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Abstract
The sonochemical technique has already been proven as one of the best coating methods for stable functionalization of substrates

over a wide range of applications. Here, we report for the first time on the simultaneous sonochemical dyeing and coating of textiles

with antibacterial metal oxide (MO) nanoparticles. In this one-step process the antibacterial nanoparticles are synthesized in situ

and deposited together with dye nanoparticles on the fabric surface. It was shown that the antibacterial behavior of the metal oxides

was not influenced by the presence of the dyes. Higher K/S values were achieved by sonochemical deposition of the dyes in com-

parison to a dip-coating (exhaustion) process. The stability of the antibacterial properties and the dye fastness was studied for 72 h

in saline solution aiming at medical applications.
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Introduction
The preferred technique for coating with nanoparticles (NPs) in

most scientific and industrial examples is the direct impregna-

tion of textiles in the reactant solution. Other methods such as

chemical vapor deposition (CVD) of silver NPs on textiles have

also been used [1]. Among the various other coating techniques

the sonochemical immobilization was carried out on a large

variety of substrates. Functional nanoparticles (NPs) were

deposited on polymers [2], glass [3], metals [4], textile [5,6] and

even paper [7], imparting to the solid substrate the properties of

the immobilized particles. These include magnetic, catalytic,

fluorescing, antibacterial, and antibiofilm properties. The sono-

chemical coating technique guarantees a very good adherence

of the deposited NPs to the substrate resulting from the high

speed (>500 m/s) at which the NPs are thrown at the substrate

by microjets created after the collapse of the acoustic bubbles

near a solid surface [8]. The excellent adherence is reflected
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in the case of nano-CuO coated on cotton, which after 65

intensive washing cycles at 75 °C in a hospital washing

machine, still maintained their bactericidal effect, yielding a

reduction of about log 5 after this long process. Moreover, SEM

pictures demonstrated that the CuO NPs remained on the

surface [9].

Over the years, we developed two modes of NPs deposition:

i) the in situ deposition mode, where the sonochemically formed

NPs are thrown onto the surface subsequent to their synthesis

[5,6], and ii) the “throwing stones” mode used when the desired

NPs cannot be prepared sonochemically in situ. In the latter

case commercial NPs are introduced in the solvent and the

ultrasonic waves are employed to “throw” them as “stones” and

immobilize them onto the substrate [10]. For both methods very

homogeneous coating on the substrate surface is achieved irre-

spective of the nature of the substrate.

On the other hand, simultaneous deposition on solid surfaces of

two materials was applied using methods such as reactive

electron beam deposition [11], pulsed laser deposition [12],

Langmuir–Blodgett [13], electrochemistry [14], ion sputtering

[15], casting [16], and sonoelectrochemistry [17]. We could,

however, find only one report in which sonochemistry was used

for the co-deposition of AgNPs and AgCl on TiO2 NPs to form

Ag@TiO2 and Ag/AgCl@TiO2 [18]. The synthetic process

revealed that in fact it was a one-step process combining Ag+,

TiO2 NPs, and NaCl in ethylene glycol solution. The sono-

chemical process led to the partial reduction of Ag+ to metallic

Ag, while AgCl was also formed due to the presence of Cl−.

In the current work we describe the deposition of two different

functional materials on textiles, e.g., dyes and biocidal NPs that

were synthesized and embedded onto the surface from a solu-

tion containing precursors. Colored antibacterial textile/NPs

composites were generated.

The production of textiles on which dyes and antibacterial NPs

are co-deposited is normally achieved in a two-stage process.

For example, Tabatabee et al. reported on the sonochemical

synthesis of CdS and subsequent coating/dyeing of the textile

by impregnation [19]. Niu has reported on another sonochem-

ical attempt to impart dyes and biocidal agents on wool [20].

In the current paper we describe the simultaneous deposition on

cotton fabrics of Reactive Orange 16 (RO16) or Reactive Black

5 (RB5) with antibacterial CuO or ZnO nanoparticles (NPs)

from an aqueous solution. The solution contains both the dye

and the corresponding M(CH3COO)2 (M = Zn or Cu) precursor,

which undergoes hydrolysis under alkaline conditions

(ammonia) to form ZnO or CuO. The cotton was colored with

the dye and showed good antibacterial properties. The color

fastness was evaluated by immersing the coated/dyed cotton in

water and monitoring the absorbance of the colored fabric. Two

major issues were solved in this research: i) the antibacterial

activity of the metal oxide (MO) NPs was maintained while

deposited simultaneously with the dye, ii) a stable sonochem-

ical coloration of cotton fabric was achieved in spite of the rich

literature on the use of ultrasonic waves for bleaching color

from textiles [21-24].

Experimental
Water-based synthesis of metal oxide (MO)
NPs and their simultaneous coating with a
dye on cotton
The coating/dyeing process was carried out in a 120 mL flask

containing 0.022 g of the corresponding M(CH3COO)2

precursor and 0.16 g of RO16 or RB5. A 10 × 10 cm2 sample of

a cotton bandage was introduced in the flask filled with 100 mL

of the above solution. The sonication was conducted at

30% amplitude of a 750 W booster sonicator (Sonics and Ma-

terials instrument, Ti-horn, 20 kHz). When the solution reached

a temperature of 60 °C, 25% aqueous ammonia solution was

added drop wise to adjust the pH to 8, and the sonochemical

process was continued for another 60 min. The temperature of

30 °C was maintained constant during the sonochemical coating

reaction by cooling the flask with cold water. The coated fabric

was first washed thoroughly with water to remove traces of

ammonia, then with ethanol, and dried under vacuum. A control

experiment, in which only the dye (RO16 or RB5) was

deposited sonochemically on cotton, was conducted using the

same experimental conditions as described above but without

the addition of M(CH3COO)2.

Characterization of the coated fabrics
The particle morphology and size distribution have been studied

with a high-resolution scanning electron microscope (HRSEM)

Quanta 200 FEG from FEI (USA). The Cu and Zn concentra-

tions on the fabric surface were determined by inductively

coupled plasma optical emission spectroscopy (ICP-OES)

analysis (Horiba ULTIMA 2 spectrometer) after their dissolu-

tion from the fabric with 0.5 M HNO3. The dyes adsorbed on

the cotton were characterized by UV spectroscopy (CARY 100

Scan UV spectrometer covering a wavelength range from 300

to 800 nm). An attempt to prove the existence of the dyes on the

cotton was carried out by solid state nuclear magnetic reso-

nance (NMR). The experiments were performed on a Bruker

Advance III 500 narrow-bore spectrometer, using a 4 nm

double-resonance magic angle spinning (MAS) probe.
13C CP-MAS experiments were carried out at a spinning rate of

8 kHz, using a 2.5 ms 1H 90° pulse, 2 K data points, 1 K scans
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Figure 1: XRD patterns of sonochemically coated fabrics with: (a) ZnO and (b) CuO NPs.

and a 2 ms ramped-CP period. Proton decoupling using the

SPINAL composite pulse sequence at a field of 100 kHz was

used during acquisition and a 3 sec recycle delay between

acquisitions. Chemical shifts were given with respect to

adamantane (38.55, 29.497 ppm). In addition, the 1H NMR

measurements of the dye-containing solution was performed

after the sonication to probe for possible chemical changes in

the dye structure. The crystalline structure of the metal oxides

was examined by XRD (Bruker D8).

Leaching experiments
Possible leaching of the MO and dyes from the coated textile

was tested in saline solution (0.9 % NaCl). A piece of fabric

(70 mg) was placed in 10 mL saline and kept at 40 °C for 72 h

under agitation at 100 rpm. The leaching solutions were

analyzed by ICP-OES for the presence of ions. The release of

NPs into the saline was examined by a high-resolution transmis-

sion electron microscope (HRTEM), JEOL, operated at 200 kV.

The difference in colorization of the textiles before and after

leaching experiments was characterized by reflectance measure-

ments.

Antibacterial test
The antibacterial activity was tested according to the procedure

described by our group previously [25]. Briefly, the antibacte-

rial activity of MO- and MO/dye-coated fabrics was tested

against E. coli. Overnight cultures of the bacteria were trans-

ferred into a nutrient broth (NB) medium (“Difco” Detroit, MI)

and grown at 37 °C with aeration. When the cell number

reached 106 CFU, the cells were harvested by centrifugation

and washed twice with a 0.85 % NaCl solution at pH 6.5

(saline). The fabric (2 × 2 cm2) was placed in a vial

(d = 2.5 cm) containing 2 mL of bacteria in saline. The bacte-

rial suspensions were incubated for up to 60 min at 37 °C with

agitation (170 rpm). Aliquots (100 μL) were taken at different

time intervals (0, 7, 15, 30 and 60 min) and plated on nutrient

agar plates after 10-fold dilution in saline. The plates were

allowed to grow overnight at 37 °C and the viable bacteria were

counted thereafter.

Results and Discussions
Optimization of the co-deposition
The deposition of the two compounds, the antibacterial ZnO or

CuO, and the RO16 or RB5 dyes were carried out by dissolving

the corresponding M(CH3COO)2 precursor and the dye in

water. Basic hydrolysis of the acetates was performed by adding

ammonia solution to obtain MO. A 10 × 10 cm2 piece of fabric

was introduced in the reaction cell and the sonicator was oper-

ated for 60 min. MO NPs were formed and thrown simultane-

ously with the dye towards the fabric surface. The dyeing

occurs as a result of supplying ultrasound energy to the solu-

tion. When high-intensity ultrasound is applied to the aqueous

solution of organic molecules, these molecules are adsorbed on

the surface of the sonochemically formed acoustic bubbles.

When the implosive cavitation collapse occurs, many mole-

cules are brought together to form a nanoparticle. Such a

nanoparticle consists of a very high amount of desired mole-

cules [26,27]. In the current case, the molecules of the dye that

are presented in the solution form the nanoparticles, in addition

to the MO that are synthesized as a result of hydrolysis reaction

of metal acetate. The coating is an in situ process which takes

place subsequently to the formation of the nanoparticles. High-

speed jets that are generated due to the bubble collapse, throw

the newly created NPs of MO and the dye, at high speed toward

the textile surface where they remain strongly embedded.

Indeed, the XRD patterns of the fabric at the end of the reaction

revealed the formation of MO NPs on the surface (Figure 1).

The XRD pattern of the sonochemically prepared ZnO NPs

correspond to hexagonal phase of zincite (Figure 1a). The peaks

at 2θ = 31.772, 34.420, 36.256, 56.602, and 62.858°, are

assigned to the (100), (002), (101), (110), and (103) reflection

planes, respectively (PDF: 01-089-1397). The pattern of the

sonochemically prepared CuO NPs (Figure 1b) refers to a base-
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Table 1: Absorbance and ICP data of the various samples.

sample wavelength (nm) intensity of coating (K/S)a content of oxides on bandage (wt %)

RO16
RO16 sonochemically coated 500 ± 5 2.0 –
RO16 applied by dipping 500 ± 5 1.7 –
RO16 + ZnO simultaneously coated 500 ± 5 2.4 0.9
RO16 + CuO simultaneously coated 530 ± 5 1.5 0.6

RB5
RB5 sonochemically coated 595 ± 5 4.5 –
RB5 applied by dipping 595 ± 5 3.2 –
RB5 + ZnO simultaneously coated 595 ± 5 4.8 0.9
RB5 + CuO simultaneously coated 540 ± 5 1.9 1.3

aK/S: color strength value, i.e., the Kubelka–Munk relationship, where K is an absorption coefficient and S is a scattering coefficient; K/S is a function
of dye concentration on the surface.

centered monoclinic tenorite phase (PDF: 01-089-2529). The

peaks at 2θ = 35.56, 38.74, and 48.74° are assigned to (−111),

(111) and (−202) reflection planes. No peaks of impurities were

detected. The amount of MO coated on the fabric was deter-

mined by ICP (Table 1) as described in the experimental

section. The concentration of the metal acetates and the dyes

was varied and the best reaction parameters, which resulted in

the highest antibacterial activity and coloration are reported in

the experimental section.

The presence of the dye on the fabric after the sonochemical

reaction can be easily observed by the naked eye (Figure 2).

While the color of RO16 changed only slightly when simultane-

ously coated with CuO, the color of RB5 changed from blue to

green-blueish when simultaneously coated with CuO. These

changes are reflected in the energies of the absorption peaks of

RO16–CuO where a 30 nm red (1132 cm−1) shift is detected,

while for RB5–CuO a 55 nm blue shift (1712 cm−1) is observed

(Table 1, Figure 3). The the dye–ZnO complexes did not reveal

any spectral shifts for both dyes. It is clear that CuO is inter-

acting with the dyes, while ZnO does not show the same inter-

action. The reason for the CuO shifts is related to the visible

absorption of CuO implying that the energy levels of CuO are

in the vicinity of those of the dyes. Such an interaction is not

expected for ZnO, which absorbs in the UV range.

It is worth noting that the wavelength of the absorption

maximum of the dyes did not change upon sonication indi-

cating that the deposited molecule did not undergo chemical

changes. A control dyeing was carried out by dip-coating the

fabrics in an alkaline (ammonia) dye solution for 60 min, the

same time as the sonochemical coating reaction. Higher K/S

values were obtained for the sonochemically ZnO-coated

samples as compared to the regular dip-coated samples

Figure 2: Images of textile fibers (shredded bandages) colored with
RO16 and RB5 dyes and functionalized with ZnO and CuO NPs in a
one-step sonochemical process.

(Table 1, Figure 3). Conventional dyeing with reactive dyes is

normally carried out in the presence of high amount of salts and

at elevated temperatures (about 80–90 °C). Avoiding the use of

salts and decreasing the process temperature while obtaining

better dyeing results, is another advantage of the sonochemical

vs conventional dip (exhaustion) dyeing.

Morphology of the coating
The sonochemical technique appears as an efficient method for

coating of substrates and textiles in particular [6,10]. This is

reflected in the retention of the antibacterial properties of the

coated fabrics even after 65 washing cycles at 75 °C [9].

Herein, for the first time we report on the co-deposition of two

functional materials. The morphologies of the dye alone and

co-deposited dye and metal oxides were studied by HRSEM

and are shown in Figure 4. The morphology of RB5 sonochemi-
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Figure 3: Absorption measurements in the visible region of the colored bandages coated with dyes RO16 (a) or RB5 (b) and ZnO or CuO NPs:
(i) bandages coated with corresponding dyes and ZnO NPs by the sonochemical method; (ii) bandages coated with only dyes by sonochemical
method; (iii) bandages coated with only dyes by dipping procedure; (iv) bandages coated with CuO NPs by the sonochemical method.

Figure 4: HRSEM images of (a) RB5 sonochemically deposited on cotton, (b) ZnO coated in the presence of RB5, (c) CuO coated in the presence of
RB5; insets were taken in higher magnification.

cally deposited on cotton is presented in Figure 4a. Under ultra-

sound irradiation the dye molecules form NPs which are

deposited onto the surface of the textile. The creation of organic

nanoparticles from their solution by sonochemical method was

previously described by our group [25,26]. The HRSEM images

of the fabric coated with ZnO and RB5 is presented in

Figure 4b, and the fabric coated with CuO and RB5 is illus-

trated in Figure 4c. The average size of ZnO–RB5 NPs coated

on the cotton fabric is ca. 150 nm and the exhibit prolate spher-

oidal shape. The CuO–RB5 particles have a needle structure

with ca. 80 nm length and 10 nm width. Identical morphologies,

needles and prolate spheroidal-shaped are observed for the

RO16 coated with both metal oxides.

Chemical structure of the immobilized dyes
In order to study the influence of the sonication procedure on

the dyes in the solution, each of dyes (RO16 and RB5) was

dissolved in D2O at a concentration of 1.6 g/L and sonicated for

60 min. The 1H NMR spectra were measured, and no changes

were observed in the NMR spectra of the solutions before and

after sonication, confirming that no degradation of the dyes has

occurred during the sonochemical treatment (Figure 5). The

spectra of RO16 before and after the sonochemical treatment

looked identical, and the small difference in the spectra of RB5

in the broad signal around of 5 ppm was attributed to the

residual of the peaks resulting from the solvent suppression.

Additionally, the coated/dyed bandages were characterized by

solid state 13C NMR. The reflectance spectra of cotton sono-

chemically coated with RO16 and RB5 were compared with the

spectrum of untreated cotton. The solid state NMR spectra did

not reveal any signal of the dyes. Apparently, the small amount

of dye deposited on the fabric is below the detection limit of the

NMR measurement.

Antibacterial activity
The antibacterial properties of sonochemically produced MO

NPs synthesized from ethanol/water solution were previously
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Figure 5: 1H NMR spectra of the dyes solution of (a) RO16 and
(b) RB5 before (i) and after (ii) the sonochemical treatment.

evaluated and reported [6,10]. In the current paper, the antibac-

terial properties of entirely water-based synthesized MO NPs

complexed with the dye are presented. The antibacterial prop-

erties of the ZnO and CuO were first evaluated against E. coli,

and compared with co-deposited dye/MO. Two and a half log

reduction was obtained in 1 h for the ZnO coated bandage. The

addition of RO16 or RB5 slightly reduced the antibacterial

activity of ZnO NPs (Figure 6). The activity of CuO bandage

was significantly higher and a 3 log reduction was observed

already after 15 min of incubation, while after 30 min a 4.5 log

reduction was achieved (Figure 7). The addition of RB5 or

RO16 did not affect the activity of CuO NPs.

Stability of coating
One of the key factors of classifying the quality of coating tech-

nique is the stability of the active phase while exposed to

liquids. In the current research, the stability of sonochemically

deposited MO and dye was evaluated by soaking the coated

textiles in saline solution at 40 °C for 72 h. There are a number

of species that can be released from the coated surface, such as:

a) nanoparticles of MO, b) metal ions, and c) dye molecules. It

is known that the solubility of MO is derived from their Ksp

values. Ksp of ZnO and CuO are 10−11 and 10−20, respectively.

The presence of ions in the leaching solution was monitored by

Figure 6: Antibacterial properties of ZnO-coated bandages and
ZnO/dye-coated bandages.

Figure 7: Antibacterial properties of CuO-coated bandages and
CuO/dye-coated bandages.

ICP-OES measurements. The second column in Table 2 repre-

sents the percentage of leached metal oxides NPs relatively to

the initial amount of coating on the surface. In order to monitor

if NPs were leached off the surface, a drop of leaching solution

was placed on a copper grid and subjected to HRTEM measure-

ments. The results did not reveal the presence of NPs on the

grid, indicating that nanoparticles are not released from the

coated surface, confirming their strong adherence onto the

surface.

A total loss in the range of 2.5–12.2% of the metal oxides was

found. This loss is due to the dissolution of the M2+ and O2−

ions. As ZnO is more soluble in water, higher percentage of

released ions was found for the ZnO coating.

To follow the leaching of the dye into water and saline solution

the color difference of the textiles before and after leaching

experiments was studied by measuring their absorption spectra.

The results are presented in (Table 2 and Figure 8). When RO16

was sonochemically coated with metal oxide, the decrease in

the intensity of color was smaller in comparison to the leaching

observed for the sonochemically deposited dye alone. This

might indicate a possible interaction between the MO and the

dye during the co-deposition. In the case of RB5, the release of
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Table 2: Comparative studies of fabric coating based on absorption and ICP-OES data.

sample initial content of
oxides on
bandage (wt %)

release of oxides
into leaching
solution (%)

intensity of
coating (K/S)a

intensity of
coating after
72 h (K/S)a

relative
decrease of
color intensity

RO16
RO16 sonochemically coated — — 2.0 0.4 5.0
RO16 applied by dipping — — 1.7 0.2 8.5
RO16 + ZnO simultaneously coated 0.9 12.2 2.4 0.7 3.4
RO16 + CuO simultaneously coated 0.6 4.6 1.5 1.0 1.5

RB5
RB5 sonochemically coated — — 4.5 3.7 1.2
RB5 applied by dipping — — 3.2 1.9 1.7
RB5 + ZnO simultaneously coated 0.9 5.4 4.8 3.9 1.2
RB5 + CuO simultaneously coated 1.3 2.5 1.9 1.3 1.5

aColor strength values.

Figure 8: Comparison of dye stability after leaching in saline solution for 72 h at 40 °C and shaking at 100 rpm for the colored bandages coated with
RO16 (a) or RB5 (b) and ZnO or CuO NPs. The data is for three independent experiments.

the dye itself is very low and was not influenced by the pres-

ence of MO. The color intensity of the sonochemically dyed

fabrics was higher than the dip-coated bandages for both dyes

based on the K/S values. In addition, the color loss for the dip-

dyed samples is more noticeable than for sonochemically coated

dye. The sonochenical technique appears to be more efficient

for dyeing of textiles compared to the conventional dyeing

process. The sonochemical co-deposition of antibacterial

nanoparticles and the dye impart two functions in a one-step

process that led to stabilization of the dye on the surface while

exposed to the solution.

Conclusion
This is the first time that the sonochemical coating technique

was applied for co-deposition of two functional materials. The

simultaneous coating of the antibacterial NPs with dye imparts

the textiles with antibacterial properties in addition to coloriza-

tion. The antibacterial behavior of the metal oxide was not

influenced by the presence of the dye. In addition, the sono-

chemical coating of the dye alone from its water solution was

also presented. The superiority of the sonochemical coating

technique over the regular dipping procedure was demonstrated.

The advantages include the reduced temperature, the elimina-

tion of the use of salts, and the higher stability at wet condi-

tions. The foreseen applications of the colored and antibacterial

fabrics are in medical uses, military clothing, work-wear

uniform, and as household decorative textiles.
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