ned in terms of rewriting
systems. An abstract rewriting system is a pair 〈S,→〉 where → is a binary
relation on a given set S. Let→∗ be the re�exive, and transitive closure of→.
When x →∗ y we say that x reduces to y. An irreducible element is said to be
in normalform. We say that a rewriting system is

noetherian: if there is no in�nite chain x1 → x2 → · · · → xi → xi+1 → . . . ,
where for all ithe elements xi and xi+1 are di�erent,

con�uent: if whenever u →∗ x and u →∗ y then there is a z such that x →∗ z
and y →∗ z,

locally con�uent: if whenever u → x and u → y then there is a z such that
x →∗ z and y →∗ z.

In a noetherian and con�uent rewriting system, every element x reduces to a
unique normalform that we denote by norm(x).

Now, we de�ne some basic transformation rules for normal logic programs
which will be considered for characterizing WFS.

De�nition 2 (Basic Transformation Rules) [12] A transformation rule
is a binary relation on ProgL. The following transformation rules are called
basic. Let a program P ∈ ProgL be given.

RED+: This transformation can be applied to P , if there is an atom a which
does not occur in HEAD(P). RED+ transforms P to the program where all
occurrences of ¬a are removed.

RED−: This transformation can be applied to P , if there is a rule a ← > ∈ P .
RED− transforms P to the program where all clauses that contain ¬a in
their bodies are deleted.

Success: Suppose that P includes a fact a ← > and a clause q ← body such
that a ∈ body. Then we replace the clause q ← body by q ← body \ {a}.

Failure: Suppose that P contains a clause q ← body such that a ∈ body and
a /∈ HEAD(P). Then we erase the given clause.

5

Loop: We say that P2 results from P1 by LoopA if, by de�nition, there is a
set A of atoms such that 1. for each rule a ← body ∈ P1, if a ∈ A, then
body ∩ A 6= ∅, 2. P2 := {a ← body ∈ P1|body ∩ A = ∅}, 3. P1 6= P2.

Let CS0 be the rewriting system such that contains the transformation rules:
RED+, RED−, Success, Failure, and Loop. We denote the uniquely de-
termined normal form of a program P with respect to the system CS by
normCS(P). Every system CS induces a semantics SEMCS as follows:

SEMCS(P) := SEM(normCS(P))

In order to illustrate the basic transformation rules, let us consider the follow-
ing example.

Example 1 Let P be the following normal program:

d(b) ← ¬d(a). d(b) ← >. d(c) ← ¬d(b). d(c) ← d(a).

Now, let us apply CS0 to P . Since d(a) /∈ HEAD(P), then, we can apply
RED+ to P . Thus we get:

d(b) ← >. d(c) ← ¬d(b). d(c) ← d(a).

Notice that we can apply RED− to the new program, thus we get:

d(b) ← >. d(c) ← d(a).

Finally, we can apply Failure to the new program, thus we get: d(b) ← >.
This last program is the normal form of P w.r.t. CS0, because none of the
transformation rules from CS0 can be applied.

We use P1 →T P2 for denoting that we get P2 from P1 by applying the trans-
formation rule T to P1. All the rewriting systems that we consider in this
paper are con�uent and noetherian.

WFS is one of the most acceptable semantics in logic programming. It was
introduced in [15] and was characterized in terms of rewriting systems in [7].
This characterization is de�ned as follows:

Lemma 1 [7] CS0 is a con�uent rewriting system. It induces a 3-valued se-
mantics that it is the Well-founded Semantics.

6

2.3 Argumentation theory

Now, we de�ne some basic concepts of Dung's argumentation approach. The
�rst one is an argumentation framework. An argumentation framework cap-
tures the relationships between the arguments (All the de�nitions of this sub-
section were taken from the seminal paper [13]).

De�nition 3 An argumentation framework is a pair AF := 〈AR, attacks〉,
where AR is a �nite set of arguments, and attacks is a binary relation on
AR, i.e. attacks ⊆ AR × AR. We write AFAR to denote the set of all the
argumentation frameworks de�ned over AR.

� � � � � �

��� � �Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For
instance, if AF := 〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented as in Fig. 1.
We say that a attacks b (or b is attacked by a) if attacks(a, b) holds. Similarly,
we say that a set S of arguments attacks b (or b is attacked by S) if b is
attacked by an argument in S. For instance in Fig. 1, {a} attacks b.

De�nition 4 A set S of arguments is said to be con�ict-free if there are no
arguments A, B in S such that A attacks B.

Dung de�ned his semantics based on the basic concept of admissible set.

De�nition 5 (1) An argument A ∈ AR is acceptable with respect to a set S
of arguments if and only if for each argument B ∈ AR: If B attacks A then
B is attacked by S. (2) A con�ict-free set of arguments S is admissible if and
only if each argument in S is acceptable w.r.t. S. (3) An argument A ∈ AR
will be called defeated when it is attacked by an acceptable argument.

For instance, the argumentation framework of Fig. 1 has two admissible sets:
{a} and {a, c}. The (credulous) semantics of an argumentation framework is
de�ned by the notion of preferred extensions.

De�nition 6 A preferred extension of an argumentation framework AF is a
maximal (w.r.t. inclusion) admissible set of AF .

The only preferred extension of the argumentation framework of Fig. 1 is
{a, c}. The grounded semantics is de�ned in terms of a characteristic function.

De�nition 7 The characteristic function, denoted by FAF , of an argumenta-
tion framework AF = 〈AR, attacks〉 is de�ned as follows:

FAF : 2AR → 2AR

7

FAF (S) = {A| A is acceptable w.r.t. S }

De�nition 8 The grounded extension of an argumentation framework AF,
denoted by GEAF , is the least �xed point of FAF

In order to illustrate the de�nition, let us consider the argumentation frame-
work of Fig. 1. Then

F 0
AF (∅) := {a},

F 1
AF (F 0

AF (∅)) := {a, c},
F 2

AF (F 1
AF (F 0

AF (∅))) := {a, c},

since F 1
AF (F 0

AF (∅)) = F 2
AF (F 1

AF (F 0
AF (∅))), then GEAF = {a, c}. Therefore the

grounded extension of AF is {a, c}.

Another interesting semantics which was introduced in [13] is stable semantics.

De�nition 9 A con�ict-free set of arguments A is called a stable extension if
and only if S attacks each argument which does not belong to S.

Dung showed that this semantics coincides with the notion of stable solutions
of n-person games [13]. There is an interesting relationship between the stable
semantics and the preferred semantics which is that every stable extension is
a preferred extension, but not vice versa.

Dung [13] de�ned some important concepts w.r.t. the relationship between
arguments when they are taking part of a sequence of attacks.

• An argument B indirectly attacks A if there exists a �nite sequence A0, . . . , A2n+1

such that 1) A = A0 and B = A2n+1, and 2) for each i, 0 ≤ i ≤ 2n, Ai+1

attacks Ai.
• An argument B indirectly defends A if there exists a �nite sequence A0, . . . , A2n

such that 1) A = A0 and B = A2n and 2) for each i, 0 ≤ i ≤ 2n, Ai+1 attacks
Ai.

• An argument B is said to be controversial w.r.t. A if B indirectly attacks A
and indirectly defends A.

• An argument is controversial if it is controversial w.r.t. some argument A.

In [13], it was suggested a general method for generating metainterpreters in
terms of logic programming for argumentation systems. This is the �rst ap-
proach which regards an argumentation framework as a logic program. This
metainterpreter is divided in two units: Argument Generation Unit (AGU),
and Argument Processing Unit (APU). The AGU is basically the representa-
tion of the argumentation framework's attacks and the APU consists of two
clauses:

8

(C1) acc(X) ← ¬d(X)
(C2) d(X) ← attack(Y, X), acc(Y)

The �rst one (C1) suggests that the argument X is acceptable if it is not
defeated and the second one (C2) suggests that an argument is defeated if it
is attacked by an acceptable argument. Formally the Dung's metainterpreter
is de�ned as follows:

De�nition 10 Given an argumentation framework AF = 〈AR, attacks〉, PAF

denotes the logic program de�ned by PAF = APU + AGU where APU =
{C1, C2} and

AGU = {attacks(A,B) ← |(A,B) ∈ attacks}

For each extension E of AF , m(E) is de�ned as follows:

m(E) = AGU ∪ {acc(A)|A ∈ E}
∪ {defeat(B)|B is attacked by some A ∈ E}

Based on PAF , Dung was able to characterize the stable semantics and the
grounded semantics.

Theorem 1 [13] Let AF be an argumentation framework and E be an exten-
sion of AF. Then

(1) E is a stable extension of AF if and only if m(E) is an answer set of PAF

(2) E is a grounded extension of AF if and only if m(E)∪ {¬defeat(A)|A ∈
E} is the well-founded model of PAF

3 Suitable codi�cations

The problem of �nding suitable translations for argumentation theory based
on logic programming is close related to �nd suitable codi�cations of an ar-
gumentation framework as logic program. This is because there is a strong
relationship between the codi�cation and the logic programming semantics
which will be considered for characterizing the abstract argumentation se-
mantics. For instance, Dung characterized the grounded semantics with WFS
and the stable semantics with answer set models (see Theorem 1).

What is a suitable codi�cation for argumentation theory? Based on the fact
the grounded semantics and the preferred semantics are the main semantics
for the argumentation community [22,2], one can impose that a suitable cod-
i�cation at least must be able to characterize these semantics. Also, since

9

the stable semantics could be regarded as an intermediate semantics between
the grounded semantics and the preferred semantics, one could expect that a
suitable codi�cation must characterize the stable semantics. Moreover, since
some authors have been pointed out that these semantics have some draw-
backs [22,9,4], it is important that a suitable codi�cation must allow to de�ne
extensions of these semantics.

Before to introduce the de�nition of a suitable codi�cation, we will de�ne what
we understand when we say that a logic program semantics characterizes an
argumentation semantics. Formally, an argumentation semantics arg_SEM
is a function from AFAR → AR2.

De�nition 11 Given an argumentation framework AF := 〈AR, attacks〉, a
logic program P, a logic programming semantics SEM, and an argumentation
semantics arg_SEM. We say that SEM of P characterizes arg_SEM of AF
if the following conditions hold:

(1) for each model M inferred by SEM from P, there is an extension E in-
ferred by arg_SEM from AF such that there exists a function f such that
f(M) = E.

(2) for each extension E inferred by arg_SEM from AF , there is a model
M inferred by SEM from P such that there exists a function g such that
g(E) = M .

Informally speaking, the �rst condition says that if M is a model of P in a
given logic programming semantics, then M represents an extension of AF in
a given argumentation semantics. In the same way, the second condition says
that if E is an extension of AF in a given argumentation semantics, then E
represents a model of P in a given logic programming semantics.

Notice that in this de�nition, there is a strict relation one to one between
the models of P and the extensions of AF . This means that if we are char-
acterizing a skeptical argumentation semantics arg_SEM , then it must be
characterized by a skeptical logic programming semantics SEM . Also when
we are charactering a credulous argumentation semantics arg_SEM , it must
be characterized by a credulous logic programming semantics. By having it in
mind, we introduce our de�nition of a suitable codi�cation.

De�nition 12 Given an argumentation framework AF := 〈AR, attacks〉 and
a logic program P , we will say that P is a suitable codi�cation of AF if:

(1) there is a logic programming semantics SEM such that SEM of P char-
acterizes the grounded semantics of AF ,

(2) there is a logic programming semantics SEM such that SEM of P char-
acterizes the stable semantics of AF ,

(3) there is a logic programming semantics SEM such that SEM of P char-

10

acterizes the preferred semantics of AF ,
(4) the functions f and g of each characterization are polynomial time com-

putable and
(5) there exists a polynomial time computable function µ such that µ(AF) =

P .

It is worth mentioning that when we de�ne a suitable codi�cation we are
de�ning a common point between tow kinds of reasonings (skeptical and cred-
ulous). In fact, the only switch that it is required for developing a skeptical
reasoning or a credulous reasoning in a codi�cation for argumentation theory
is to change the logic programming semantics which is applied to the suitable
codi�cation. Also, a suitable codi�cation could be an useful tool for de�ning
intermediate argumentation semantics between the grounded semantics and
the preferred semantics. This means that it is possible to de�ne an intermedi-
ate reasoning between the grounded semantics and the preferred semantics.

The problem of characterizing abstract argumentation semantics does not only
depend on the codi�cation but also in the logic programming semantics. In
fact, to �nd a suitable logic programming semantic is as important as to �nd
a suitable codi�cation for characterizing a particular abstract argumentation
semantics.

By Theorem 1, we have already seen that by using PAF , WFS is a suitable
logic programming semantics for characterizing the grounded semantics and
answer set semantics [16] for characterizing the stable semantics. However, to
the best of our knowledge there is not a logic programming semantics which
could characterize the preferred semantics by using PAF . Hence we can not
say that PAF is a suitable codi�cation.

It is well-known that WFS is one of the most acceptable semantics in logic
programming. In fact, it is called a well-behaved semantics [11]. Also, there is a
strong study ofWFS based on rewriting systems such that it was characterized
by rewriting systems (see Lemma 1). Moreover in [12], it was introduced some
extensions of WFS which are based on rewriting systems. It is quite obvious
that these results about WFS most have applications in argumentation theory
since it is possible to characterize the grounded semantics by WFS and a
suitable codi�cation. In the following sections, we will see that a suitable
codi�cation could be a bridge for carrying WFS' results to argumentation
theory. For instance, we will see how to describe the interaction of arguments
by using rewriting systems and to de�ne extensions of the grounded semantics
based on a particular kind of reasoning e.g., reasoning by cases.

It is worth mentioning that the codi�cation PAF is quite in�exible for describ-
ing the interactions of arguments throughout rewriting systems. Moreover, to
the best of our knowledge it seems that there is not a suitable logic program-

11

ming semantics for de�ning an extension of the grounded semantics based on
PAF . In fact, we will see that by applying the WFS' extensions that we con-
sider in this paper to PAF we do not get really an extension of the grounded
semantics.

4 Mapping from argumentation frameworks to normal programs

In order to see an argumentation framework as a normal program, we start
by de�ning a mapping from an argumentation framework to a normal logic
program.

In our mapping, we use the predicate d(X), where the intended meaning of
d(X) is �X is a defeated argument�. Also we will denote by D(A) the set of
arguments that directly attack the argument A 1 . We de�ne a transformation
function w.r.t. an argument as follows.

De�nition 13 Let AF := 〈AR,Attacks〉 be an argumentation framework and
A ∈ AR. We de�ne the transformation function Ψ(A) as follows:

Ψ(A) := (
⋃

B∈D(A)

d(A) ← ¬d(B)) ∪ (
⋃

B∈D(A)

d(A) ← ∧

C∈D(B)

d(C))

In the program Ψ(A), we can identify two parts for each argument A ∈ AR:

(1) The �rst part (
⋃

B∈D(A) d(A) ← ¬d(B)) suggests that the argument A is
defeated when one of its adversaries is not defeated.

(2) The last part (
⋃

B∈D(A) d(A) ← ∧
C∈D(B) d(C)) suggests that the argument

A is defeated when all the arguments that defend 2 A are defeated.

The direct generalization of the transformation function Ψ to an argumenta-
tion framework is de�ned as follows:

De�nition 14 Let AF := 〈AR, Attacks〉 be an argumentation framework.
We de�ne its associated normal program as follows:

ΨAF :=
⋃

A∈AR

Ψ(A)

In order to illustrate this de�nition let us consider the following example.

1 Given AF = 〈AR, Attacks〉 and A ∈ AR. D(A) := {B|(B,A) ∈ Attacks}.
2 We say that C defends A if B attacks A and C attacks B.

12

Example 2 Let AF := 〈AR, attacks〉 be the argumentation framework of
Fig. 1. We can see that D(a) = {}, D(b) = {a} and D(c) = {b}. Hence if
we consider the normal clauses w.r.t. argument a, we obtain (in order to be
syntactically clear we use uppercase letters as variables and lowercase letters
as constants):

(
⋃

B∈{} d(a) ← ¬d(B)) ∪ (
⋃

B∈{} d(a) ← ∧
C∈D(B) d(C)) = ∅ ∪ ∅ = ∅

It is quite obvious that since the argument a has no attackers in AF , then
d(a) /∈ HEAD(ΨAF) because a is directly an acceptable argument. Therefore
any argument which is attacked by a will be directly a defeated argument e.g.,
argument b. The normal clauses w.r.t. argument b are:

(
⋃

B∈{a} d(b) ← ¬d(B)) ∪ (
⋃

B∈{a} d(b) ← ∧
C∈D(B) d(C)) =

(d(b) ← ¬d(a)) ∪ (d(b) ← ∧
C∈D(a) d(C)) = (d(b) ← ¬d(a)) ∪ (d(b) ← >)

It is important to remember that the conjunction of an empty set is the true
value >, then d(b) ← ∧

C∈D(a) d(C) = d(b) ← >. The clause d(b) ← > suggests
that the argument b is defeated. Now, the normal clauses w.r.t. argument c are

(
⋃

B∈{b} d(c) ← ¬d(B)) ∪ (
∧

B∈{b} d(c) ← ∧
C∈D(B) d(C)) =

(d(c) ← ¬d(b)) ∪ (d(c) ← d(a))

Then, ΨAF is:

d(b) ← ¬d(a). d(b) ← >. d(c) ← ¬d(b). d(c) ← d(a).

Notice that ΨAF corresponds to the normal program P of Example 1.

There are three remarks at syntactic level which we want to point out about
the mapping ΨAF :

(1) Any argument A which has no adversary will not appear in HEAD(ΨAF),
e.g., argument a of Fig. 1. This means that A will always be considered
as an acceptable arguments. In fact, for any argumentation framework
AF := 〈AR,Attacks〉 where Attacks = ∅, ΨAF will be an empty program.

(2) If A is an argument which is attacked by an argument which has no
adversary, then d(A) ← > ∈ Ψ(A), e.g., argument b of Fig. 1. This
means that A will always be considered as defeated by any argumentation
semantics which is based on ΨAF and some logic programming semantics.

13

(3) It is easy to see that the mapping ΨAF is polynomial time computable.

The �exibility of ΨAF for charactering the stable semantics and the preferred
semantics was proved in [19,18]. In [19], it was proved that the minimal models
of ΨAF correspond to the preferred extensions of AF . Moreover in [18], it was
proved that the answer sets of ΨAF corresponds to the stable extensions of
AF and the pstable models of ΨAF correspond to the preferred extensions of
AF .

5 WFS' extensions and the grounded semantics

In this section, we will show that a suitable codi�cation is not only able to
characterize the grounded semantics but it is also able to de�ne some ex-
tensions of the grounded semantics. First of all, we will show that ΨAF is a
suitable codi�cation. Then we will show that ΨAF is able to characterize the
grounded semantics.

We start by presenting some basic terms. Given an argumentation framework
AF := 〈AR,Attacks〉, we understand f(E) := {d(a)|a ∈ E}, where E ⊆ AR.
Then formally the grounded semantics is characterized by ΨAF and WFS as
follows:

Lemma 2 Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is the grounded extension of AF if and only if ∃ D ⊆ AR such that
〈f(D), f(S)〉 is the well-founded model of ΨAF .

Proof. See Appendix A.

For instance, we have seen that the program P of Example 1 corresponds to
the normal program ΨAF of the argumentation framework of Fig. 1. Also, we
have seen that the normal form of ΨAF is: d(b) ← >. Then, the well-founded
model of ΨAF is 〈{d(b)}, {d(a), d(c)}〉. Then by Lemma 2, this means that
{a, c} is the grounded extension of the argumentation framework of Fig. 1.

It is worth mentioning that we are using a characterization of WFS which
is based on rewriting systems. The advantage of this method is that we are
using transformation rules which are actions that represent changes in the
graph representation of the argumentation framework AF . For instance, since
SEM(ΨAF) = 〈{d(b)}, {d(a)}〉, we know that the argument a is acceptable
because a has no adversaries and the argument b is defeated because it is
attacked by a. Then if ΨAF →RED+

ΨRED+

AF , the clause d(b) ← ¬d(a) is
reduced to d(b) ← >. This means that RED+ recognizes that b is a defeated
argument. Therefore, if we apply RED− to ΨRED+

AF , it will remove the clause

14

d(c) ← ¬d(b) which represents an attack of the argument b. This change in
the program could be viewed as it is shown in Fig. 2, where the attack/edge
of b to c is removed. Since the argument a is acceptable, Failure will remove
the clause d(c) ← d(a) which suggested that the argument c will be defeated
in case that a is defeated.

� � � � � �

��� � �Fig. 2. Visualization of the program (ΨRED+

AF)RED− .

Based on the facts that

• the well founded model of ΨAF characterizes the grounded semantics (Lemma
2),

• the answer set models of ΨAF characterizes the stable semantics (Theorem
2 of [18]), and

• the minimal models of ΨAF characterizes the preferred semantics [19](In
fact, it was also proved in [18] that the pstable models of ΨAF corresponds
to the preferred extensions of AF 3).

we can infer the following corollary.

Corollary 1 ΨAF is a suitable codi�cation.

The �exibility of a suitable codi�cation could help to meet the results of two
approaches of non-monotonic reasoning; logic programming and argumenta-
tion theory. In order to show this, we will show that by applying di�erent logic
programming semantics to the suitable codi�cation ΨAF will be enough for
de�ning new argumentation semantics. In particular, we will consider some
extensions of WFS in order to de�ne extensions of the grounded semantics.

Since WFS is a 3-valued logic semantics, where any atom could be true, false,
and unde�ned, we will de�ne the concept of a 3-valued extension, where any
argument could be accepted, defeated, and undecided.

De�nition 15 (3-valued extension) Given an argumentation framework AF :=
〈AR, attacks〉, and S, D ⊆ AR. A 3-valued extension is a tuple 〈S,D〉, where
S ∩ D = ∅ and S is a con�ict-free set. We call an argument a acceptable if
a ∈ S, an argument b defeated if b ∈ D, and an argument c undecided if
c ∈ AR \ {S ∪D}.

3 It is worth mentioning that there is an implementation of Pstable semantics which
could be used for inferring the preferred extensions of an argumentation frame-
work[17].

15

5.1 WFSLLC′ semantics

The �rst WFS' extension that we will consider is called WFSLLC′ and is based
on the transformation rule LLC ′.

De�nition 16 (LLC′) [12] Let a be an atom that occurs negatively in a pro-
gram P and also appears in the head of some rule. Let P1 be the program that
results from P by removing ¬a from every clause of P . Let Success∗ denote
the re�exive and transitive closure of the relation Success. Suppose that P1

relates to P2 by Success∗ and a ∈ P2. In this case, we add a ← > to P .

By considering the transformation rule LLC ′, it is de�ned the rewriting system
CS1 as follows: CS1 := CS0 ∪ {LLC ′}. WFSLLC′ is de�ned as follows:

Lemma 3 [12] CS1 is a con�uent rewriting system. It induces a 3-valued
semantics that we call WFSLLC′.

Now by considering WFSLLC′ , it is introduced an extension of the grounded
semantics.

De�nition 17 Let AF := 〈AR, attacks〉 be an argumentation framework
and S, D ⊆ AR. 〈S, D〉 is the WFSLLC′-extension of AF if and only if
〈f(D), f(S)〉 is a WFSLLC′- model of ΨAF .

The main di�erence between the grounded extension and the WFSLLC′-extension
is done by the transformation rule LLC′. Based on ΨAF , we can say that
LLC ′ �rst removes all the attacks of the argument a from AF ; therefore it
is reviewed by Success whether the argument a is defeated. In case that a
appears defeated, it will be assumed that the argument a is defeated. Notice
that the only case that a could be defeated after removed its attacks is that a
belongs to a cycle of attacks. Let us consider the following example.

Example 3 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c} and attacks := {(a, a), (a, b), (b, c), (c, b)} (see Fig. 3). Hence,
ΨAF is:

d(a) ← ¬d(a). d(a) ← d(a). d(c) ← ¬d(b).
d(b) ← ¬d(a). d(b) ← ¬d(c). d(c) ← d(c), d(a).
d(b) ← d(a). d(b) ← d(c).

To infer the AF's WFSLLC′-extension, we need to get the ΨAF 's WFSLLC′

model. Then, we apply CS1 to ΨAF . We can see in Fig. 3 that the argument a is
a controversial argument since it is attacked by itself. Then the transformation
rule LLC ′, �rst it will remove all the atoms of the form ¬d(a). This means

16

Fig. 3. An argumentation framework with two-length cycle and a self-defeated ar-
gument.

that, it will remove all the a's attacks of AF . After that, it will view if a
is defeated. Since a appears defeated, it is assumed that the argument a is a
defeated argument and it is added this assumption (d(a) ← >) to the program
ΨAF

d(a) ← ¬d(a). d(a) ← d(a). d(c) ← ¬d(b).
d(b) ← ¬d(a). d(b) ← ¬d(c). d(c) ← d(c), d(a).
d(b) ← d(a). d(b) ← d(c). d(a) ← >.

If we assume that a is a defeated argument, then RED− will remove all its
attacks (the clauses which will be removed are: d(a) ← ¬d(a) and d(b) ←
¬d(a)) and Success will remove all its supports to other arguments (the clause
d(c) ← d(c), d(a) is reduced to d(c) ← d(c)).

d(a) ← d(a). d(b) ← ¬d(c). d(c) ← ¬d(b).
d(b) ← d(a). d(b) ← d(c). d(c) ← d(c).
d(a) ← >.

Then applying Success, it is found that the argument b is a defeated argument:

d(a) ← >. d(b) ← ¬d(c). d(c) ← ¬d(b).
d(b) ← >. d(b) ← d(c). d(c) ← d(c).

Therefore applying RED−, it removes all the attacks of the argument b:

d(a) ← >. d(b) ← ¬d(c).
d(b) ← >. d(b) ← d(c). d(c) ← d(c).

Since the attack of the argument b to c is removed, Loop will remove the
clause d(c) ← d(c). Then we get:

d(b) ← >. d(a) ← >. d(b) ← ¬d(c).

Finally, since the argument b was already �xed as a defeated argument, RED+

17

will remove the attack of the argument c to b which is represented by the clause:
d(b) ← ¬d(c). Then, the normal form of ΨAF is:

d(b) ← >. d(a) ← >.

Therefore, WFSLLC′(ΨAF) := 〈{d(a), d(b)}, {d(c)}〉, this means that 〈{c}, {a, b}〉
is the AF 's WFSLLC′- extension. We can conclude that the argument c is an
acceptable argument and a, b are defeated arguments. Notice that AF has an
empty grounded extension, AF has no stable extensions and AF has only one
preferred extension which is {c}. In fact, the set of acceptable arguments of
the WFSLLC′- extension corresponds to the only preferred extension of AF .

As a �nal comment of this example, let us consider the grounded instance of
the program PAF w.r.t. AF which will be:

acc(a) ← ¬d(a). d(a) ← acc(a).
acc(b) ← ¬d(b). d(b) ← acc(a).
acc(c) ← ¬d(c). d(c) ← acc(b).

d(b) ← acc(c).

It is not di�cult to see that WFSLLC′(PAF) := 〈{d(a)}, {acc(a)}〉. This means
that the only thing that we can say w.r.t. AF is that the argument a is defeated.

5.2 WFSWK semantics

Now, let us consider another extension of WFS which is called WFSWK . This
semantics is based on the transformation rule Weak-Cases which is de�ned as
follows:

De�nition 18 (Weak-Cases) Let P be a program and suppose the following
condition holds: C1 ∈ P , C2 ∈ P , C1 is of the form a ← l and C2 is of the
form a ← ¬l. Then the Weak-Cases transformation replaces the clauses C1

and C2 in P by the single clause a ← >.

Let CS2 be a rewriting system which contains the transformation rules CS0∪
{Weak-Cases }. Then, WFSWK is de�ned as follows:

Lemma 4 CS2 is a con�uent rewriting system. It induces a 3-valued seman-
tics that we call WFSWK.

Proof. Since Weak-Cases is an instance of the transformation rule T-Weak-
Cases, which is de�ned in [12], this lemma is straightforward from Theorem

18

7.11 of [12].

Now, by considering WFSWK semantics, it is de�ned another extension of the
grounded semantics.

De�nition 19 Let AF := 〈AR, attacks〉 be an argumentation framework and
S, D ⊆ AR. 〈S,D〉 is the WFSWK-extension of AF if and only if 〈f(D), f(S)〉
is a WFSWK- model of ΨAF .

The main di�erence between the characterizations of the grounded semantics
and the WFSWK-extension is made by the transformation rule Weak-Cases.
It is worth mentioning that essentially the transformation rule Weak-Cases
deploys a reasoning by cases. In order to illustrate the WFSWK-extension, let
us consider the following example.

Fig. 4. An argumentation framework with a �oating argument.

Example 4 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d} and attacks := {(a, b), (b, a), (a, c), (b, c), (c, d)} (see Fig. 4).
Then, ΨAF is:

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← ¬d(c).
d(b) ← ¬d(a). d(b) ← d(b). d(d) ← d(b), d(a).
d(c) ← ¬d(b). d(c) ← d(b).
d(c) ← ¬d(a). d(c) ← d(a).

In order to infer the WFSWK-extension of AF , it is applied CS2 to ΨAF . First
of all, we can see that the argument a is controversial w.r.t. the argument
c because a is attacking to c (d(c) ← ¬d(a)) and also a is defending to c
(d(c) ← d(a)). Therefore, if a is �xed as an acceptable argument, then c will
be a defeated argument. Moreover, if a is �xed as a defeated argument, then c
also will be a defeated argument. Under this situation, the transformation rule
Weak-Cases will assume that the argument c is defeated, then it will remove
the clauses d(c) ← ¬d(a) and d(c) ← d(a) from ΨAF and the clause d(c) ← >
is added to ΨAF . Notice that the argument b is also controversial w.r.t. c.
Then the clauses d(c) ← ¬d(b) and d(c) ← d(b) are removed from ΨAF .

19

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← ¬d(c).
d(b) ← ¬d(a). d(b) ← d(b). d(d) ← d(b), d(a).
d(c) ← >.

Since the argument c was assumed as to be a defeated argument, the RED−

will remove c's attacks. Hence, we get:

d(a) ← ¬d(b). d(a) ← d(a). d(d) ← d(b), d(a).
d(b) ← ¬d(a). d(b) ← d(b). d(c) ← >.

Since this program is the formal form of ΨAF , WFSWK(ΨAF) := 〈{d(c)},
{}〉. Hence 〈{}, {c}〉 is the WFSWK-extension of AF . This means that the
argument c is defeated.

Notice that the grounded extension of AF is the empty set, there are two stable
extensions which are {a, d} and {b, d}, and there are two preferred extensions
which coincide with the stable extensions: {a, d} and {b, d}. It is worth men-
tioning that usually any argument which does not belong to a preferred/stable
extension is considered defeated. Then we can see that both preferred/stable
extensions of AF coincide that the argument c is a defeated argument. There-
fore we can appreciate that the WFSWK-extension coincides with the pre-
ferred/stable extensions that the argument c is defeated.

Now let us consider the grounded instance of the program PAF w.r.t. AF in
order to see the behavior of PAF w.r.t. WFSWK.

acc(a) ← ¬d(a). d(b) ← acc(a).
acc(b) ← ¬d(b). d(a) ← acc(b).
acc(c) ← ¬d(c). d(c) ← acc(a).
acc(d) ← ¬d(d). d(c) ← acc(b).

d(d) ← acc(c).

We can see that WFSWK(ΨAF) := 〈{}, {}〉. This means that like the grounded
extension, the argumentation semantics de�ned by WFSWK and ΨAF is empty.

5.3 WFSWK+LCC′ semantics

We have de�ned two extensions of the grounded semantics based on two ex-
tensions of WFS, where the main support of these extensions is the use of

20

the transformation rules: Weak − Cases and LLC ′. Now the combination of
these transformation rules also suggests another extension of the grounded
semantics.

Let CS3 := CS0 ∪ {LLC ′, Weak-Cases}. Obviously, CS3 also de�nes an ex-
tension of WFS which is de�ned as follows:

Lemma 5 CS3 is a con�uent rewriting system. It induces a 3-valued seman-
tics that we call WFSWK+LLC′.

Proof. It is straightforward from Theorem 7.13 of [12].

Then by considering WFSWK+LLC′ , we de�ne an extension of the grounded
semantics.

De�nition 20 Let AF := 〈AR, attacks〉 be an argumentation framework and
S, D ⊆ AR. 〈S, D〉 is the WFSWK+LLC′- extension of AF if and only if
〈f(D), f(S)〉 is a WFSWK+LLC′- model of ΨAF .

None of both WFSLLC′ and WFSWK extensions is the same to WFSWK+LLC′-
extension. In order to illustrate this di�erence let us consider the following
example.

Example 5 Let AF := 〈AR, attacks〉 be an argumentation framework, where
AR := {a, b, c, d, e, f, m, n, p} and attacks := {(a, b), (b, c), (c, a), (a, d), (d, e),
(e, f), (m, e), (n,m), (n, p), (p,m), (p, n)} (see Fig. 5). It is not di�cult
to see that WFSLLC′-extension := 〈{}, {a, b, c, d, e}〉, WFSWK-extension :=
〈{}, {m}〉, WFSWK+LLC′-extension := 〈{}, {a, b, c, d, e, m}〉, and the grounded
extension is empty.

Fig. 5. Example

This argumentation framework has no stable extensions and has tow preferred
extensions: {n} and {p}.

5.4 Formalizing the extensions of the grounded semantics

We have introduced three new abstract argumentation semantics, all of them
have as common point a suitable codi�cation which is ΨAF and the only
di�erence between them is the logic programming semantics which it is applied

21

to ΨAF . In the following table, we summarize the abstract argumentation
semantics and the argumentation frameworks which we have commented.

Logic Semantics Argumentation Semantics Fig. 1 Fig. 3 Fig. 4 Fig. 5
WFS GEAF {a, c} {} {} {}
Answer Set Semantics Stable semantics {a, c} - {a, d}, {b, d} -
Min. Models/Pstable Sem. Preferred Sem. {a, c} {c} {a, d}, {b, d} {n}, {p}
WFSLLC′ WFSLLC′ -ext. 〈{a, c}, {b}〉 〈{c}, {a, b}〉 〈{}, {}〉 〈{}, {a, b, c, d, e}〉
WFSW K WFSW K -ext. 〈{a, c}, {b}〉 〈{c}, {a, b}〉 〈{}, {c}〉 〈{}, {m}〉
WFSW K+LLC′ WFSW K+LLC′ -ext. 〈{a, c}, {b}〉 〈{c}, {a, b}〉 〈{}, {c}〉 〈{}, {a, b, c, d, e, m}〉

As can be seen in the table, we can identify a direct relationship between
abstract argumentation semantics and logic programming semantics.

Once we have de�ned a direct relationship between abstract argumentation
semantics and logic programming semantics, it is possible to understand the
behavior of some abstract argumentation semantics based on the properties of
the logic programming semantics. For instance, since the grounded semantics
is characterized by ΨAF and WFS, we can infer that the WFSLLC′-extension,
the WFSWK-extension and the WFSWK+LLC′-extension are extensions of the
grounded semantics and are polynomial time computable. This is essentially
because the semantics WFSLLC′ , WFSWK and WFSWK+LLC′ are extensions
of WFS and are polynomial time computable. This result is formalized with
the following theorem:

Theorem 2 Let AF := 〈AR, attacks〉 be an argumentation framework and E
be the grounded extension of AF. Then

a) (1) If 〈S, D〉 is the WFSLLC′-extension of AF then E ⊆ S.
(2) If 〈S, D〉 is the WFSWK-extension of AF then E ⊆ S.
(3) If 〈S, D〉 is the WFSWK+LLC′-extension of AF then E ⊆ S.

b) (1) The WFSLLC′-extension of AF is polynomial time computable.
(2) The WFSWK-extension of AF is polynomial time computable.
(3) The WFSWK+LLC′-extension of AF is polynomial time computable.

Proof.

a) It is direct by Lemma 2.
b) It is not di�cult to see that the mapping of De�nition 14 is polynomial
time computable; moreover, the rewriting systems CS1, CS2, and CS3 are
polynomial time computable [12].

Another property that can be formalized w.r.t. the new argumentation seman-
tics is that they are intermediate logic between the grounded semantics and
the preferred semantics. This is essentially because the semantics WFSLLC′ ,

22

WFSWK and WFSWK+LLC′ are strongest than WFS and weakest than the
pstable semantics (the formal de�nition of pstable semantics is presented in
[20,21]). Remember that the pstable models of ΨAF correspond to the pre-
ferred extensions of AF [18].

In order to show that our new argumentation semantics are intermediate se-
mantics between the grounded semantics and the preferred semantics, we will
show that they are contained in the preferred semantics.

Theorem 3 Let AF := 〈AR, attacks〉 be an argumentation framework, E be
a preferred extension of AF , and E ′ := AR \ E. Then,

(1) If 〈S,D〉 is the WFSLLC′-extension of AF then S ⊆ E and D ⊆ E ′.
(2) If 〈S,D〉 is the WFSWK-extension of AF then S ⊆ E and D ⊆ E ′.
(3) If 〈S, D〉 is the WFSWK+LLC′-extension of AF then S ⊆ E and D ⊆ E ′.

Proof. (sketch)

This theorem follows from the facts that

(1) Pstable semantics satis�es the basic transformation RED+, RED−, Success,
Failure, Loop, WK, and LLC ′ (this means that any atom inferred by
the basic transformations is also inferred by Pstable semantics. This fact
is essentially because the basic transformation are closed under classic
logic),

(2) the pstable models of ΨAF correspond to the preferred extensions of AF
(By Theorem 3 of [18]).

6 Rewriting systems and the interaction between arguments

One of the purposes of argumentation theory is to provide tools for support-
ing decision making processes. For instance, argumentation theory is able to
suggest arguments in favour of a decision. Usually, argumentation theory is
adequate for supporting decision-making in scenarios where the information
is uncertain and incomplete. In this section, we will present a small example
where we will show that each time that it is applied a transformation rule to
ΨAF the reduced program will suggest an approximation of the argumenta-
tion semantics that we are inferring. These approximations together with the
reduced program will be describing the interaction of the arguments of the
argumentation framework.

We start introducing a scenario in the medical domain, where the decision

23

about whether an organ from a donor with endocarditis is viable or not for be-
ing transplanted should be made 4 . Let us assume that we have two transplant
coordination units, one which is against the viability of the organ (UCTD) and
one which is in favour of the viability of the organ (UCTR).

• UCTD argues that the organ is not viable, since the donor had endocarditis
due to streptococcus viridans, then the recipient could be infected by the
same microorganism.

• In contrast, UCTR argues that the organ is viable, because the organ presents
correct function and correct structure and the infection could be prevented
with post-transplanted-treatment with penicillin, even if the recipient is al-
lergic to penicillin, there is the option of post-transplanted-treatment with
teicoplanin.

Formally, we have an argumentation framework AF := 〈AR, attacks〉, where
AR has the following arguments:

a.- organ is non viable.
b.- organ is viable.
c.- organ has correct function and correct structure.
d.- recipient could be infected with streptococcus viridans.
e.- post-transplanted-treatment with administer penicillin.
f.- post-transplanted-treatment with administer teicoplanin.
g.- recipient is allergic to penicillin.

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

Fig. 6. A simple scenario.

and attacks := {(a, b), (b, a), (c, a), (d, b), (e, d), (f, d), (g, e)} (The graphic rep-
resentation of AF is shown in Fig. 6). Then ΨAF is:

4 The medical information was taken from [8].

24

d(a) ← ¬d(b). d(a) ← d(a), d(d).
d(a) ← ¬d(c). d(a) ← >.
d(b) ← ¬d(a). d(b) ← d(b), d(c).
d(b) ← ¬d(d). d(b) ← d(e), d(f).
d(d) ← ¬d(e). d(d) ← d(g).
d(d) ← ¬d(f). d(d) ← >.
d(e) ← ¬d(g). d(e) ← >.

A good question is: What can we say from ΨAF about the argumentation
framework AF at this moment? We have not applied any transformation to
ΨAF yet; however we can see that SEM(ΨAF) := 〈{d(a), d(d), d(e)}, {d(c), d(f), d(g)}〉.
This means that in the discussion between UCTD and UCTR there is not doubt
that the arguments {c, f, g} are acceptable. Hence the arguments that are at-
tacked by them are defeated which are {a, d, e}. However, at this moment
SEM(ΨAF) cannot say nothing about the argument b (see Fig. 7).

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

Fig. 7. Interpretation of ΨAF and SEM(ΨAF).

Now, let us apply the transformation rule Failure to ΨAF as many times as
we can, then we get the following reduced program:

d(a) ← ¬d(b). d(a) ← d(a), d(d).
d(a) ← ¬d(c). d(a) ← >.
d(b) ← ¬d(a).
d(b) ← ¬d(d).
d(d) ← ¬d(e).
d(d) ← ¬d(f). d(d) ← >.
d(e) ← ¬d(g). d(e) ← >.

25

Notice that the rules that were removed by Failure were assuming that the
argument b could be defeated in case that the arguments c and f were defeated,
but we have already known that c and f are acceptable arguments, hence those
rules are irrelevant.

Now, let us apply the transformation rule RED− to the reduced program as
many times as we can, then the new reduced program Ψ′

AF is:

d(a) ← ¬d(b). d(a) ← d(a), d(d).
d(a) ← ¬d(c). d(a) ← >.
d(d) ← ¬d(f). d(d) ← >.
d(e) ← ¬d(g). d(e) ← >.

Now notice that the rules which were removed from the program were the
rules which were representing the attackers of the arguments {a, d, e}. As we
have already known that {a, d, e} are defeated arguments, then their adver-
saries did not have sense for being represented in the program. Moreover, at
this moment SEM(Ψ′

AF) := 〈{d(a), d(d), d(e)}, {d(c), d(f), d(g), d(b)}〉, this
means that SEM(ΨAF) is able to suggest that the argument b is acceptable.
Applying the transformation rule Success as many times as we can, we get
the following new reduced program.

d(a) ← ¬d(b).
d(a) ← ¬d(c). d(a) ← >.
d(d) ← ¬d(f). d(d) ← >.
d(e) ← ¬d(g). d(e) ← >.

We can observe that in this reduced program, all the attackers of the defeated
arguments were removed from the program. We can visualize this status as is
shown in Fig. 8. Finally, applying the transformation rule Red+, we get the
normal form of ΨAF which is:

d(a) ← >. d(d) ← >. d(e) ← >.

Since, the argument b is acceptable and this argument suggests that the organ
is viable even that the donor has infected by streptococcus viridans and the
arguments which support this decision are c, f, and g. It is possible to suggest
that the transplant coordination unit UCTR is the winner. This means that
it is possible to assume that the organ could be considered for transplanting.

Notice that the grounded extension of the argumentation framework AF is:
{b, c, f, g}, since all the new semantics presented in this paper are extensions

26

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � � � � � ��� 	�
 � � � �

��� � � � � ��� 	�� � �

 � � � �

� � � � � � ��� � 	
� � � �
 � � � � � � � � � �
� � � � � � �
 � �
	 � � � � � � �

��� �
 � � � �
 � �
� � � � ���
�� � �
 � �
 �

� � � �
	 � �
 � � � � � � � � 	

 � � � � � � 	

� � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � � �

 � � � 	 � �
� � � � 	 � � � � �
 �
� �
 � � ��
 � � � � � �
�
 � � � � � � � �

� � �
 � � � �
 � � � 	
� � �
 � � � � � �
�
 � � � � � � � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

� � �
 �
 � �
 ��� � � � ��
 � � � � �
 � � � � �
�� � � � ��
 � � �
 �
 � �
 ��� � � � ��
 � �

Fig. 8. Interpretation of ΨAF and SEM(ΨAF).

of the grounded semantics, then all the semantics presented in this paper has
the behavior described in this section.

We can say that the interaction between rewriting systems and normal pro-
grams which represent an argumentation framework could describe the inter-
action of arguments of an argumentation framework. This allows to visualize
the process of selecting acceptable arguments from an argumentation frame-
work.

7 Acceptable arguments by default negation

In all the paper, we have described the features that could have a suitable cod-
i�cation of an argumentation framework as logic program. In fact, we showed
that ΨAF is a suitable codi�cation. However, the reader could think that ΨAF

is a tedious codi�cation because it does not infer the acceptable arguments of
AF in a straightforward form.

An alternative form for computing the acceptable arguments in ΨAF , without
considering the predicate d(X), is taking advantage of default negation. This
is possible by considering a new dual symbol for each argument of the argu-
mentation framework. This means that we can infer the acceptable arguments
directly from the models of ΨAF . In order to de�ne a small variation of ΨAF ,
let us present some de�nitions.

De�nition 21 Let AF := 〈AR, attacks〉 be an argumentation framework. We
de�ne the function η as η : AR → AR′. Where AR′ has the same cardinality
to AR such that AR ∩ AR′ = ∅.

η is a bijective function which assigns a new symbol to each argument of AR.
Notice that the new symbol does not occurs in AR. We denote the image of
A ∈ AR under η as A′.

27

De�nition 22 Let AF := 〈AR, attacks〉 be an argumentation framework and
A ∈ AR. We de�ne the transformation function Γ(A) as follows:

Λ(A) := (
∧

B∈D(A)

(A′ ∨B′)) ∧ (
∧

B∈D(A)

(A′ ← ∧

C∈D(B)

C ′))

De�nition 23 Let AF := 〈AR, attacks〉 be an argumentation framework. We
de�ne its associated general program as follows:

ΛAF :=
∧

A∈AR

(Λ(A) ∧ (A ← ¬A′))

Notice that Ψ(A) and Λ(AF) are equivalent (module notation) and the main
di�erence between ΦAF and ΛAF is the rule A ← ¬A′ for each argument.

The characterization of the grounded semantics by WFS and Λ(AF) is for-
malized by a small variation of Lemma 2.

Lemma 6 Let AF := 〈AR, attacks〉 be an argumentation framework and S ⊆
AR. S is the grounded extension of AF if and only if ∃ D ⊆ AR ∪ AR′ such
that 〈S ′, D〉 is the well-founded model of ΛAF and S = S ′ ∩ AR.

Proof. The proof is straightforward from Lemma 2 and the semantics of default
negation.

In order to illustrate this lemma, let us consider the argumentation framework
of Fig. 1. Then the program ΛAF is:

b′ ← ¬a′. b′ ← >. c′ ← ¬b′. c′ ← a′.
a ← ¬a′. b ← ¬b′ c ← ¬c′.

We can see that the WFS(ΛAF) := 〈{a, b′, c}, {}〉. Then {a, c} = {a, b′, c} ∩
AR, this means that {a, c} is the grounded extension of AF .

8 Related work

We have discussed an approach for studying abstract argumentation seman-
tics. Especially, we pay attention to the strong relationship that exists be-
tween abstract argumentation semantics and logic programming semantics.
We de�ne a declarative codi�cation of an argumentation framework in terms
of normal logic programs. Based on it, we are able to characterize abstract

28

argumentation semantics in terms of logic programming semantics. This ap-
proach is not new in fact since Dung's framework was introduced in [13], it
was showed that this approach can be viewed as a special form of logic pro-
gramming with negation as failure.

The Dung' semantics have characterized from several points of view. For in-
stance in [5], the authors present a set of equations in order to decide whether
a set of arguments is acceptable under a given semantics. In particular, they
are able of charactering stable, preferred and complete semantics. They leave
out the grounded semantics of their study, because it is not captured by a set-
equation. An interesting point of the equation checking approach presented in
[5] is that it is able of de�ning intermediate semantics between stable seman-
tics and the preferred semantics. Since they are only interested on answering
yes/not questions, their approach is unable of describing the interactions of
arguments. The same authors in [6] presented a set of techniques for checking
the acceptability of a set of arguments. Mainly they introduce some techniques
based on model checking and satis�ability checking which are supported by a
set of codi�cations of an argumentation framework in terms of propositional
formulae. The problem of that codi�cations is that they are built having in
mind just a particular argumentation semantics, then they are far of satisfying
the conditions of a suitable codi�cation. Moreover, they are not really �exible
for describing the interactions of arguments.

9 Conclusions

To �nd suitable codi�cations for argumentation theory based on logic pro-
gramming could help to close the wide separation between argumentation
theory and argumentation systems. It is quite obvious that a suitable codi-
�cation of an argumentation framework should not only permit to compute
abstract argumentation semantics, but also it ought to permit to perform a
deep study about an abstract argumentation semantics.

Our experience in the interaction between argumentation semantics and logic
programming semantics suggests that the correct understanding of the behav-
ior of one side helps to understand the behavior of the other side. For instance,
thanks to the deep study that there is on the well-founded semantics is easy
to understand the behavior of any extension of the grounded semantics which
is based on an extension of the well-founded semantics.

In this paper, we motivate some basic principles which must satisfy any codi-
�cation of an argumentation framework as logic program. We show that when
we de�ne a suitable codi�cation we are de�ning a common point between tow
kinds of reasonings (skeptical and credulous). In fact, the only switch that it

29

is required for developing a skeptical reasoning or a credulous reasoning in
a metainterpreter for argumentation theory is to change the logic program-
ming semantics which is applied to the suitable codi�cation. Also, a suitable
codi�cation could be an useful tool for de�ning intermediate argumentation
semantics between the grounded semantics and the preferred semantics. This
means that it is possible to de�ne an intermediate reasoning between the
grounded semantics and the preferred semantics.

Also, we show that rewriting systems not only permit to study abstract argu-
mentation semantics but also they are useful tools for describing the interac-
tion of arguments of an argumentation framework.

Acknowledgement

J.C. Nieves thanks to CONACyT for his PhD Grant. J.C. Nieves and U. Cortés
were partially supported by the grant FP6-IST-002307 (ASPIC). Authors want
to acknowledge the advice of Dr. Antonio López-Navidad and Dr. Francisco
Caballero in the design of the medical example. The views expressed in this
paper are not necessarily those of ASPIC consortium.

References

[1] L. Amgoud and H. Prade. Using arguments for making decisions: A possibilistic
logic approach. In Proceedings of the 20th Annual Conference on Uncertainty in
Arti�cial Intelligence (UAI-04), pages 10�17, Arlington, Virginia, 2004. AUAI
Press.

[2] ASPIC:Project. Deliverable D2.2:Formal semantics for inference and decision-
making. Argumentation Service Plarform with Integrated Components, 2005.

[3] P. Baroni and M. Giacomin. Evaluating argumentation semantics with respect
to skepticism adequacy. In ECSQARU 2005, Barcelona, Spain, July 6-8, 2005,
Proceedings, volume 3571 of LNCS, pages 329�340. Springer, 2005.

[4] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema
for argumentation semantics. Arti�cial Intelligence, 168:162�210, October 2005.

[5] P. Besnard and S. Doutre. Characterization of semantics for argument systems.
In Principles of Knowledge Representation and Reasoning: Proceedings of the
Ninth International Conference (KR2004), Whistler, Canada, June 2-5, 2004,
pages 183�193. AAAI Press, 2004.

[6] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments.
In Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004),,
pages 59�64, June 2004.

30

[7] S. Brass, U. Zukowski, and B. Freitag. Transformation-based bottom-up
computation of the well-founded model. In NMELP, pages 171�201, 1996.

[8] F. Caballero, A. López-Navidad, M. Perea, C. Cabrer, L. Guirado, and R. Solá.
Successful liver and kidney transplantation from cadaveric donor with left-sided
bacterial endocarditis. American Journal of Transplantation, 5:781�787, 2005.

[9] M. Caminada. Contamination in formal argumentation systems. In BNAIC 2005
- Proceedings of the Seventeenth Belgium-Netherlands Conference on Arti�cial
Intelligence, Brussels, Belgium, October 17-18, pages 59�65, 2005.

[10] C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical models of argument.
ACM Comput. Surv., 32(4):337�383, 2000.

[11] J. Dix. A classi�cation theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform., 22(3):257�288, 1995.

[12] J. Dix, M. Osorio, and C. Zepeda. A general theory of con�uent rewriting
systems for logic programming and its applications. Ann. Pure Appl. Logic,
108(1-3):153�188, 2001.

[13] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Arti�cial
Intelligence, 77(2):321�358, 1995.

[14] A. J. García and G. R. Simari. Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming, 4(1-2):95�138, 2004.

[15] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620�650, 1991.

[16] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070�1080. MIT Press, 1988.

[17] A. López. Implementing pstable. In R. Dávila, M. Osorio, and C. Zepeda,
editors, Workshop in Logic, Language and Computation, volume 220. CEUR
Workshop Proceedings, 2006.

[18] J. C. Nieves and M. Osorio. Inferring preferred extensions by pstable semantics.
Research Report LSI-07-26-R, Technical University of Catalonia, Software
Department (LSI), http://www.lsi.upc.edu/dept/techreps/buscar.php, 2007.
Accepted paper in the third Latin American Workshop on Non-Monotonic
Reasoning 2007 (LANMR07).

[19] J. C. Nieves, M. Osorio, and U. Cortés. Inferring preferred extensions by
minimal models. In G. Simari and P. Torroni, editors, Argumentation and Non-
Monotonic Reasoning (LPNMR-07 Workshop), pages 114�124, Arizona, USA,
2007.

[20] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Ground nonmonotonic
modal logic s5: New results. Journal of Logic and Computation, 15(5):787�813,
2005.

31

[21] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common
Weak Completions. Journal of Logic and Computation, 16(6):867�890, 2006.

[22] H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In
D. Gabbay and F. Günthner, editors, Handbook of Philosophical Logic, volume 4,
pages 219�318. Kluwer Academic Publishers, Dordrecht/Boston/London, second
edition, 2002.

Appendix A : Proof of Lemma 2

Proof. The proof is by induction on the minimum number of steps N to get the
ΨAF 's formal form. Let FAF be the characteristic function of AF . It is well-
known that given any normal program P , WFS(P) := SEM(normCS0(P)).
So, let 〈f(D), f(S)〉 be the well-founded model of ΨAF .

Base Step If N = 0, then ΨAF is in its normal form. By the de�nition of
ΨAF , if A ∈ AR such that D(A) = ∅, then d(A) /∈ HEAD(ΨAF) this means
d(A) ∈ f(S) and A ∈ F 0

AF . And also, it is easy to see that F 0
AF is the �x

point of FAF and f(F 0
AF) = f(S). So, S is the grounded extension of AF

Inductive step Now, let us suppose that ΨAF is not in its normal form, so
we need N steps to get its normal form. Let 〈f(D′), f(S ′)〉 be SEM(ΨAF)
and 〈f(D′′), f(S ′′)〉 be SEM(Ψ′′

AF) such that ΨAF →T Ψ′′
AF and T ∈ CS0.

If A ∈ AR such that D(A) = ∅, then d(A) /∈ HEAD(ΨAF), d(A) ∈ f(S ′),
A ∈ Fm

AF , and m ≥ 0. There are two relevant cases w.r.t. argument A:
(1) If B ∈ AR such that B is attacked by A, then there is a rule r1 ∈ ΨAF

of the form r1 : d(B) ← ¬d(A); therefore, if T = RED+, then d(B) ←
> ∈ Ψ′′

AF and d(B) ∈ f(D′′). This means B is a defeated argument and
B /∈ Fm

AF .
(2) If B is defended by A, then there is a rule r2 ∈ ΨAF of the form

r2 : d(B) ← d(X1), . . . , d(A), . . . , d(Xn), where Xi ∈ AR such that
Xi defends B; therefore, r2 is deleted by Failure. This means, if T =
Failure, then r2 /∈ Ψ′′

AF . Notice that, if d(B) /∈ HEAD(Ψ′′
AF), then

d(B) ∈ f(S ′′) and B ∈ Fm
AF .

One can see that the application of CS0 over ΨAF will remove from ΨAF

any rule r ∈ ΨAF such that r's head is an atom of the form d(A) and A is
an acceptable argument. So, by inductive hypothesis, it is easy to see that
if 〈f(D), f(S)〉 is the well-founded model of ΨAF then S is the grounded
extension of AF .

32

