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 ABSTRACT 
 

Crystallization of a biodegradable segmented copolymer constituted by polyglycolide hard 

segments and a middle soft segment constituted by a random disposition of glycolyl, -

caproyl and trimethylene carbonyl units has been studied by means of optical microscopy, 

atomic force microscopy and time resolved X-ray diffraction techniques. This GL-b-(GL-

co-TMC-co-CL)-b-GL copolymer is widely employed as surgical suture and has similar 

characteristics than previously studied copolymers having a middle soft segment 

constituted by only two monomers (i.e. glycolide and trimethylene carbonate).  

FTIR and NMR spectroscopies demonstrated that the middle segment had an amorphous 

character and a random microstructure as consequence of transesterification reactions that 

took place during synthesis. Nevertheless, polyglycolide segments were able to crystallize 

giving rise to peculiar positive birefringent spherulites with a morphology, which depends 

on crystallization temperature (i.e. flat-on and edge-on crystals) as verified by AFM and 

electron diffraction patterns. 

Complete bell shaped curves that defined the temperature dependence of the crystal growth 

rate could be experimentally obtained from both, isothermal and non-isothermal 

crystallizations. Data from both analyses were in close agreement and pointed out a 

secondary nucleation constant (2.42-2.88 × 10
5 

K
2
) which was clearly higher than that 

determined for the related system with two components. Lamellar morphologic parameters 

were similar for samples crystallized from the melt state and after the reordering process 

that took place on heating. Comparing to the bicomponent system, significant differences 

were again observed highlighting the influence of the soft segment on the crystallization 

behaviour.   

Keywords: Absorbable sutures, glycolide copolymer, crystallization kinetics, isothermal 

crystallization, non-isothermal crystallization, spherulitic morphology. 



 

3 

 

INTRODUCTION  

 

Polyglycolide is a biodegradable polyester widely employed for biomedical applications, 

being specifically the development of  bioabsorbable surgical sutures one of  its first 

applications.
1-8

 Polyglycolide has a distinctive crystalline structure that renders 

differentiated properties respect to similar aliphatic polyesters.
9
 Thus, for example it has a 

melting temperature higher than 200 ºC and a glass transition temperature in the 35-40 °C 

range that contrast with the low values found for the other members of the series (e.g. 

melting point of 55–60 °C and glass transition temperature close to –60 °C for poly(-

caprolactone)
10

). In addition, polyglycolide is relatively hygroscopic and therefore exhibits 

a high degradation rate, shows a good biocompatibility and excellent fiber forming 

properties. These good properties can be extended to a wide range of copolymers differing 

on components and composition, being specifically degradation behavior and mechanical 

properties intensively investigated.
11-15

  

Bioabsorbable surgical sutures can be processed in monofilament and multifilament 

forms, being the former preferred due to advantages like more resistance to harbor 

microorganisms and higher facility to passage through tissue than conventional braided 

threads.
16-18

 The high stiffness of polyglycolide makes its processing as a monofilament 

suture impossible, being therefore different formulations developed to get flexible 

materials while glycolide is kept as a predominant component. In this way, different 

segmented copolymers having two polyglycolide hard segments and a middle soft 

segment derived from glycolide and other monomers (e.g. trimethylene carbonate, -

caprolactone or p-dioxanone) have been prepared to provide flexibility.
19-21

  

Maxon
TM

 (Syneture) is one of the most simple monofilament synthetic sutures based on 

glycolide copolymers that has been employed. This copolymer is characterized by a 62 
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wt-% of polyglycolide hard segments and a middle soft segment constituted by a 

random disposition of 85 wt-% of trimethylene carbonate and 15 wt-% of glycolide.
22

  

The design of this poly(GL)-b-poly(GL-co-TMC)-b-poly(GL) copolymer is relevant to 

meet the requirements of a bioresorbable suture. It should be also considered that 

processing affects crystallinity and hence mechanical properties and degradability. In 

this way, comprehension of the crystallization process in a polymeric system where 

amorphous (soft segments) and crystalline domains (hard segments) coexist is a highly 

interesting topic.  

The crystallization process of poly(GL)-b-poly(GL-co-TMC)-b-poly(GL) has been 

extensively evaluated under both isothermal and non-isothermal conditions for the 

commercial sample
23,24

 as well as for copolymers with slightly different microstructure. 

Results demonstrated that small variations on the hard segment length and the soft 

segment content had a high influence on melting temperature, degree of crystallinity, 

degradation rate, crystallization kinetics and crystalline morphology.
25-27

 For example, 

the crystalline lamellar thickness is higher for samples with a low polyglycolide hard 

segment content as a consequence of the incorporation of soft segments into the 

crystalline phase in such a way that imperfect crystals with a low melting point are 

developed.
27

 

Poly(GL)-b-poly(GL-co-TMC-co-CL)-b-poly(GL) has also been employed as a 

monofilament suture with properties (e.g. in vitro degradation) that covers a similar range 

than Maxon
TM

. This segmented copolymer is synthesized following a two step procedure 

(Figure S1 in Supporting information (SI)), which renders a middle soft segment based on 

three components and two polyglycolide hard blocks.
20

 With regard to Maxon
TM

, it is 

significant the different constitution of the soft segment (three components instead of two), 
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the lower hard segment percentage (57 versus 62 wt-%) and the slightly higher glycolyl 

content  (72 versus 67.5 wt-%).  

Studies about the crystallization process of the commercial poly(GL)-b-poly(GL-co-TMC-

co-CL)-b-poly(GL) suture are scarce and basically concern to isothermal and non-

isothermal analyses from DSC calorimetric data.
28 

 These indicated a maximum overall 

crystallization rate around 131 °C and a secondary nucleation constant of 1.51×10
5
 K

2
 that 

became lower than reported for Maxon
TM

 (1.86 ×10
5
 K

2
). This is an expected result taking 

into account the higher content of non-crystallizable soft segments with greater statistical 

monomer distribution. Therefore, a complementary study using optical microscopy data 

appears necessary. Furthermore, morphologic data concerning the lamellar structure are 

also interesting in order to improve comprehension of how small changes on the polymer 

architecture can affect microphase separation. In fact, fiber properties are governed by 

physical structures of different scales, including amorphous and crystalline domains as 

well as lamellar structures.  

 

EXPERIMENTAL SECTION 

 

Materials  

Commercially available sutures of GL-b-(GL-co-TMC-co-CL)-b-GL (Monosyn
TM

, 

USP 1) were kindly supplied by B. Braun Surgical, S.A. This triblock copolymer has a 

middle soft segment that constitutes a 43 wt-% of the sample and that is composed of 

35 wt-%, 32.5 wt-% and 32.5 wt-% of glycolyl, trimethylene carbonyl and -caproyl 

units, respectively.
20

 Diethylene glycol was used as a bifunctional initiator for the ring 

opening polymerization that leads to the soft segment (see the first synthesis step of 

Figure S1 in SI). Therefore, a prepolymer having two hydroxyl terminal groups was 

obtained and consequently polyglycolide hard blocks could be incorporated at both 
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ends in the second polymerization step (Figure S1 in SI). Weight and number average 

molecular weights of GL-b-(GL-co-TMC-co-CL)-b-GL samples were 71,000 and 

41,000 g/mol, as previously reported.
28

  

Measurements 

1
H-NMR spectra were acquired with a Bruker AMX-300 spectrometer operating at 300.1 

MHz. Chemical shifts were calibrated using tetramethylsilane as an internal standard. 

Dried dimethyl sulfoxide-d6 (DMSO) was used as the solvent at a temperature of 90-95 ºC 

to enhance solubility and resolution. 

Infrared absorption spectra were recorded with a Fourier Transform FTIR 4100 Jasco 

spectrometer in the 4000-600 cm
-1

 range. A Specac model MKII Golden Gate attenuated 

total reflection (ATR) cell with a heated Diamond ATR Top-Plate which can be used at up 

to 200 ºC, and a Series 4000 High Stability Temperature Controler were also employed. 

Calorimetric data were obtained by differential scanning calorimetry with a TA 

Instruments Q100 series. Experiments were conducted under a flow of dry nitrogen with a 

sample weight of approximately 5 mg and at a heating rate of 20 ºC/min. 

The spherulite growth rate was determined by optical microscopy using a Zeiss 

Axioskop 40 Pol light polarizing microscope equipped with a Linkam temperature 

control system configured by a THMS 600 heating and freezing stage connected to a 

LNP 94 liquid nitrogen cooling system. Spherulites were grown from homogeneous thin 

films prepared by evaporation of dilute solutions of the polymer in 1,1,1,3,3,3-

hexafluoroisopropanol (0.5 mg/mL). Next, small sections of these films were pressed or 

smeared between two cover slides and inserted into the hot stage, with thicknesses of 

close to 10 m in all cases. Samples were kept at 220 ºC (approximately 20 ºC above 

the polymer melting point of 200 ºC) for 5 minutes to eliminate sample history effects. 
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For hot crystallization experiments, samples were quickly cooled to the selected 

crystallization temperature for cold crystallization experiments, they were quickly 

cooled to room temperature and then quickly heated to the selected crystallization 

temperature. The radius of growing spherulites was monitored during crystallization 

with micrographs taken with a Zeiss AxiosCam MRC5 digital camera at appropriate 

time intervals. A first-order red tint plate was employed to determine the sign of 

spherulite birefringence under crossed polarizers. For non-isothermal experiments the 

radius of growing spherulites was also monitored during crystallization with 

micrographs taken at appropriate time intervals. 

A Philips TECNAI 10 electron microscope was used and operated at 100 kV for bright 

field and electron diffraction modes, respectively. Selected area electron diffraction 

patterns were taken with a SIS MegaView II digital camera and internally calibrated with 

gold (d111 = 0.235 nm). Spherulites were grown at 80 and 150 ºC from melted thin films 

which had previously been prepared by solvent casting from a dilute solution of the 

polymer in 1,1,1,3,3,3-hexafluoroisopropanol. Nucleation density was determined from 

low magnification micrographs (i.e. ×100 due to the great size of spherulites) by counting 

the number of spherulites developed in representative areas (e.g. Figure S2 in SI).  

For AFM studies, thin films were prepared by solvent casting of a dilute solution in 

1,1,1,3,3,3-hexafluoroisopropanol and placed between cover slides. Samples were 

subsequently heated above the melting point to perform cold (after quenching) and hot 

crystallization experiments at the selected temperatures. After crystallization cover slides 

were manually separated to perform AFM observations. This feature caused some 

limitations on the image quality and especially for the thinnest spherulites characterized by 

a planar lamellar disposition as then will be shown. Height and amplitude images of 

spherulites were obtained with a Molecular Imaging PicoSPM using a NanoScope IV 
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controller in ambient conditions and a scan window size of 10 x 10 m
2
. The tapping 

mode AFM was operated at constant deflections (i.e. vertical constant force with triangular 

gold-coated silicon nitride). Row scanning frequency was set to 1 Hz and physical tip-

sample motion speed was 10 m/s. 

Time resolved SAXS experiments were carried out at the NCD beamline (BL11) of the 

Alba synchrotron radiation light facility of Cerdanyola del Vallès (Catalunya). The beam 

was monochromatized to a wavelength of 0.100 nm. Polymer samples were confined in 

capillaries and then held on a Linkam HFSX-350-CAP hot stage with temperature control 

within  0.1 ºC. SAXS profiles were acquired during heating and cooling runs in time 

frames of 20 s and rates of 10 ºC/min. The detector was calibrated with different orders of 

diffraction from silver behenate. The diffraction profiles were normalized to the beam 

intensity and corrected considering the empty sample background. The correlation function 

and corresponding parameters were calculated with the CORFUNC program
 
for Fibre 

Diffraction / Non-Crystalline Diffraction provided by the Collaborative Computational 

Project 13. The WAXD detector was calibrated with diffractions of a standard of a Cr2O3 

sample. The diffraction profiles were normalized to the beam intensity and corrected 

considering the empty sample background. Deconvolution of WAXD peaks was 

performed with the PeakFit v4 program by Jandel Scientific Software using a 

mathematical function known as “Gaussian area”. 

 

RESULTS AND DISCUSSION 

Characterization of GL-b-(GL-co-TMC-co-CL)-b-GL 

Figure 1 shows the 
1
H-NMR spectra of the GL-b-(GL-co-TMC-co-CL)-b-GL sample with 

an assignment of the characteristic signals based on previous works on bicomponent 

systems (i.e. poly(glycolide-co-trimethylene carbonate)
29

 and poly(glycolide-co-
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caprolactone)
30

). A sequence sensitivity is observed, especially for signals corresponding 

to glycolyl protons, which extends over the 4.83-4.57 ppm range (Table S1 of SI and inset 

of Figure 2). It is interesting to remark that the signal of the middle glycolyl protons of a 

GGG sequence (G, glycolyl unit) appears at 4.83 ppm whereas the four signals at 4.64-

4.57 ppm correspond to the glycolyl protons of transesterification sequences that cannot be 

produced by direct ring opening polymerization. Note that glycolide should lead to 

sequences having at least two consecutive glycolyl units. Transesterification reactions 

should mainly occur during the first polymerization step where trimethylene carbonate and 

-caprolactone rings are at the highest ratio.
25

 The spectra indicate that the four 

transesterification sequences (i.e. TGT, TGCap, CapGT and CapGCap listed from 

downfield to upfield) appeared with similar intensity, and therefore all possible thermally 

induced transesterification reactions were practically equiprobable. 
1
H-NMR spectra 

support an amorphous character of the soft segment due to the multiple sequences 

produced by practically random copolymerization of the three involved monomers and the 

occurrence of subsequent transesterification reactions. In fact, the areas of NMR signals 

indicate that 7.8 molar-% of glycolyl units was incorporated into the transesterification 

sequences.  

The infrared absorption spectrum in the 1800-750 cm
-1

 wavenumber region is highly 

sensitive to the amorphous and crystalline character of samples, and therefore may be 

useful to complete their characterization. Figure S3 of SI compares the FTIR spectra of the 

three homopolymers and the triblock copolymer. The presence of the characteristic bands 

reported for the crystalline PGL homopolymer,
25,31

  indicates that polyglycolide crystalline 

domains were abundant in the as-processed suture. The spectra changed when the sample 

was melted and became logically highly similar to that corresponding to amorphous 

polyglycolide. Despite the low trimethylene carbonate unit content, some typical bands of 
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amorphous PTMC could still be detected in both amorphous and crystalline copolymer 

samples.
32

 In addition, the presence of crystalline caproyl units can be discarded since their 

characteristic and well defined bands were not detected.  

DSC heating traces of polyglycolide and the triblock copolymers (Figure S4a of SI) 

showed cleat differences concerning to the melting temperature and enthalpy that logically 

decreased for the copolymer  (i.e. from 213-222 ºC to  200 ºC and from 80 J/g to 40 J/g). 

The clear decrease on the melting enthalpy corroborated the high amorphous content, 

being nevertheless the value comparable with that found for the homopolymer when the 

energy was referred to the hard segment content (i.e. 70 J/g). WAXD diffraction profile of 

the copolymer (Figure S4b of SI) allowed estimating a degree of crystallinity close to 25%, 

which was significantly lower than found for PGL and coherent with the hard block 

content.  

 

Spherulitic morphologies developed during isothermal crystallization of GL-b-(GL-

co-TMC-co-CL)-b-GL 

GL-b-(GL-co-TMC-co-CL)-b-GL spherulites were obtained from hot and cold 

crystallization experiments. In all cases, a positive birefringence was observed (Figure 2) 

because of the peculiar crystalline structure of polyglycolide. In fact, the structure of 

polyglycolide is defined by an orthorhombic unit cell with a = 0.522 nm, b = 0.619 nm, 

and c = 0.702 nm and a P212121 space group where molecules with a fully extended zigzag 

conformation form sheets parallel to the ac crystallographic plane.
9
 The setting angle of 

the molecular segments is 0º or 180º, values clearly different from typical angles of ±45º 

determined for other aliphatic polyesters with a planar zigzag conformation. Unlike 

conventional polyesters that rendered spherulites with a negative birefringence,
33-35

 

polyglycolide has a perfect alignment of ester groups along the a crystallographic 
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direction. This feature can explain the peculiar positive birefringence when this direction 

becomes parallel to the spherulitic radi.   

Slight differences in spherulitic morphology were detected with the crystallization 

temperature. Specifically, spherulites grown at the higher temperatures had a flower-like 

appearance (e.g. crystallization performed at 160 ºC in Figure 2a) characterized by the 

development of multiple sectors. This morphology may suggest confined crystallization of 

flat-on lamellae instead of formation of edge-on or even twisted lamellae going round the 

spherulite, as is characteristic of typical fibrilar or ringed spherulites. Irregular boundaries 

derived from this morphology were still evident at 145 ºC (arrows in Figure 2b), but 

perfectly round morphologies formed at even lower temperatures (e.g. Figure 2c for 

crystallization at 80 ºC). Logically, spherulites obtained from cold crystallization (Figure 

2d) showed similar characteristics to those observed at low temperature crystallizations 

from the melt state. It is also clear that the latter had a fibrilar morphology whereas at the 

highest temperature greater crystalline domains that could correspond to flat-on lamellae 

were detected within the spherulites. It is also interesting to note that amorphous domains 

associated with the soft segments should be inside the spherulites since these covered all 

the available space when they grew until impingement (Figures 2e and 2f).  

The intensity of birefringence of spherulites grown following several isothermal steps 

decreased at lower temperatures for samples crystallized from the melt (Figure 3a) and the 

glass state (Figure 3b). Micrographs showed that inner crystalline domains were similar in 

zones formed at different temperatures, although their size clearly decreased with 

decreasing temperature. In fact, flat-on crystals with lateral dimensions of up to 1 m were 

envisaged in the AFM micrographs of spherulites grown at high temperature (blue arrows 

in Figure 4a), whereas microcrystals had a more acicular, often even twisted (red arrows), 

form at lower crystallization temperatures (Figure 4b). 
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These observations were confirmed by electron diffraction patterns recorded from the 

different spherulites. Thus, typical polyglycolide hk0 diffraction pattern with strong 110 

(0.399 nm) and 020 (0.309 nm) reflections were easily obtained from high temperature 

crystallized spherulites (Figure 5a), whereas this pattern was hardly observed in low 

temperature crystallized samples. In this case, the intensity of reflections was low (Figure 

5b) and even asymmetric patterns (Figure 5c) indicative of lamellar twisting were more 

frequently recorded. The hk0 pattern was always oriented with its a* reciprocal axis 

parallel to the spherulite radius, justifying the peculiar positive birefringence sign of the 

spherulite as above indicated.  

 

Secondary nucleation constant for the isothermal crystallization of GL-b-(GL-co-

TMC-co-CL)-b-GL  

Kinetics of crystallization of GL-b-(GL-co-TMC-co-CL)-b-GL from the melt and the 

glass state was studied by optical microscopy. Spherulite radii grew linearly with time 

until impingement, as shown in Figure 6a for cold crystallization experiments 

performed in the temperature range from 60 ºC to 90 ºC. Final radii varied in this case 

between 28 and 65 m and logically decreased at higher primary nucleation densities 

(i.e. at lower crystallization temperatures).  

Nucleation was very low at the higher temperatures of crystallization experiments 

carried out from the melt state where spherulites with diameters larger than 500m 

could be obtained. The number of nuclei slightly varied during isothermal 

crystallization at a given temperature (not shown) and consequently a deviation from a 

perfect  athermal nucleation was detected. As can be seen in Figure 6b, the temperature 

evolution of primary nucleation reveals a single exponential dependence. It is 

remarkable that the number of active nuclei is very low (e.g. 335 nuclei/mm
2
 at such a 
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low temperature as 70 ºC), even lower than that determined for Maxon
TM

 (e.g. 600 

nuclei/mm
2
 at 80 ºC).

23
 Crystallization of GL-b-(GL-co-TMC-co-CL)-b-GL seems 

more hindered because of its higher content in non-crystallizable soft segments (i.e. 43 

versus 38 wt-%) with a more statistical monomer distribution (i.e. three as opposed to 

two components). 

Figure 7a is the typical bell-shaped curve that defines the temperature dependence of the 

crystal growth rate. The low nucleation and growth rate allowed the collection of 

experimental data over the whole temperature range for crystallizations performed from 

the melt state. Namely, measurements could be taken even when crystallization began 

during the cooling run from the melt to the selected temperature due to inability of 

formed spherulites to collapse.  

Crystal growth rates determined from cold crystallization experiments fitted also with 

the same curve (Figure 7a). Data from these cold crystallization experiments could also 

be achieved for slightly high temperatures despite some crystallization took place 

during the heating step. For the sake of completeness, the curve previously reported for 

Maxon
TM 

is also
 
given in Figure 7a.

23
 The GL-b-(GL-co-TMC-co-CL)-b-GL plot has 

significant differences concerning a higher supercooling to initiate crystallization and 

the shift of the curve to lower temperatures. Namely, a greater difficulty for primary 

nuclei to begin the crystallization process was detected. It should also be pointed out the 

higher growth rate determined at the maximum of the curve, which may be related to a 

lower molecular weight (i.e. Mw of 71,000 g/mol as opposed to the value of 95,000 

g/mol reported for Maxon
TM, 23

). 

The crystal growth rate was analyzed by the Lauritzen-Hoffman equation:
36

  

G = G0 exp [-U
* 

/ (R (Tc-T∞))] × exp [-Kg/(Tc (T) f  )]  (1) 
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where G0 is a constant preexponential factor, U* represents the activation energy 

characteristic of the transport of crystallizing segments across the liquid–crystal 

interface, T∞ is the temperature below which such motion ceases, Tc is the 

crystallization temperature, R is the gas constant, Kg is the secondary nucleation 

constant, ΔT is the degree of supercooling measured as Tm
0
 - Tc, and f  is a correction 

factor accounting for the variation in the bulk melting enthalpy per unit volume with 

temperature (f = 2Tc/(Tm
0
 + Tc)). 

The Lauritzen-Hoffman plot was fitted with a straight line (r
2 

= 0.989) when the 

“universal” values reported by Suzuki and Kovacs
37 

(i.e. U
*
 = 1500 cal/mol and T∞ = Tg - 

30 K) were used in the calculation. A slight variation was introduced (Figure 7b) to 

improve the fit (i.e. r
2
 = 0.991 using U

*
 = 1740 cal/mol and T∞ = Tg - 32 K). Nevertheless, 

kinetic features at low supercoolings are basically governed by the nucleation term, and 

consequently crystallization rates could become relatively insensitive to the U
*
 and T∞ 

parameters. The plot was used to estimate a secondary nucleation constant of 2.88 × 10
5
 

K
2
, which is significantly higher than the value reported for Maxon

TM,23
 (i.e. 1.82 × 10

5
 K

2
) 

and reveals greater difficulty in the crystal growth process. This is probably so because 

proper arrangement of hard blocks becomes hindered again at higher contents of non- 

crystallizable soft segments with a more statistical monomer distribution. Results appear 

more consistent than those attained from calorimetric analyses since in the case of GL-b-

(GL-co-TMC-co-CL)-b-GL a lack of proportionality between the overall crystallization 

rate and the crystal growth rate seems to exist.  

 

Kinetic studies for the non-isothermal crystallization of GL-b-(GL-co-TMC-co-CL)-

b-GL  



 

15 

 

Non-isothermal procedures can also be applied to study the temperature dependence of the 

spherulite growth rate during crystallization from both the melt and the glass states.
38-40

 

Thus, this rate (G) can be estimated by measuring the change of the spherulite radius (R) 

with temperature (T)  at a constant cooling/heating rate (dT / dt): 

G = dR / dt = (dR / dT) (dT / dt)  (2) 

The plot of the radius versus experimental temperature data can be adjusted to a 

polynomial equation with a good regression coefficient (r) to calculate the value of its first 

derivative (dR / dT) as a function of the crystallization temperature for all cooling/heating 

rates. Experimental problems lie in the choice of the cooling/heating rate required to 

maximize the crystallization temperature range where radii can be well measured. To this 

end, the use of various rates can be highly effective.   

The change in the radius of a typical GL-b-(GL-co-TMC-co-CL)-b-GL spherulite during 

the temperature ramp at different cooling/heating rates is shown in Figure 8a. A 

polynomial fitting with a high regression coefficient was obtained in all crystallizations. 

Third-order equations were always chosen (Table S2 in SI) since regression coefficients (≥ 

0.979) were slightly better than those calculated for lower order equations and remained 

constant for higher orders. 

Relationships between spherulite growth rate and crystallization temperature were 

obtained by differentiating third-order equations based on temperature and considering the 

cooling/heating rate (Equation 2). Figure 8b plots the G values, deduced for several 

cooling/heating rates as a function of temperature. A bell-shaped curve with a maximum of 

122 ºC was derived with data from all crystallization temperatures. It is remarkable that 

spherulite growth rates could be measured in the low temperature range (48-117 ºC) from 

crystallization experiments from both the glass and the melt state. Relatively good 
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agreement was found between data obtained from isothermal and non-isothermal 

crystallization, as also shown in Figure 8b. 

Lauritzen-Hoffman equation 1 was also used to deduce the value of the secondary 

nucleation constant for non-isothermal crystallization. Figure 8c shows the linear plot 

obtained using U
*
 and T  parameters of 1780 cal/mol and Tg – 33 K, respectively. It is 

clear that a single crystallization regime defined by a secondary nucleation constant of 

2.42 × 10
5 

K
2
 fits all the experimental data. The good agreement between experimental 

and theoretical data (i.e. those obtained from equation 1 and the deduced parameters) is 

also shown in Figure 8b. The deduced secondary nucleation constant is similar to, 

although slightly lower than, that determined from isothermal analysis (i.e. 2.42 × 10
5 

K
2
 respect to 2.88 × 10

5 
K

2
). Note that the average constant (2.65 × 10

5 
K

2
) is clearly 

higher than the value determined from DSC experiments and becomes higher than the 

average constant deduced from isothermal and non-isothermal crystallizations of the 

GL-b-(GL-co-TMC)-b-GL bicomponent system (2.13 × 10
5 

K
2
).

24
 Therefore, analyses 

from optical microscopy observations render reliable values of the secondary nucleation 

constant that justify a greater difficulty to crystallize for samples having a more 

disordered soft segment despite having a lower molecular weight.  

 

Changes on lamellar morphology of GL-b-(GL-co-TMC-co-CL)-b-GL during cooling 

and heating processes 

Figure 9a shows representative time-resolved SAXS profiles of GL-b-(GL-co-TMC-co-

CL)-b-GL obtained during a non-isothermal hot crystallization performed at 10 ºC/min. 

A SAXS long period peak is clearly seen at a value of the scattering vector, q = [4/] 

sin (), close to 0.45 nm
-1

 after substraction of the empty sample background observed 

near the beam stop. This peak can be attributed to the lamellar structure of the 
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spherulites and starts to appear at a temperature close to 147 ºC (a value which slightly 

increases with decreasing the crystallization cooling rate). Subsequently, the peak 

intensity increases significantly with decreasing temperature until reaching a plateau 

value at a temperature close to 126 ºC at which crystallization can be considered 

completely finished. The high intensity of the final SAXS peaks, suggests a large 

difference between the electronic density of the amorphous and the crystalline phases, 

which is in agreement with the tight packing of polyglycolide.
9
 During crystallization 

the SAXS peak slightly shifts to higher q values and the change is more pronounced at 

the initial stages. 

Characteristic lamellar parameters (i.e. long period, L, amorphous layer thickness, la, 

and crystalline lamellar thickness, lc) and crystallinity (i.e. crystallinity within the 

lamellar stacks, Xc
SAXS

 = lc / L, and scattering invariant, Q) were determined by means 

of the normalized one-dimensional correlation function,
41

 (r): 

 (r) = 


0

2 )cos()( dqqrqIq  / 


0

2 )( dqqIq   (3) 

SAXS data were collected within a limited angular range and consequently Vonk’s 

model
42 

and Porod’s law were applied to perform extrapolations to low and high q 

values.  

Representative correlation functions (i.e. at the beginning and at the end of the 

crystallization process) are displayed in Figure 10 whereas the evolution of morphologic 

parameter and the invariant are shown in Figure 11. Main conclusions that can be 

deduced for the crystallization process are the followings: a) Lwas clearly higher than 

the long period determined from twice the value of the first minimum of the correlation 

function (i.e. 10.6 nm respect to 8.0 nm), which suggests a broad distribution of the 

layer widths of the crystal phase. b) la remained practically constant during 
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crystallization since only a decrease from 2.2 to 1.9 nm was detected, whereas lc 

significantly decreased (i.e. from 9.8 to 8.6 nm) as a consequence of a typical lamellar 

insertion mechanism. c) Scattering invariant logically increased during non-isothermal 

crystallization but at low temperature (e.g. close to 51 ºC) it starts to decrease as a 

consequence of an increase on the electronic density of the interlamellar amorphous 

phase. d) Crystallinity within the lamellar stacks was very high (0.82) as a consequence 

of the reduced amorphous thickness. In fact, this is a distinctive feature with respect to 

Maxon
TM

 samples crystallized under identical experimental conditions and a clear 

evidence of the influence of microstructure on morphology. In the case of Maxon
TM

 the 

final la and lc parameters were 10.0 and 3.5 nm, respectively, whereas  Xc
SAXS

 was only 

0.74.  

Lamellar structure is clearly different for the as-processed sutures, which display a 

typical fiber pattern with oriented WAXD reflections (not shown) and an intense 

meridional SAXS reflection (Figure 10). Lamellar structure is defined by la and lc 

parameters of 5.1 and 1.3 nm, respectively, and a Xc
SAXS

 value of 0.80. Thus, processing 

characterized by a rapid cooling from spinneret and a subsequent annealing process 

render a well differentiated structure from melt crystallized spherulites as can be 

deduced by comparison of correlation functions (Figures 10a and 10c). Again a broad 

distribution of the layer widths of the crystal phase can be deduced for the as processed 

sample (i.e. 6.3 nm and 4.8 nm are measured for the first maximum and the double 

value of the first minima, respectively). Despite the great difference on the lamellar 

morphology it should be indicated that Xc
SAXS

 was very close to the value determined for 

melt crystallization (i.e. 0.80 with respect to 0.82). Morphology drastically changed 

during a subsequent heating process since the SAXS peak increased in intensity 

(probably as consequence of the decrease of the electronic density of the interlamellar 
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amorphous phase) and moved towards lower q values (Figure 9b). This lamellar 

reordering process was initiated at a temperature close to 101 ºC and ended at 202 ºC 

just when melting process began. It should be pointed out that any endothermic event 

was observed in previous DSC experiments
28 

and consequently diffraction data are 

essential to demonstrate the thickening process of
 
GL-b-(GL-co-TMC-co-CL)-b-GL. 

Figures 10b and 11 shows the correlation function at the end of lamellar reordering 

process and the temperature evolution of morphologic parameters. Note that they were 

practically constant up to 115 ºC, increased between 115 and 190 ºC and decreased at 

higher temperatures than 190 ºC. The evolution of the amorphous and crystalline 

lamellar thicknesses was proportional and consequently Xc
SAXS 

remained practically 

constant (increased only from 0.80 to 0.82). It is remarkable that the lamellar structure 

became practically identical to that attained after crystallization from the melt (Figures 

12b and 12d), being la and lc parameters 9.0 and 2.0 nm, respectively (i.e. close to the 

previously reported values of 8.6 and 1.9 nm).   

 

CONCLUSIONS 

Crystallization of segmented copolymers having two polyglycolide hard segments is 

influenced by the constitution of the middle amorphous soft segment. Specifically, 

significant differences on secondary nucleation constant and lamellar morphology were 

found between copolymers displaying similar properties but having soft segments with 

three (i.e. glycolide, trimethylene carbonate and -caprolactone) or two components (i.e. 

glycolide and trimethylene carbonate). Results from isothermal and non-isothermal 

crystallization experiments were consistent and pointed out that the statistical segments 

constituted by three repeat units hindered the proper arrangement of hard blocks over 
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crystal surfaces, being also detected a clear decrease on the primary nucleation respect the 

related bicomponent copolymer.  

Similar lamellar morphologies were attained by crystallization from the melt state or from 

thermal treatment of oriented fibers, being characteristic lamellar insertion and lamellar 

thickening processes, respectively. Final morphologies were defined by a crystallinity 

within the lamellar stacks of 0.82 and a crystalline thickness of 8.6-9.0 nm that contrast 

with values of 0.74-0.83 and 10.0 nm found for the bicomponent system when was 

processed in a similar form. 
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FIGURE CAPTIONS 

 

Figure 1. 
1
H-NMR spectra of GL-b-(GL-co-TMC-co-CL)-b-GL with labelling of the most 

distinctive sequences. Inset shows a detail of glycolyl signals and characteristic 

transesterification sequences.  

 

Figure 2. Polarized optical micrographs of GL-b-(GL-co-TMC-co-CL)-b-GL spherulites 

crystallized from the melt (a, b, c, e) and cold crystallized (d, f). Black and white 

micrographs correspond to samples crystallized at 160 ºC (a), 145 ºC (b), 80 ºC (c), 70 ºC 

(d), whereas color micrographs were taken at the end of crystallizations performed at 155 

ºC (e) and 70 ºC (f) using a first-order red tint plate. Arrows point to irregular edges 

detected during high temperature crystallizations. 

 

Figure 3. Polarized optical micrographs of GL-b- (GL-co-TMC-co-CL)-b-GL spherulites 

isothermally grown at three temperatures starting at 150 ºC (a) and 85 ºC (b). 

 

Figure 4. Atomic force microscopy 3D height images of GL-b-(GL-co-TMC-co-CL)-b-

GL  spherulites isothermally crystallized from the melt and the glass state at 150 ºC (a) and 

80 ºC (b), respectively. Insets show amplitude and low magnification 3D height images. 

 

Figure 5. Electron diffraction patterns of GL-b-(GL-co-TMC-co-CL)-b-GL spherulites 

crystallized from the melt  and the glass state at 150 ºC (a) and 80 ºC (b,c), respectively. In 

all cases, the a
*
 reciprocal axis is parallel to the spherulite radius. 

 

Figure 6. a) Plots of the radius of GL-b-(GL-co-TMC-co-CL)-b-GL spherulites versus 

crystallization time for isothermal cold crystallizations performed between 60-90 ºC. b) 

Change in the nucleation density with isothermal crystallization temperature. 
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Figure 7.  a) Temperature dependence of crystal growth rate (○ symbols) determined by 

equation 1 and using the best fit parameters. Experimental crystal growth rates (green 

and red symbols for crystallizations from the glass and the melt state, respectively) as 

well as the theoretical curve from isothermic crystallization of GL-b-(GL-co-TMC)-b-

GL (□ symbols)
13

 are also shown for comparison. b) Plot of ln G + U
* 

/ R(Tc-T) versus 

1 / Tc(T) f to determine the Kg secondary nucleation  parameter of GL-b-(GL-co-TMC-

co-CL)-b-GL. 

 

Figure 8. a) Variation in spherulite radius with temperature during heating and cooling at 

the indicated rates. b) Spherulite growth rates determined by the equations deduced for 

cooling and heating runs. Theoretical curves for non-isothermal  (○) and isothermal  (-) 

crystallization of GL-b-(GL-co-TMC-co-CL)-b-GL are also drawn for comparative 

purposes. For the sake of completeness, insets show representative spherulites non-

isothermally crystallized from the melt and the glass state that had irregular and rounded 

edges, respectively.  c) Plot of ln G + U
* 
/ R(Tc-T) versus 1 / Tc(T) f to determine the Kg 

secondary nucleation  parameter of GL-b-(GL-co-TMC-co-CL)-b-GL. 

 

Figure 9. Time-resolved SAXS three-dimensional profiles of GL-b-(GL-co-TMC-co-CL)-

b-GL during non-isothermal crystallization from the melt (a) and heating from room 

temperature (b). Heating and cooling rates were 10 ºC/min. SAXS curves are shown after 

subtraction of empty sample background and Lorentz correction.  

Figure 10. Comparison between correlation functions of GL-b-(GL-co-TMC-co-CL)-b-

GL for:  initial sample (a), after heating up to 180 ºC (b), at the first stages of 

crystallization from the melt (c) and after finishing the non-isothermal crystallization (d).  

Heating and cooling rates were 10 ºC/min.  
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Figure 11. Evolution of the long period from correlation function (●), L, crystal thickness 

(■), lc, amorphous thickness (▲), la, and scattering invariant  (♦), Q, during non-isothermal 

crystallization performed at 10 ºC/min with GL-b-(GL-co-TMC-co-CL)-b-GL sample. 

Evolution of spacing parameters during a heating scan (10 ºC/min) of the initial sample is 

also shown (empty symbols). 
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Figure 3 
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