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We study the fundamental problem of mixing and chemical reactions un- 

der a Rayleigh-Taylor-type hydrodynamic instability in a miscible two fluid 

system. The dense fluid mixture, which is generated at the fluid-fluid inter- 

face, leads to the onset of a convective fingering instability and triggers a fast 

chemical dissolution reaction. Contrary to intuition, the dissolution pattern 

does not map out the finger geometry. Instead, it displays a dome-like, hi- 

erarchical structure that follows the path of the ascending fluid interface and 

the regions of maximum mixing. These mixing and reaction hot spots co- 

incide with the flow stagnation points, at which the interfacial mixing layer  

is compressed and deformed. We show that the deformation of the bound-  

ary layer around the stagnation points controls the evolution of the global 

scalar dissipation and reaction rates and shapes the structure of the reacted 

zones. The persistent compression of the mixing layer explains the indepen- 

dence of the mixing rate from the Rayleigh number when convection dom- 

inates. 
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1. Introduction 

Unstable fluid systems often experience chemical reactions coupled to the mixing driven 

by flow instabilities. For example, mantle convection determines the distribution of 

minerals in the Earth crust [Kouchi and Sunagawa, 1983; Tackley , 2000; Couch et al., 

2001]; Rayleigh-Taylor instabilities speed up burning processes in supernovae explo- 

sions [Schmidt , 2006]; and flow fluctuations are key for the performance of microfluidics 

reactors [deMello, 2006]. Correspondingly, chemical reactions may trigger (or suppress) 

fluid instabilities by changing the density of the fluids [Eckert and Grahn, 1999; Almarcha 

et al., 2010; Andres and Cardoso, 2011; Loodts et al., 2014; Cardoso and Andres, 2014]. 

In porous media, reactions can alter the solid matrix and create persistent porosity struc- 

tures that, in turn, transform the flow regime [Steefel and Lasaga, 1990; Golfier et al., 

2002; Szymczak and Ladd , 2009, 2011; Ritchie and Pritchard , 2011; Szymczak and Ladd , 

2013]. This is a relevant process in karst formation [Gabrovs̆ek and Dreybrodt , 2010], 

petroleum reservoirs [Fredd and Fogler , 1998], and the migration and dissolution of CO2 

in saline aquifers [Lindeberg and Wessel-Berg , 1997; Verdon and Woods, 2007; Backhaus 

et al., 2011; Hidalgo et al., 2012; Hewitt et al., 2013]. The relation between unstable 

flow patterns, persistent flow structures, and coupled mixing and reactions is central to 

the understanding of natural phenomena and engineered systems from the nano to the 

kilometer scale [Tél et al., 2005]. 
 

We focus here on a mixing-limited dissolution reaction in a system subject to a Rayleigh- 

Taylor instability. Mixing-limited reactions are fast compared to the mass transfer time 

scales so that the system can be considered locally at chemical equilibrium [Kechagia 
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et al., 2002], a situation ubiquitously encountered in nature. The reaction rate is then 

proportional to the mixing rate [De Simoni et al., 2005; Sanchez-Vila et al., 2007] and flow 

instabilities control the reactions and the location and distribution of matrix alterations. 

We analyze the relation of the reaction and mixing rates with the unstable flow structure 

formed by stagnation points along the interfacial boundary layer of the Rayleigh-Taylor 

instability. 

 
2. Governing Equations 

 
We consider a miscible two fluid system characterized by a non-monotonic density- 

concentration curve such that the mixture is denser than either pure fluid [Neufeld et al., 

2010; Hidalgo et al., 2012]. Initially, the fluid interface is stable with the light fluid laying 

on top of the denser fluid. Upon mixing, the interface quickly destabilizes due to instability 

created by density increases arising from the fluid mixture. The fluids are in chemical 

equilibrium with the porous matrix but not with each other so that mixing perturbs the 

equilibrium and triggers a chemical reaction. 

2.1. Chemical system 
 

The system is subject to an instantaneous dissolution reaction in which the concentra- 

tions of the aqueous species A and B follow the relation [Appelo and Postma, 2005; Sup, 

a] 

 

A = cB, (1) 

where c denotes a dimensionless concentration scaled with 
√

K/2, with K the chem- 

ical equilibrium constant. In the specific case of the dissolution of calcite, the cubic 
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relation (1) arises for the concentration of calcium ions (A) and carbon dioxide partial 

pressure (B) [Appelo and Postma, 2005; Sup, a]. 

The species concentrations cA and cB define the conservative component υ = cA + cB, 

whose reaction rate is zero [Sup, a]. The component υ is conserved under transport and 

reaction. Being a conservative quantity, it can be expressed in terms of the mixing ratio 

of the compositions of the top (T ) and bottom (B) fluids as υ = αυT + (1 − α)υB . Note 

than only conservative quantities can be expressed in terms of the mixing ratio α. 
 
 

2.2. Flow  and  transport 
 

Assuming that both fluids are incompressible, and using the Boussinesq approximation, 

the governing equations for variable-density single-phase flow in a bidimensional porous 

medium take the following dimensionless form [Riaz et al., 2006; Hidalgo et al., 2013]: 

∇ · q = 0, (2) 

q = −k(∇p − ρẑ), (3) 

∂α 1 
+ 

∂t φ 
q · ∇α − 

1 

Ra ∇ α = 0. (4) 
 

Equation (2) expresses the mass conservation for an incompressible fluid, (3) is the Darcy 

equation, and the mixing ratio α follows the conservative advection-diffusion equation (4). 

These equations are non-dimensionalized by using the following characterstic scales. 

The coordinates x and z are scaled with respect to the initial height of the interface 
 
H0  measured from the bottom of the box with ẑ the unit vector in the direction of 

 
gravity.  Permeability k and porosity φ are referred to the initial homogeneous values 

k0, φ0. Pressure p is measured with respect to a hydrostatic datum. Darcy velocity q is 

scaled by the characteristic velocity q0 = k0∆ρmg/µ0, where ∆ρm is the difference between 
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where  the  factor  d  c 

the maximum density and the initial density of the bottom fluid, g is the gravitational 

acceleration, and µ0, the dynamic viscosity, is considered constant. The dimensionless 

density difference with respect to the bottom fluid is denoted by ρ. The contribution of 

the dissolved matrix is neglected so that ρ depends only on the mixing ratio. ρ takes a 

value of 0 at α = 0, increases to a maximum value of 1 at α = αm, where m denotes 

maximum, and decreases to a negative value at α = 1 [Sup, a]. Finally, time t is expressed 

in terms of the advective time tadv = φ0H0/q0  and the Rayleigh number Ra is defined as 

Ra = 
q0H0 

φ0Dm 
, (5) 

 
where Dm  is the diffusion coefficient.  We assume that all species have the same diffusion 

coefficient to avoid violating the charge balance [Lichtner , 1985]. 

 
2.3. Reaction rate 

 
The reaction rate for a mixing limited reaction is given by [De Simoni et al., 2005; Sup, 

 
a] 

 
d2cA   1   2 

rA = φ dα2 χ, χ = Ra |∇α| , (6) 
 

2 
A 

dα2 
can be computed analytically using the definition of υ and (1), 

 

and χ is the scalar dissipation rate, whose role for the quantification of mixing has been 

discussed elsewhere [Le Borgne et al., 2010; Hidalgo et al., 2013]. The expression for rA 

reveals the control of mixing over reactions. 

Our model is closed by accounting for the porosity changes caused by the dissolution 

of the porous matrix. The rate of change of porosity is proportional to the reaction rate 
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and given by [Sup, a] 
 

1 dφ Nφ d2cA  2 

rφ ≡ φ dt = − Ra dα2 |∇α| , (7) 

where Nφ = 
√

K/(2Vm), with Vm the molar volume of the solid phase. In the following, 

we refer to (7) as the dissolution rate. 

Permeability k depends on φ through a Kozeny-Carman law k = φ3 in dimensionless 

form [Bear , 1972; Sup, a]. The cubic dependence produces small and smooth variations 

of permeability making flow, transport and reaction to be weakly coupled. 

 

 
3. Mixing and Dissolution Patterns 

The coupled unstable reactive flow and transport problem (2)–(4)-(7) is solved in a 

rectangular domain (x, z) ∈ [0, 1] × [0, 2] with periodic boundary conditions in x and no 

flow boundaries at the top and bottom. The equations are discretized in space using 

2nd-order finite volumes and 6th-order compact finite differences (4th-order for boundary 

conditions). The system is propagated in time using an explicit 3rd-order Runge-Kutta 

scheme [Hidalgo et al., 2013]. 

The results of a typical simulation are shown in Fig. 1 at a time (t = 15) when convective 

instabilities are well developed [Fig. 1 (a)]. The fluids mix by two mechanisms: the flux 

through the interface and the diffusion across the finger boundaries. However, reactions 

cluster at the fluid interface where there is a boundary layer created by the competition 

between diffusion and the compression caused by the upwelling less dense fluid displaced 

by the fingers. Unexpectedly, reactions along the fingers fringe are rather weak [Fig. 1 (b, 

c, e)]. No significant scalar gradients nor dissolution is observed because the concentration 

contrast is attenuated by diffusion.  The resulting dissolution pattern resembles a series 
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of intertwined dome-like structures that follow the ascending path of the highly reactive 

compressed fluid interface [Fig. 1 (d, f)]. 

The fluid interface is compressed and stretched at the flow stagnation points at a stretch- 

ing and compression rates γ = ∂qx/∂x = −∂qz /∂z. This forms hot spots, i.e., regions 

where mixing and reaction are maximum [Agrawal et al., 2007; Gérard et al., 2012], which 

follow the strain rate distribution [Fig. 2 (a, b, c)]. The hot spots appear on either side of 

the stagnation points [Fig. 2 (d)] where the compression of the boundary layer is highest. 

The control that the fluid structure exerts on mixing and dissolution is also reflected  

in the akin evolution of the global dissolution and scalar dissipation rates defined by 

integration of (6) and (7) over the flow domain Ω 
 

1 
(χ) = Ra 

r 
dΩ |∇α|2, (8) 

Ω 

Nφ 
r d2cA  2 

(rφ) = − Ra dΩ dα2  |∇α| . (9) 

They display three different regimes [Fig. 3] consistent with previous experimental obser- 

vations [Backhaus et al., 2011; Slim et al., 2013]. At the beginning mixing and reaction 

are driven by diffusion across the interface and follow the characteristic t−1/2 behavior. 

After the time for the onset of convection, which scales as Ra−1 [Riaz et al., 2006], a 

convection-dominated regime develops. This regime is characterized by a sudden increase 

of both observables towards a plateau whose value is independent of Ra. At larger times, 

as the bottom fluid gets better mixed with the top fluid, the density contrast decreases and 

convection attenuates. During this convection shutdown regime the mixing and reaction 

rate decay quickly [Slim et al., 2013; Slim, 2014; Bolster , 2014]. 
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4. Interface Stretching Model 
 

In the three regimes, mixing and reaction are dominated by the processes at the fluids 

interface. Therefore, their evolution can be quantified by the dynamics of the hot spots 

created by the stagnation points. 

The scalar transport in the vicinity of a stagnation point can be described by the 

advection-diffusion equation [Ranz , 1979] 

∂α ∂α = γz̃ + 1  ∂2α , (10) 
∂t ∂z̃ Ra ∂z̃2 

 
where z̃ is the vertical position in the inertial system moving with the interface.  The 

 
horizontal scalar gradients along the interface are small and disregarded here. The solution 

for α along its characteristics gives 

α = αb + ∆αb erfc 
2 

( 
z̃  

\
 

√
2s2 

, (11) 

 

where ∆αb   =  1 − αb  is the difference between the mixing ratio above (α =  1) and 

below (α = αb) the interface and s is the thickness of the interfacial boundary layer.  s 
 
satisfies [Villermaux , 2012; Le Borgne et al., 2013] 

 
1 ds 1 

= −γ + 1 , (12) 
s dt Ra s2 

 
which expresses the competition between convective compression and diffusive expansion. 

At the scale of s, the flow velocity changes from the buoyant velocity ub of the upwelling 

fluid to the interface velocity at the stagnation point ui such that the compression rate is 

given by γ = (ub − ui)/s. The dimensionless buoyancy is given by ub = 1 − ρ(αb), ui is 

proportional to the mass transfer rate across the interface. 
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0 

√ 

Using (11) in (8) and neglecting the contribution from the relatively diluted fingers 

below the interface we obtain the expression for (χ) 

we 

(χ) = √
4π

 
(∆αb)2 

, (13) 
sRa 

 

where we  denotes an effective interface length.  Similarly, for (rφ) (9) 
 

Nφwe(∆αb)2 r d2cA e−z̃ 

(rφ) = − 
sRa Ar , Ar  = 

dz̃ 
dα̂2 

, (14) 
2π 

 
where α̂ = α(z̃s). Ar depends on the shape of ∆αb across the interface and the details of 

the chemical system. 
 

We now investigate the behavior of mixing and reaction during the three observed 

regimes using the proposed interface model. 

4.1. Diffusive  regime 

In the diffusive regime, the fluid stratification is stable and the interface thickness 

increases by diffusion only (γ = 0) such that from (12) s = (s2 + 2t/Ra)1/2 with s0 the 

initial thickness. The mixing ratio below the interface is αb = 0. we is the length of the 

flat interface and equal to the domain width w. The dimensionless width is always w = 1. 

However, we prefer to write it explicitly for sake of clarity. Thus, we obtain 
 

  w 
( 

2  2t 
\−

 1/2 

(χ)diff = 
Ra  4π

 s0 + Ra (15) 

 
wNφAr 

( 
2  2t 

\−
 1/2 

(rφ)diff = − Ra s0 + Ra , (16) 

 
which match the early time behavior of the global dissolution and scalar dissipation 

rate [Fig. 3]. 
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≈ 

  
Γ 

4.2. Convective regime 
 

As fluids mix, the diffusive boundary layer at the interface becomes unstable, which leads 

to the characteristic fingering pattern illustrated in Fig. 1. The less dense fluid displaced 

by the fingers flows upwards towards the interface and creates a chain of stagnation 

points [Neufeld et al., 2010]. 

The upwelling fluid has an average concentration of αb = 0 below the interface such 

that ub = 1. The interface velocity ui can be estimated from conservation of α given by 

h0w = mb + (2h0 − h)w, where h0  = 1 and h are the dimensionless initial and current 

average heights of the interface, and mb is obtained by integration of α below the interface. 

Therefore, the average interface velocity ui = dh/dt = (dmb/dt)/w. We obtain dmb/dt by 

integrating (4) below the interface Γ, which yields 

       1  
r
 ∂α 

 
 we  1 ∆αb 

ui = 
wRa 

dΓ 
∂z̃ 

 
 w Ra 

, (17) 
s 

 
where we approximate the scalar gradient across the interface by the change in the mixing 

ratio over the interface thickness. We note that the dominant contribution to the integral 

originates from the region of width we surrounding the stagnation points (see Figure 2 d). 

Therefore, the typical interfacial velocity at the stagnation point given in terms of the 

average velocity is ui = uiw/we. Taking ∆αb = 1 for this regime because αb ≈ 0 we have 

γ = 1/s − w/(s2Ra). We obtain self-consistently from the interface evolution (12) that 

the interface attains a steady state thickness sB = 2/Ra at the time scale 1/Ra, which 

sets the Batchelor scale for the convective regime [Batchelor , 1959]. 
 

The extension of a hot spot around a stagnation point is of the order of sB .  Thus, 

the effective width is we ∼ nf sB , where nf  is the number of fingers and is related to sB 
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through the critical wavelength λc. Following Riaz et al. [2006], nf  = 1/λc = (βcRa)/(2π) 

such that nf sB = βc/π. We obtain βc = 0.018 from the average nf of the simulations. 

This value is αm (here αm = 0.26) times the one reported by Riaz et al. [2006] for a density 

law αm = 1. The effect of αm on the critical wavelength is also reflected on its observed 

influence on the average mixing during convection [Hidalgo et al., 2012]. Finally, 

2 
(χ)conv = π3/4 βc (18) 

 

 
8 

(rφ)conv = π βcNφAr , (19) 

where we find we = 8nf sB from (χ) in Fig. 3. The factor of 2 in (19) acknowledges that 

the extension of the reaction hot spots is twice that of mixing hot spots (see Figure 2 b, c). 

These expressions quantify the plateau values of both the global scalar dissipation and 

global dissolution rates as illustrated in Figure 3. Notably, both expressions are indepen- 

dent of the Rayleigh number. 
 
 

4.3. Convection shutdown regime 

As more solute mass is transferred across the interface, the density difference reduces and 

the stagnation points weaken [Hewitt et al., 2013]. The upwelling fluid velocity decreases as 

ub = 1−ρ(αb), where αb here is the average mixing ratio below the interface αb = mb/(hw), 

assuming complete mixing. We approximate [Sup, a] ub ≈ (∆αm/αm)n, where ∆αm = 

αm − αb, and n depends on the particular density law (n = 2 in this study). ui follows 

the same form as in the convective regime (17). Thus, γ = (∆αm/αm)n/s − ∆αb/(s2Ra). 

The interface thickness s evolves in a quasi-steady state manner because its relaxation 

time scale is much smaller than the one for the variation of the mixing ratio. Therefore, 
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b 

− 

2h w s
 

2h w 
−  s

 

2h w 
−  s

 

from (12) we obtain 
 

1 + ∆αb 
s = 

∆αnRa , (20) 

 
where we approximate ∆αm ≈ αm∆αb because αb « 1. 

The evolution of ∆αb is obtained by deriving mb = αbhw with respect to time and using 

the global mass balance as closure [Sup, a]. Then 

d∆αb 

dt 
we∆α3+n 

= b 
2h0w 

 
. (21) 

 
We integrate this expression from the beginning of the shutdown regime at time τs  to t 

 
such that  

 
 
∆αb = 

 
1 + 

(2 + n)we (t − τ ) 
0 

 
 
l−1/(2+n) 

 
 
 
(22) 

 
Substitution of the latter in (13) and (14) gives 

 
  2   

(χ)shutdown = 
π3/4 βc 

1 + (2 + n)we (t τ ) 
0 

l−1  
(23) 

 
8 

(rφ)shutdown = 
π 
βcNφAr 

1 + (2 + n)we (t τ ) 
0 

l−1  
, (24) 

 
where we used that (χ)shutdown, (rφ)shutdown  are equal to their respective values in the 

convective regime at t = τs. Note that Ar evolves in time due to its dependence on ∆αb. 

The results of simulations for Ra ∈ [2000, 10000] show that we ∼ 0.002
√

Ra [Fig. 3]. The 

fact that we is inversely proportional to the transverse mass transfer is in agreement with 

a diffusive finger coarsening [Jenny et al., 2014]. 
 
 
5. Conclusions 

 
In summary, our results show that mixing and mixing-limited reactions in an unstable 

13 
two fluid system are controlled by the evolution of stagnation points at the fluids interface. 

 



The porosity pattern caused by dissolution reflects the mixing history through the different 

regimes. It follows the path of the deformed interface, rather than the fingers as commonly 

presumed, and maps the regions of strongest mixing around the stagnation points. Global 

mixing and reaction rates are described by an interface mixing model that quantifies their 

evolution, and provides a physical explanation for their scalings. In particular, it explains 

the independence of mixing and dissolution from the Rayleigh number Ra in the convective 

regime. 

In conclusion, reaction and mixing hot spots in unstable flow are associated to the flow 

structures that cause persistent fluid deformation. These findings have implications, for 

example, in the design of groundwater remediation and CO2  injection strategies, and the 

enhancement of mixing in microfluidic devices. The understanding of how the interaction 
 
between the flow instabilities and mixing dynamics shape the structure of reacted zones 

may shed new light on the interpretation of reaction patterns originated in unstable flow 

systems such as the ones found in igneous rocks formed during magma differentiation or 

in Karst formations due to carbonate dissolution 
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Figure 1. Simulation results for two fluids at close states of equilibrium (υT  = 10.0, 

υB = 0.49) with a porous matrix similar to a carbonate rock (Nφ = 0.11) and Ra = 10000, 

at time t = 15. (a) The mixing ratio α is characterized by density fingers caused by 

convective mixing. (b) The dissolution rate rφ is concentrated at the interface between 

the two fluids. (c) The log-dissolution rate shows that reactions are much weaker around 

the fingers. (d) The resulting pattern of porosit2y1change reflects the path of the ascending 

interface. Panels (e) and (f) illustrate the details of the reaction rate (b) and porosity 

pattern (d) around the fluid interface. See the Supplementary Material for videos [Sup, 

b]. 
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Figure 2. (a) Distribution of the strain rate given by the the determinant of the 

strain tensor (∇q + ∇qT )/2 [Ottino, 1989], whose maxima are localized at the interface. 

The flow stagnation points act as hot spots for mixing and reaction as shown by the 

dissolution rate (b) and scalar dissipation rate (c). (d) Detail of the mixing hot spots at 

the stagnation points (yellow dots), and the flow streamlines for the box in (c). 
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Figure 3. Scalar dissipation rate (top) and reaction rate (bottom) for Ra = 5000, 10000 

(υT  = 10.0, υB = 0.49, Nφ = 0.11). Both magnitudes experience the same three regimes: 

diffusion dominated (∼ t−1/2); convection domi2n3ated, independent of Ra, and convection 

shutdown in which reactions attenuate faster than mixing. Lines correspond to the direct 

numerical simulations and dots to the interface evolution model. 
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