
Estimation and forecasting of ecological efficiency of
Virtual Machines

Gregory Katsarosc, Pascal Stichlerc, Josep Subiratsa,b, Jordi Guitartb,a

aBarcelona Supercomputing Centre (BSC), 08034 Barcelona, Spain
bUniversitat Politecnica de Catalunya - Barcelona Tech (UPC), 08034 Barcelona, Spain

cFZI - Research Center for Information Technology, Berlin, Germany

Abstract

The massive development of the cloud marketplace is leading to an increase
in the number of the Data Centers (DCs) globally and eventually to an in-
crease of the CO2 related footprint. The calculation of the impact of Virtual
Machines (VMs) on the environment is a challenging task, not only due to the
technical difficulties but also due to the lack of information from the energy
providers. The ecological efficiency of a system captures the relationship be-
tween the performance of the system with its environmental footprint. In this
paper we present a methodology for the estimation and prediction of the eco-
logical efficiency of VMs in private cloud infrastructures. We specifically focus
on the information management starting from the energy resources in a region,
the energy consumption and the performance of the resources and finally the
calculation of ecological efficiency of a VM. To this end, we have designed and
implemented a framework through which the ecological efficiency of a running
VM can be assessed and the ecological efficiency of a VM to be deployed can be
forecasted. The presented framework is being evaluated through several private
cloud scenarios with VM deployments in hosts located in Germany.

Keywords: Ecological efficiency, cloud computing, Virtual Machine, energy
consumption, monitoring

1. Introduction

The rapid growth of ICT application services goes along with an increase in
number and size of data centers (DCs) that host these services. Because data
centers are massive energy consumers, the carbon footprint of application ser-
vices is moving more and more into focus. It is considered that ICT presently
accounts for approximately 2% of global carbon emissions (more than 830 mil-
lion tons of carbon dioxide) [1][2]. The advent of the cloud computing paradigm
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gave an enormous boost to the ICT services sector and the prediction towards
2020 is that the market (SaaS, PaaS, IaaS) will quadruple from what it is today.

NESSI, in the Strategic Research and Innovation Agenda for 2013 [3], clearly
defined research priorities and recommendations: we must find new ways to in-
crease software performance and energy-efficiency, by engineering energy-aware
software to improve power-efficiency of software systems and services. Apart
from the pure environmental and technological perspective, one should consider
the current market demands. There is a significant part of the consumers com-
munity who enjoys above-average income and spending, and their buying deci-
sions reflect environmental considerations [4]. The market of green consumers
has an estimated global potential of 200 billion to 400 billion. Approximately
10% of German consumers and 12% of U.S. consumers are willing to pay 10%
more for ”green” products that require less energy to operate or are manufac-
tured by companies with a ”green” reputation. A recent report [5] also shows
that 28% of IT decision-makers at companies in Europe, the Middle East and
Africa consider environmental criteria to be very important when purchasing
IT products and services. Another 67% of those surveyed attach relatively high
importance to environmental criteria.

Until now the efforts of Green ICT in relation with cloud computing were
restricted at the level of the Data Center and mainly in the form of increasing
the energy efficiency of the infrastructures (PUE). While this activity represents
only a small part of the cloud marketplace, mainly among the IaaS providers, the
challenging question is whether we can introduce ecologically friendly policies
and concepts in the level of applications and service providers. In that context,
the element that is the main building block of all modern, cloud-enabled ap-
plications is the Virtual Machine (VM). Thus, the starting point of a relevant
study and investigation should be at the level of virtual infrastructure.

Ecological efficiency of a system is the amount of work that is delivered in
relation to its CO2 emissions. To assess the eco-efficiency of cloud-based ser-
vices, it becomes increasingly important to investigate the eco-efficiency of the
cloud resources that the service utilizes. To this end, there are several techni-
cal constraints and challenges [6]: virtualization technology, which is a major
characteristic of cloud computing, introduces an abstraction layer between the
consumers of cloud resources and the physical infrastructure. The energy con-
sumed by a service or a VM cannot be directly metered and therefore must
be estimated through certain modeling methodology. What is more, the CO2

footprint of the cloud resources is directly related with the energy-mix that the
respective data center consumes at the time of the VM operation. Considering
that the needed energy is provided by the local power providers, the calcula-
tion of ecological efficiency in cloud computing is therefore a location and time
relative figure.

The above-mentioned issues harden the effective calculation of ecological
efficiency of cloud services. To ecologically evaluate the resources that a cloud-
enabled application utilizes, providers require appropriate tools and methods
that are still not there. Thus in this paper we aim at investigating the en-
vironmental impact of cloud resources and specifically estimate the ecological
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efficiency at the granularity of the VM. In particular, we propose and implement
a methodology that allows assessing the ecological efficiency of running VMs in
the provider and forecast the ecological efficiency of VMs to be deployed or in
operation. This work constitutes an updated and significantly extended version
of the concepts presented in [7].

As has been presented also in [8] there are many parameters that affect the
cost (energy or financial) of cloud resources. We, though, selected to focus on
the ecological efficiency of the VM as it is one very interesting variable parameter
that directly relates performance with power consumption of cloud infrastruc-
tures, resulting in a highly dynamic metric. In our work, we have not considered
the cost related with the static infrastructure (cooling of Data Center, manage-
ment cost, etc.), because these figures can be calculated separately and added
on top of the parameters that we calculate dynamically. In addition, we assume
that contemporary cloud application topologies consist of multiple application
components installed in different VMs. Therefore, the power consumption and
eventually the ecological efficiency should be investigated at the level of VMs.

In the following sections we present the proposed methodology and corre-
sponding implementation to calculate and forecast the ecological efficiency of a
VM considering the location and time constraints of its operation. In Section 2
we present the state of the art and the related work in the respective fields of re-
search. In Section 3 we elaborate on the proposed solution: a monitoring system
that allows assessing and forecasting the eco-efficiency of VMs. We describe in
detail the architecture of the solution as well as the theoretical methodology and
concept.Finally, in Section 4 we proceed with the evaluation of the implemented
solution with several deployment scenarios within Germany, while in Section 5
we conclude and summarize our findings.

2. State of the art and related work

In order to reduce the carbon footprint of a system or a service, first of all
we need to monitor and analyze the performance as well as the energy related
information of our computing infrastructure. In cloud computing, it is impor-
tant to know how much energy a specific service or VM consumes, rather than
the consumption of the whole physical infrastructure. However, measuring the
energy consumption of a single or even several VMs is a challenging task. From
a consumer point of view, VMs are a black box whose energy consumption can
only be estimated [9]. In order to do so, power usage models are normally used
where performance characteristics are being used for the modeling of the energy
consumption. In [10] [11] [12] [13] it is pointed out that CPU utilization is the
main factor driving energy consumption of a computing system, with memory
and disk resource utilization playing a secondary role.

What is more, in [14] they make use of power usage metering to calculate
and forecast the energy efficiency level of VMs in order to optimize VM de-
ployments in private clouds. The methodology for the calculation of the energy
efficiency of all cloud entities has been proposed using the CPU utilization of the
VMs as the parameter to define the useful work performed and linear regression
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technique for the forecasting. To this end, there have been many discussions
about measuring the useful work of a computer accurately [15]. Several bench-
marks have been proposed [16], however, since every application has different
requirements no universal formula can be determined. In the same context,
power consumption modeling has been used for power-aware VM allocation us-
ing genetic algorithms [17] or through heuristic algorithms [18]. The definition
of energy efficiency in cloud computing has been playing an important role also
for the application of VM consolidation strategies [19] [20].

The term ecological efficiency is a rather generic description of the efficient
use of ecological resources. In computing systems, eco-efficiency can be seen as
computing power delivered compared to the environmental resources needed to
do so. And again, in this context the complete product or service life-cycle and
its related impacts on the environment have to be considered. In the context of
cloud computing, there have been different approaches to define eco-efficiency.
For example, Google publishes the carbon emissions per query (0.2 g CO2)
and per watched minute on YouTube (0.1 g of CO2) [21]. Similarly, in [22] a
charge-back model is presented, where the environmental impact of providing
data center services to the service consumers is traced back to the consumer.
The consumer receives information about the CO2 intensity of each transaction
as well as the overall CO2 emissions produced by his transactions. The eco-
efficiency is calculated by CO2 emissions per data transaction executed on the
service.

In [23], the authors have formulated the cost of VM migrations between
private clouds aiming at the reduction of the carbon footprint of a cloud network.
Furthermore, in [24] a routing methodology for user placement in data centers
is presented, that generates minimum carbon footprint and therefore optimizes
the ecological efficiency. Both research studies point out the significance of the
geographic location of the cloud infrastructure towards the increasing of the
eco-efficiency of a service deployment. In addition, in [25], a framework for
optimizing the carbon efficiency in clouds is presented, which is based on the
installation of a registry with offers from cloud providers including data about
their CO2 emission rate, average DCiE (Data Center infrastructure Efficiency),
VM power efficiency, prices, etc.; all this information has to be updated by the
provider though.

While the benchmarks described in [26] are used to measure the offline energy
efficiency of a node or set of nodes, the algorithm described in [27] considers
real-time metrics, but not the energy efficiency itself. It actually considers
metrics which potentially affect the energy efficiency. In this publication, we
evolve and combine the above-mentioned techniques concerning the modeling
of the VM performance and the estimation of energy consumed to calculate
the ecological efficiency in real-time. Both the delivered performance and power
consumption are measured using real-time metrics and power-measuring devices.
We also introduce a methodology for the mapping of energy consumption with
the amount of CO2 emitted and therefore calculate the ecological efficiency
of VMs based on the location of deployment, the time of execution and the
performance characteristics of each instance.
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The ecological efficiency assessments and predictions presented in this publi-
cation can be used by placement algorithms to maximize the ecological efficiency
of a given service and therefore reduce the CO2 associated with it. For instance,
[28] presents two task consolidation algorithms that decide the destination node
for a batch application based on resource utilizations and power consumptions.
In [29], the presented solution also migrates and consolidates VMs while main-
taining the QoS as high as possible, in order to minimize the energy consump-
tion. Similar approaches could be done by considering the potential ecological
efficiency as the target to maximize, instead. The policy in [30] maximizes
the provider’s benefit by considering multiple facets to decide the placement of
VMs: energy efficiency, virtualization overheads and SLA violation penalties.
It also supports the outsourcing of VMs to external providers. In this context,
the provider could also consider the possibility of outsourcing the execution of
VMs to those providers providing a given level of ecological efficiency (it could
be a requirement in the SLAs), which depends on the location of such providers.
Finally, the authors in [31] propose an algorithm that conveniently schedules the
execution of batch tasks in order to maximize the use of photovoltaic energy,
which is locally produced in the datacenter. Indirectly, their algorithm tries to
schedule the task execution when the ecological efficiency is at the maximum
value. This publication also reflects the concern of current providers at trying
to minimize their emissions while providing the desired QoS to their clients.

3. Monitoring ecological efficiency in clouds

Any type of energy optimization or improvement in the resource manage-
ment of a system first of all requires energy information awareness. Thus, the
goal of the cloud ecological efficiency monitoring system which we present in
this paper is to calculate the eco-efficiency of the VMs taking into consideration
their performance requirements as well as energy related information. The sys-
tem includes two independent operations (Figure 1) that are necessary for the
calculation of the eco-efficiency of each VM:

• Creation of the CO2 Emission Registry: the amount of CO2 generated
when using a service is based on the energy resources mix (coal, wind, so-
lar, nuclear etc.) and therefore is a location-specific (for example, 10kWh
electricity produced in Athens results in 2kg of carbon emission, while
in Berlin it results in 3kg of carbon emission) and a time-related (the
energy-mix changes by the time) figure. The CO2 Emissions Registry will
maintain the emission factors (how much CO2 is generated for the pro-
duction of 1kWh electricity) per location and for every hour of the day.
The required information will be gathered by utilizing public energy data
streams (e.g. European Energy Exchange1) and historical data-stores,
transformed and placed in a database from where they will become avail-
able to the rest services.

1http://www.eex.com/en/
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• Calculation of the eco-efficiency: the system monitors the cloud infrastruc-
ture in terms of energy as well as performance metrics. The interaction
with the private cloud infrastructure is done through a plug-in mechanism
that can support multiple cloud middlewares. The implementation used
during the evaluation in this article includes a plug-in for the VMWare
ESXi cloud middleware which could be easily replaced with a different
one for OpenStack, OpenNebula etc. The service can calculate the eco-
logical efficiency of each VM in real-time or forecast it for a given VM
to be deployed in the cloud infrastructure. The prediction of the ecologi-
cal efficiency during monitoring allows for optimizing the VM placement
process.

The first operation represents the data aggregation phase in which the data
regarding the CO2 emissions from the energy resources of all regions and coun-
tries is collected and analyzed. On the other hand, the second operation repre-
sents the monitoring phase in which the performance and energy data from the
cloud infrastructure is gathered and the eco-efficiency of each VM is calculated
or forecasted.

CO2 
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Registry

Energy mix 
historical 
data per 
location

Public energy 
resources 

data steam 

Data aggregation 
& transformation 

service
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Energy 
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monitor
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Figure 1: High level architecture of the ecological efficiency monitoring system for clouds

In the following subsections we will describe the design, implementation and
operation of these two phases in detail.

3.1. Aggregation phase: Creation of the CO2 Emission Registry

This phase aims at creating the CO2 emission registry with region and time
specific information about the carbon emission factor. As it has been pointed
out in [32], the location of a DC is of great importance. A DC, and therefore
the cloud services (IaaS, PaaS, SaaS, etc.) that it offers, is powered by energy
sources of the local region. The long distance energy transfer is usually ex-
pensive and inefficient. Thus, contemporary DCs are being built close to the
energy sources and specifically close to ”green” energy sources. Examples are
Facebook’s and Spotify’s new DCs in Sweden where there is a big percentage of
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Etotal(region) Total amount of energy produced in a region
E Share Local(resource, region) Share of energy produced from a resource in a region

with regards to the total amount of energy produced
in that region

Ecountry(resource) Energy produced from a resource in a country
E Share Country(resource, region) Share of energy produced from a resource in a region

with regards to the total amount of energy produced
in the country

ERDData(resource, time) Hourly energy production from a resource in the coun-
try

CO2Factor(resource) Grams of CO2 emitted to produce a kWh of energy
from a resource

CO2EmissionFactor(region, time) Grams of CO2 emitted to produce a kWh of energy in
a given region and time

EcEf Energy efficiency
VMs Set of virtual machines, index j
VMsi Subset of virtual machines being executed in node i,

index j
U

V Mi
j

CPU utilization of VM j in node i

Perfmaxi
Maximum performance of node i in Computing Units
(CU)

Ri Real power consumption of node i

Û
V Mi

j
Forecasted CPU utilization of VM j in node i

R̂i Forecasted real power consumption of node i

Ûi
0 Forecasted CPU utilization of Domain-0 of node i

nodes Set of nodes, index i
PerfV Mj

Current performance of VM j in Computing Units (CU)

PwrV Mj
Current power consumption of VM j

Ui
0 CPU utilization of Domain-0 of node i

ni Number of VMs being executed in node i
EcEfV Mj

Ecological efficiency assessment of VM j

P̂ erfV Mj
Forecasted performance of VM j in Computing Units
(CU)

P̂wrV Mj
Forecasted power consumption of VM j

ÊcEfV Mj
Forecasted ecological efficiency of VM j

PerfCPU Average performance per CPU in the whole IaaS
provider infrastructure

UCPUdef
Default initial utilization per CPU

CPUnodei
Total number of CPUs in node i

N Number of nodes of the whole Iaas provider infrastruc-
ture

Pwrmini
Minimum power consumption of node i (when U=0%)

Pwrincr Average incremental power consumption per CPU in
the whole IaaS provider infrastructure

Pwrincri
Incremental power consumption per CPU in node i

CPUalloci
Total number of CPUs allocated to VMs in node i

δcert. Boolean variable: equals to 1 if the provider owns all
the certifications required in the Service Manifest

CPUV Mj
Number of CPUs required by VM j

Table 1: Summary of symbols used in this section

7



renewable energy production. In the following analysis, we assume that regard-
less of the existence of different power providers or utilities, all the DCs in a
region are consuming the same energy mix. Therefore, for simplifying the devel-
opment of our methodology, we have eliminated the from our study the power
providers entities and we consider the regional energy mix when calculating the
ecological impact of a DC and therefore a VM.

The challenge in this task was to discover public data streams that provided
energy production information per country, region and per resource in a reliable
manner. To achieve that, we had to combine data from energy information
providers such as the European Energy Exchange (EEX) with historical dataset
depicting the energy mix of every local region. The first data source (EEX)
offers a well defined API and a hourly refresh rate information stream but it
gives out information in a per-counrty level. On the other hand, the histori-
cal datasets that we discovered present the energy mix rates for each region in
Germany for the last three years. By associating those two sources of informa-
tion we come up with a real-time energy analysis of every region. We collected,
analyzed and transformed this data by introducing a certain data structure
and transformation logic which allows calculating the CO2 emission factors per
region.

3.1.1. Data structure

In order to efficiently manage the available information we designed a data
model that captures all the above mentioned information and their interrela-
tions. The gray boxes in Figure 2 represent the information that is collected
from different sources, which after certain processing and transformation is ag-
gregated in the CO2 Emission Registry. The energy resources that we considered
are split into the following categories: Coal, Gas, Lignite, Oil, Uranium, Wa-
ter/Wind, Photovoltaic (sun), Others. The resource category Others combines
the energy produced from resources, not covered in the list, such as geothermal
energy. In order to transform the energy mix to carbon emissions data, we need
information about the CO2 emissions associated with each energy category.

For the calculation of the different CO2 emission factors we must also con-
sider the complete life cycle of the respective power plants (construction, opera-
tion, maintenance, disposal). In the literature there have been different attempts
to estimate these factors accurately. One common approach is the process chain
analysis in which the energy production process is divided into different steps
and for each step the input and output factors are calculated. Wagner et al.
[33] have performed a comparison of the major methodologies and summarized
them into a minimal reasonable, maximal reasonable and average CO2 emission
factor for each resource. In order to make all the emission factors (like CH4,
N2O etc.) comparable, we transformed them into CO2 equivalents. To do so,
one unit of the respective gas is transformed into the amount of CO2 which
would have the same impact on the environment as one unit of that gas. In
our work we adopted these factors as well as data from Lübbert [34] during the
aggregation phase of our system.
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EnergyResourcesDataStream

Figure 2: Data model that captures the information used during the aggregation phase.

3.1.2. Transformation logic

The objective of this section is to determine a region and time specific CO2

emission factor. This factor indicates the amount of CO2 emitted to the atmo-
sphere in grams to generate a kWh of energy, in a given region for a specific
time instant. The units for this factor are, therefore,

[
g

kWh

]
.The raw informa-

tion from the data streams is transformed and combined to calculate this factor.
The process is split into several steps, detailed below.

Firstly, we work with the historical datasets and we calculate the annual
amount of energy produced from a given resource in the whole country (Ger-
many, in our case). This is done by multiplying the share of the resource in the
energy-mix of each region (E Share Local(resource, region)) with the overall
amount of produced energy in that respective region (Etotal(region)) and adding
up the values from all the regions in the country. This calculation is presented
in Equation 1.

Ecountry(resource) =
∑

region∈country

E Share Local(resource, region) ∗Etotal(region)

(1)

For example in 2009 in Baden-Württemberg, a region of Germany, 23 %
of the energy was produced from coal (E Share Local(coal, BaWu)) and the
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overall amount of energy produced was 61.792 million kWh (Etotal(BaWu)).
Hence, the amount of energy produced from coal in Baden-Württemberg was
14.212 million kWh. Added up with the corresponding values of the other
regions, the overall amount of power produced from coal was 99.673 million
kWh in 2009 in Germany (EGermany(coal)).

As a second step, we calculate the energy share for a particular region and
resource (energy source) with regards to the overall energy production for that
same resource in the whole country (calculated as in Equation 1). Note that
while E Share Local(resource, region) referred to the energy share for a par-
ticular region and resource with regards to the total energy produced in that
region, E Share Country(region, resource) calculates it with regards to the
energy produced in the whole country from that same resource.

E Share Country(resource, region) =
E Share Local(resource, region) ∗ Etotal(region)

Ecountry(resource)
(2)

Following the previous example, for Baden-Württemberg this is E Share Germany(BaWu, coal) =
14 212 million kWh
99 673 million kWh = 0.1426 = 14.26%. As a result, from all the power produced
from coal in Germany, 14.26% is generated in Baden-Württemberg.

In the final step, the historical data is combined with the up-to-date data
from the EnergyResourcesDataStream (ERDData 2) to calculate the actual CO2

emission factor for each region of a country. The ERDData provides information
about the hourly energy production for a given resource in the whole country. By
multiplying it by the historical country-wide energy share in power production
from a specific resource for a region (Equation 2), we obtain the current amount
of energy produced from this resource in that particular region. In order to
transform it into actual CO2 emissions, it is multiplied by the CO2 emission
factor associated to that resource (grams of CO2 emitted to produce a kWh
of energy from that resource). At this point, we have calculated the emissions
caused by the “combustion” of one of the resources of the energy share of the
region of interest. The emissions caused by each of the resources in the share
are then summed up to get the overall emissions. Finally, to get the average
CO2 emission factor for the region, the overall CO2 emissions of the region are
divided by the power generation in that region.

CO2EmissionFactor(region, time)

=

∑
r∈resources

E Share Country(r, region) ∗ ERDData(r, time) ∗ CO2Factor(r)∑
r∈resources

E Share Country(r, region) ∗ ERDData(r, time)

(3)

Following with the example, from 10 am to 11 am of February 13, 2013,
the overall energy production in Baden-Württemberg was of 5.38 million kWh,

2It represents the European Energy Exchange (EEX) which we mentioned before.
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resulting in an overall amount CO2 emissions of 2.14 million kilogram. This
leads to an average CO2 factor for this time period in the region of Baden-
Württemberg of 397 g

kWh .
The detailed process is described in the pseudocode in Algorithm 1.

Algorithm 1 Algorithm 1: Transformation

Require: ERDData,HistoricalData, CO2Factors
Ensure: CO2 emission factor for each region of a country by energy sources

STEP 1
for r ∈ resources do

for reg ∈ regions do
ECountry[r] = ECountry[r] + E Share Local[r][reg] ∗ Etotal[reg]

end for
end for

STEP 2
for r ∈ resources do

for reg ∈ regions do
if Etotal[r] > 0 then

E Share Country[r][reg] = E Share Local[r][reg]%∗Etotal[reg]
ECountry[r]

end if
end for

end for

STEP 3
for t ∈ EEXData do

for reg ∈ regions do
for r ∈ resources do
CO2Emission[reg][t] = CO2Emission[reg][t] +
E Share Country[r][reg] ∗ ERDData[r][t]) ∗ Co2Factor[r];
energyProd[reg][t] = energyProd[reg][t]+E Share Country[r][reg]∗
ERDData[r][t]);

end for
CO2EmissionFactors[reg][t] = CO2Emission[reg][t]

energyProd[reg][t]

end for
end for

At this point we should also mention that our methodology does not include
the energy imports or exports that are taking place between the regions of
a country or even between counties. Energy losses during the long-distance
transfers, energy transformations as well as other issues are included in the
real-world scenarios which shape the energy market as a very dynamic and
flexible system. Germany for example, after the nuclear phase out of March 2011
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(Fukushima incident) increased significantly the import of inexpensive nuclear
power from the Czech Republic, stores it as pumped hydro-power and sells
it to its neighbors at a much higher rate. Such complex market dynamics
are not captured by our data structure and we leave this analysis for a later
investigation.

3.2. Monitoring phase (i): Assessment of eco-efficiency for running VMs

In this operational phase of our system the monitoring of the cloud resources
and the calculation of the eco-efficiency is performed. As presented in Figure 1,
the monitoring phase involves two separate processes: (a) the monitoring of the
cloud infrastructure, and (b) the calculation of the eco-efficiency for each active
VM resource of the private cloud environment. As we mentioned before, we
are examining the ecological footprint and efficiency of a VM from a computing
system perspective, in the sense that we do not consider environmental, main-
tenance or installation costs. These parameters are not directly related with
the performance of the application that is being executed within the VM and
therefore such static figures can be calculated and considered independently.

For the first process, the Performance and Energy Monitor interacts with
the hypervisor of the cloud infrastructure and collects the list of the active
VMs. For each VM, our system monitors the status, the performance metrics
(such as CPU, disk, and memory utilization) as well as power consumption of
the cloud server that hosts these VMs. In this paper we are not discussing
the methodology of energy metrics collection as in [14] we have presented more
details about that issue. The methodology that we followed for the calculation
of eco-efficiency in clouds is based on a more low level approach from the ones
we presented in Section 2 to compare the useful work to the amount of carbon
dioxide emitted.

The work performed by a computing system relies on three performance
modules: CPU, memory, and disk. The performance capacity of the CPU
can be measured either by million instructions per second (MIPS) or in order
to make it even more comparable by million whetstone instructions per second
(MWIPS). In the same context, the memory capacity by the amount of allocated
memory (measured in bytes), and the disk performance by the number of input
and output operations per second (IOPS).

However, the absolute numbers are not comparable since they are calculated
in different units. In addition, literature research as well as experimentation
proved that the main factor that relates with the energy consumption of a com-
puting system is the CPU utilization [9] [10]. Hence, in this work we calculate
the useful work performed by a VM as the product of its CPU utilization on
the cloud host by the maximum capacity (in BWIPS, that is, billion whetstone
instructions per second) of the same cloud host. For the calculation of the Pwr
for the VM we consider that at 0% of the VM’s CPU utilization there is a min-
imum power consumption Pwr min at the node, which we use as our control
value. As a result, the formula for the real-time calculation of the eco-efficiency
is:

12



EcEfVM l
=

Perfmaxi
·
U

V Mi
l

100

CO2EmissionFactor(region, now) · PwrVM l
| l ∈ VMsi

(4)

In our implementation, the eco-efficiency is calculated using the information
collected from the cloud infrastructure (CPU utilization and power consump-
tion of every VM), the CO2 Emission Registry (CO2EmissionFactor) and the
static number of BWIPS capacity which is provided by each node (calculated
by benchmarking the infrastructure beforehand).

To determine the approximate power consumption incurred by a VM, its
proportional part of the total power consumption Ri of the node where it is
being executed is derived based on the VM’s CPU utilization, including over-
heads. This proportional distribution with regards to the CPU utilization is
accomplished with the second term of Equation 5. As in [35], a linear relation-
ship between a node’s real power consumption and its total CPU utilization
is assumed. Since Domain-0’s CPU utilization (privileged domain in the Xen
hypervisor’s nomenclature) is required to run all of the ni VMs being executed
in node i, it is considered as an overhead which is uniformly distributed between
them.

PwrVM l
| l ∈ VMsi = Ri ·

UVMi
l

+
Ui

0

ni

U i0 +
∑

j∈VMsi

UVMi
j

(5)

The unit of the eco-efficiency is defined as billion whetstone instructions(BWI)
CO2(g) .

The billion whetstone instructions represent the useful work that can be done
per gram of carbon dioxide emitted. In the following the transformation steps
to get to this unit is shown. As it can be seen the result has to be multiplied
by 3600 to transform the unit into the desired format.

1 MWIPS

1 Watt · 1 CO2(g)
kWh

=
1 MWI

s

1 Watt · 1 CO2(g)
1000 Watt·1 h

=
1000 MWI

s

1 CO2(g)
h

=
1000 MWI

s

1 CO2(g)
3600 s

=
3600 BWI

1 CO2(g)

(6)

In order to calculate the eco-efficiency of a VM as accurate as possible,
we consider the CO2 emission factor available in the CO2 Emission Registry
(calculated as in Equation 3), that has the closest timestamp with the current
time of monitoring. While the variation of the CO2 emission factor has a certain
pattern within a day for every region, we use the value for the same time period
of the previous day. For example, if it is 11:30 a.m., the eco-efficiency of a
VM is calculated considering the emission factor of the 11:00 to 12:00 a.m. of
the previous day for that specific region. Hence, the eco-efficiency is calculated
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based not only on region but also time specific values for the CO2 emission
factors. In order to avoid inaccuracies during usage profile changes (e.g. from
Friday to Saturday, or Sunday to Monday) a more sophisticated prediction
mechanism that takes into account the weekly patterns along with the values of
the previous day could improve the calculation of the emission factors. However,
this extended functionality is out of the focus of this study.

3.3. Monitoring phase (ii): Prediction of eco-efficiency for potential VM de-
ployments

When a client wants to deploy a new VM in an IP (Infrastructure Provider),
whether he is an end user who wants to instantiate a single VM or a SP (Ser-
vice Provider) who wants to deploy a service comprised of several VMs, he
must decide to which IP it will forward the deployment request to ensure that
his requirements are fulfilled. In some cases, this client may have a minimum
desired eco-efficiency level (either energy and/or ecological efficiency) for that
VM. Moreover, he may also have specified a given set of environmental-aware
certifications which the IP where the VM will be deployed must possess (i.e.
LEED, BREEAM, CASBEE, ISO14000, etc.). In these situations, the client
must be able to determine whether the minimum required eco-efficiency for
that VM can be guaranteed by the IP where the VM will be deployed, as well
as if it meets the specified certification requirements.

For this reason, the IP must provide their clients with the forecasted ecolog-
ical efficiency of a VM before it is deployed in their infrastructure. With this
information, clients can decide whether a given IP is appropriate to deploy it
or not. To predict the ecological efficiency at VM level, an IP needs to know
the performance this VM will require, the power consumption that it will incur
and the associated CO2 emissions.

The calculation of these aspects is heavily conditioned by the placement of
the VM in the IP resources. In the following subsections, we present two ap-
proaches to calculate the predicted ecological efficiency of a VM if it is deployed
in a given IP node that both approaches can be used seamlessly, depending on
the way the IP operates.

In the first approach, the potential placement of the VM has already been
determined by the IP (for instance, because the IP makes a reservation of the
resources to be allocated to this VM), and the provider provides a single precise
forecast of the eco-efficiency level of the new VM.

In the second approach, the placement of the VM is not known (the IP will
not decide the actual placement until the VM has been accepted). Consequently,
the provider informs the client about the minimum and maximum eco-efficiency
levels which can be achieved by the VM depending on its placement, as well as
the mean value.

3.3.1. VM deployment with known placement

In this section, we predict what the ecological efficiency of a new VM (VMl)
will be if it is deployed into a given destination node (nodedst). When the client
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issues the VM creation, he sends a descriptor specifying the features required
by the VM (number of CPUs, amount of memory, disks, etc.), as well as the

amount of performance it will require (P̂ erfVM l
| VM l depl.) for its execution.

The delivered performance is equal to the normalized CPU utilization incurred
by the VM in the destination node by the maximum performance which can be
delivered by it, as depicted in Equation 7.

P̂ erfVM l
| VM l depl. =

ÛVMdst
l

100
· Perfmaxdst

(7)

Therefore, from this formula the additional CPU utilization caused by the
new VM in the destination node can be calculated as in Equation 8. In our
formulation, the CPU utilization of a given node ranges from 0 to 100 regard-
less of its number of CPUs. Therefore, it has to be guaranteed that the CPU
utilization of the VM is at most the proportional part of 100% corresponding
to the CPUs used by the VM. Otherwise, it means that the destination node
is not able to provide the required performance to the new VM. This condition
is also depicted in Equation 8. Note that, additionally, the VM scheduler has
to guarantee that the destination node has enough available CPUs and RAM
memory to allocate the VM.

ÛVMdst
l

=
100 · P̂ erfVM l

| VM l depl.

Perfmaxdst

≤ 100 · CPUVM l

CPUnodedst
(8)

The future power consumption of a VM corresponds to the proportional part
of the future real power consumption of the node where the VM will run, as
shown in Equation 9. Note that the Domain-0 CPU utilization is considered
as an overhead equally distributed among the running VMs, including the new
one to be deployed. To forecast the power consumption of the destination
node, the offline power model described in [36] is used, which only needs to
know the forecasted CPU utilization in the host as an input. In this case, it
will consist of the future CPU utilization of the privileged domain (Domain-
0) and those of the already running VMs, plus the additional CPU utilization
caused by the new VM. The CPU utilization of the Domain-0 and the already
running VMs will follow its original trend, and are forecasted using the variable
estimator described in [36]. The CPU utilization of the new VM is calculated
as in Equation 8.

P̂wrVM l
| VM l depl. = R̂dst

Ûdst0 +
∑

j∈VMsdst

ÛVMdst
j

+

+ÛVMdst
l

)
·

ÛVMdst
l

+
Ûdst

0

ndst+1

Ûdst0 +
∑

j∈VMsdst

ÛVMdst
j

+ ÛVMdst
l

(9)
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Finally, having the predictions of the performance and the power consump-
tion of a VMl if it is deployed into a given destination node, the ecological
efficiency can be calculated as in Equation 10. The term δcert. is a boolean
variable which is equal to 1 if all the required environmental-aware certifica-
tions specified in the service manifest (service contract specified by the service
owner) are in possession of the IP where the service is to be deployed, and 0
otherwise. Therefore, if the IP has the required certifications, the forecasted
ecological efficiency of the service will be different from 0 and the service might
be deployed in that provider (if the specified minimum ecological efficiency re-
quirements are met).

ÊcEfVM l
| VM l depl. = δcert. ·

P̂ erfVM l
| VM l depl.

CO2EmissionFactor · P̂wrVM l
| VM l depl.

(10)

3.3.2. VM deployment with unknown placement

In this section, we explain how to predict the ecological efficiency of a new
VM (VMl) if its placement in the IP is not known beforehand. The required
VM performance is specified by the client, so only the power consumption needs
to be calculated in this case. However, given that the destination node is not
known, it is impossible to determine what the exact power consumption will be.
Therefore, the fairest approach is to inform the client about the range where
the final eco-efficiency value will reside, as well as the mean of all the values,
so the client can have an idea of the tentative final value. With this approach,
the client has a clear view of the range of the future eco-efficiency and is able to
determine if it will surely fulfill his requirements (if the minimum value fulfills
them) or if it might (if the maximum value fulfills them but not the minimum).

To provide the aforementioned values, the power consumption is estimated
by conditioning the placement to each of the possible destination nodes. The
same formula as in Equation 9 is used in each calculation, and the term ÛVMdst

l

is calculated as in Equation 8. Those nodes which do not accomplish the condi-
tions commented in Section 3.3.1 are discarded from the calculations. From all
the obtained values, the minimum, maximum and mean values are taken, cor-
responding to the maximum, minimum and mean of the returned eco-efficiency
values, respectively. For each returned value, the eco-efficiency is calculated as
in Equation 10.

4. Evaluation

For the evaluation of the proposed system we performed a series of experi-
ments using private cloud infrastructures located in Germany. The information
sources that we used in order to build the CO2 Emission Registry were on the
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one hand the statistics platform Statista 3 through which we acquired data
regarding the energy mix of each federated state in Germany (historical data
for the regions’ energy mix), and from the European Energy Exchange Trans-
parency Platform (EEX) which provided us the daily production and energy mix
for every country(ERDDAta stream as described in the previous algorithms).

By triggering the data aggregation and transformation service the CO2 Emis-
sion Registry is populated with information for every state in Germany, using
the refresh interval that is available in the EEX dataset. In Figure 3 we present
the intra-day CO2 emission factors for the German states based on the EEX
dataset of 23rd of April, 2013. As we can see, there is significant variation be-
tween the values of the German states because of the type of the energy resources
available in each state. For example, in Bavaria where the CO2 emission factor
is around 131 g/kWh, the 56% of the energy is produced by nuclear plants,
while in Saxony where the CO2 emission factors is around 1087 g/kWh, 80% of
the energy is produced by coal plants. In addition, we notice an important vari-
ation of the values within the day. In that context, and as we present later, we
could benefit from that phenomenon and provision VM allocations depending
on the eco-efficiency level that we desire. The nuclear energy impact in terms
of ecological concerns is not considered in this study. We base our analysis only
on the CO2 emission levels.

Figure 3: Intraday CO2 emission factors for all German states.

3http://www.statista.com/
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4.1. Evaluation of Eco-efficiency assessments

For the the testing of the monitoring functionality we instantiated one small
VM instance (VM1) of 1vCPU and 1024MB memory and one big instance
(VM2) of eight vCPUs and 2048 MB memory. The CPU capacity on the phys-
ical host (cloud server) has been benchmarked through the UnixBench tool at
3560 MWIPS, that is, 3.56 BWIPS. Assuming that within the VMs we execute
some CPU intensive applications and considering also the fact that CPU is the
driver of energy consumption into computing systems [37] [38] [9], in the fol-
lowing experimentation we have monitored and analyzed the CPU workload in
comparison with the eco-efficiency.

We applied variable CPU load to VM1 when it was deployed in a host in
Berlin and the same load when it has been deployed in Baden-Würtemberg
state. Based on the collected results shown in Figure 4, and as expected, the
eco-efficiency of the VM in Berlin is worse than the one in Baden-Würtemberg.
There was an average 65 units improvement of the ecological efficiency, a sig-
nificant 42% improvement when operating the VM in Baden-Würtemberg. The
variation of both lines during the experimentation period is following the pat-
tern of the CPU utilization, while the more distinctive spikes in the beginning
and the end of the chart are caused due to the small latency of the energy metric
that is reported (big and fast changes of CPU utilization cause increased energy
consumption that is reported with a small latency) and therefore the changes
in the CPU load are reported faster than the changes in energy metrics.

In Figure 5 we compare the ecological efficiency of the two different VMs,
which are deployed in the same infrastructure (Berlin). Even though they
have different specification and are subjected into different CPU load, the eco-
efficiency level during operation is very similar. Here we can note that the
ecological efficiency of the bigger (in computational capacity) VM presents bet-
ter efficiency (around 8-9% improvement for the bigger VM).

In our last validation experiment, we plot the association of CPU utilization
of a VM with it’s eco-efficiency (Figure 6). We observe a non-linear relationship,
with a steep increase of the efficiency from 0-30% CPU utilization, and a more
stable behavior above the threshold of 30%. The threshold of 40% CPUutil
seems critical while above that the eco-efficiency seems stable at around 1.5
billion whetstone instructions(BWI)

CO2(g) . Based on this finding we note that the CPU

capacity and eventually CPU workload of a VM (independent of the workload of
the host) affects the ecological efficiency in a non-linear way. Thus, this could be
exploited by a VM resource manager policy that would resize the VM resources
depending on the workload they serve, trying to keep the CPU workload of the
VM above 40%.

4.2. Evaluation of Eco-efficiency forecasts

In this section, we evaluate the precision of the tool at performing estimations
of the future eco-efficiency value of a given VM. In particular, in Section 4.2.1 we
make such prediction before the VM is deployed, using the approaches described
in Sections 3.3.1 and 3.3.2. In Section 4.2.2, we consider a VM during its
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Figure 4: Ecological efficiency comparison of a VM in Berlin and in Baden Württemberg
state.
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Figure 5: Ecological efficiency comparison of two VMs in Berlin state.
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Figure 6: Relation of ecological efficiency with CPU utilization during operation of VM1 in
Berlin state.

operation and we continuously predict the eco-efficiency for a given time instant
in the future, comparing such forecast with the real eco-efficiency level at that
particular instant, when it takes place. This process is repeated for the whole
experiment execution, which simulates the behavior of a webserver operating
during a week.

4.2.1. Eco-efficiency forecast at VM deployment

In this experiment, the client asks the infrastructure provider for the poten-
tial eco-efficiency of a 4-CPU VM which he wishes to deploy in its infrastructure.
To this end, the client submits a description of the VM to be deployed in the
OVF format [39], specifying the expected performance required by the VM as
a “Property” field in the “ProductSection” section of the OVF. Depending on
the way the IP provider operates, it performs such forecast following the ap-
proaches described in Section 3.3.1 or 3.3.2. Consequently, the client will receive
an answer consisting of a single forecasted value or multiple values describing
a range (minimum, maximum, and mean values). Finally, we deploy such VM
in the infrastructure and evaluate if the performed forecast corresponds to the
real eco-efficiency values achieved by the new VM.

The nodes that were used to perform this experiment are described in Ta-
ble 2. The stress [40] and cpulimit [41] utilities were used to generate a constant
load once the VM was fully deployed, requiring the amount of performance spec-
ified in the VM’s OVF descriptor.

Table 3 displays the forecasted eco-efficiency of a VM deployment requir-
ing different performance levels, with an unknown placement (approach of Sec-
tion 3.3.2) and with a known placement in node R710 (approach of Section 3.3.1),
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R710 R210
CPUs 16 8
Performance 8.20 BWIPS 4.77 BWIPS
Pmin 216.70 W 89.10 W
Pmax 382.57 W 153.21 W
Location Berlin Berlin

Table 2: Node characteristics

when there are no VMs running in the infrastructure. As it can be observed,
the minimum eco-efficiency level reported by the unknown placement approach
corresponds to the one returned by node R710 (as it coincides with the one
with a known placement to node R710), whereas the maximum one corresponds
therefore to node R210. The potential eco-efficiency increases as the required
performance is also increased. Notice that when requesting 2.2 BWIPS of perfor-
mance, the returned minimum, maximum and mean eco-efficiency levels (with
an unknown placement) match. This is due to the fact that only node R210 can
cope with this amount of performance for a 4-CPU VM and R710 is left out
of the calculation. This fact can be deduced from Table 2. As R710 provides
8.20 BWIPS with all of its 16 CPUs working at full occupation, this means
that it will be able to provide a maximum of 8.20

16 · 4 = 2.05 BWIPS when only
using 4 CPUs for this particular VM, which is less than the requested amount.
Similarly, R210 can provide a maximum of 4.77

8 · 4 = 2.38 BWIPS for a 4-CPU
VM. Given that this amount is less than 2.4 BWIPS, this justifies the fact that
all the returned eco-efficiency values for this performance level are 0, meaning
that it will be impossible to place such VM in the datacenter.

Unknown placement Known
BWIPS Minimum Maximum Mean (R710)
1 110.23 252.45 181.34 110.23
2 182.50 402.36 292.43 182.50
2.2 432.44 432.44 432.44 -
2.4 0 0 0 -

Table 3: VM eco-efficiency forecasts (no VM running in the infrastructure)

After performing the previous forecasts, a 4-CPU VM was deployed in node
R710, with two performance profiles: 1 and 2 BWIPS. Then, the eco-efficiency
was measured in both cases every minute during 6 minutes after its deploy-
ment. The results are displayed in Table 4. In both cases, the first assessment
did not match the expected eco-efficiency, because the VM was already booting.
In subsequent assessments, the VM eco-efficiency level is very close to the fore-
casted one. Most of the assessments are slightly below the forecasted level. This
phenomena is explained after presenting the results of the next experiment.
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BWIPS 1 2
Expected 110.23 182.50
Assessment 0 1.10 147.96
Assessment 1 106.34 181.38
Assessment 2 108.12 180.65
Assessment 3 115.55 175.39
Assessment 4 111.88 180.66
Assessment 5 113.72 179.18

Table 4: VM eco-efficiency assessments after deploying the VM (no VM running in the infras-
tructure)

The same experiment was repeated again, but in this case a 4-CPU VM using
2 BWIPS was already running in the node R710. Table 5 displays the forecasted
eco-efficiency levels of the VM deployment, with an unknown and with a known
(R710) placement. Given that a VM was already running in the node R710,
the power consumption of this node was proportionally distributed between the
running VM and the one to be deployed (see Equation 9). Because of this, the
VM is expected to consume less energy than in the previous experiment and
therefore the returned eco-efficiency levels for node R710 are greater. Note that
the eco-efficiency levels if the VM is placed in node R210 are the same (small
difference because of Domain-0 CPU utilization fluctuation) as in the previous
experiment, because no VM is running in that node. The fact that there is a VM
running in R710 does not affect the forecast performed when considering R210
as the destination node. The small difference between the R710 forecast with
an unknown and a known placement is because the forecasts were performed
in different moments and there were fluctuations in the resource usage of the
running VM.

In this experiment, for a new 1 BWIPS VM, node R710 was found to be the
one providing a greater potential eco-efficiency, because of the “power savings”
(due to power distribution with the running VM). However, for a new 2 BWIPS
VM, despite the power savings in node R710, node R210 still consumes less
energy if the VM is placed there, thus providing a greater eco-efficiency level.
As before, only R210 can cope with a 2.2 BWIPS VM, which explains why all
the returned values match. A 2.4 BWIPS VM cannot be hold by any of the
nodes and thus the returned eco-efficiency is 0 (impossible deployment).

As in the first experiment, two 4-CPU VMs requiring 1 and 2 BWIPS were
deployed in the infrastructure, which has a 4-CPU VM consuming 2 BWIPS
already running in node R710 at the time of each deployment. After being
deployed, the VM eco-efficiency level is monitored. The first assessment corre-
sponds to the VM booting process and is not considered to be representative.
The rest of the assessments are close to the forecasted ones in both cases, but
with slightly lower values.

This difference is caused by two factors: the accuracy of the power sensor
and the accuracy of the power model (described in [36]) used to predict the
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Unknown placement Known
BWIPS Minimum Maximum Mean (R710)
1 252.68 282.24 267.46 282.09
2 316.07 402.45 359.26 316.07
2.2 432.56 432.56 432.56 432.56
2.4 0 0 0 0

Table 5: VM eco-efficiency forecasts (4-CPU VM already running in the infrastructure)

power consumption. The power sensor provides lectures with 10W of resolution,
which constitutes an error source for subsequent calculations based on the values
returned by the sensor. The off-line power model was built using these lectures,
hence the inaccuracy of the sensor directly affects the accuracy of the power
model. Moreover, the used power model assumes a linear relationship between
the CPU utilization and the power consumption of the server, which is not
completely true and also is a source of error. This last aspect could be improved
by using a more sophisticated power model.

BWIPS 1 2
Expected 282.09 316.07
Assessment 0 168.98 78.26
Assessment 1 267.08 294.15
Assessment 2 270.00 294.15
Assessment 3 269.24 291.77
Assessment 4 268.53 293.56
Assessment 5 241.67 294.15

Table 6: VM eco-efficiency assessments after deploying the VM (4-CPU VM already running
in the infrastructure)

Despite the inaccuracies previously described, the tool gives a good approx-
imation of what the eco-efficiency level of a new VM will be when deployed
under different environment situations.

4.2.2. Eco-efficiency forecast during VM operation

In this section we have evaluated the precision of the tool when predicting
the future eco-efficiency of a 4-CPU VM during its operation. The conducted
experiment continuously predicts the eco-efficiency for a particular time in the
future using the formulation in Equation 4 and estimating the future value of
its variable terms. This prediction is stored in a time-series named “Forecasts”.
When the aforementioned time arrives, the eco-efficiency is evaluated also using
the formulation of Equation 4 but with the real data provided by the power sen-
sor and the monitoring scripts at that particular time. This evaluation is stored
in a time-series named “Assessments”. This capturing procedure is repeated
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during all the experiment, and finally, the “Assessments” and “Forecasts” time-
series are compared by means of the Concordance Correlation Coefficient (CCC)
in order to evaluate the precision of the forecasts.

The CCC, described in [42], measures the agreement between two variables
and can be used to evaluate the degree of agreement among raters. In the con-
text of this publication, it has been used to evaluate the degree of agreement
between the performed assessments and forecasts (“Assessments” and “Fore-
casts” time-series, respectively).

As described in [42], the CCC between two vectors of length N can be cal-
culated as:

ρc =
2 · sxy

s2
x + s2

y + (x− y)
2 (11)

Where:

x =
1

N
·
N∑
n=1

xn (12)

s2
x =

1

N
·
N∑
n=1

(xn − x)
2

(13)

sxy =
1

N
·
N∑
n=1

(xn − x) · (yn − y) (14)

We have generated a synthetic workload which emulates the behavior of a
webserver hosting a university web page, using the web traces of the Barcelona
School of Informatics web page of the week from 5th to 11th of April 2010.
In a nutshell, we generate a CPU utilization inside the VM proportional to
the number of requests served during an hour by the real webserver. As the
experiment progresses, the CPU utilization is changed according to the number
of requests served by the real webserver during each hour of the simulated week.
Each iteration of the experiment lasts 2 minutes (Thour), therefore each hour of
the original traces is simulated in 2 minutes in the experiment execution. The
simulation of the whole week, therefore, is done in 5.6 hours of execution.

The predictions are performed, each time, for 5 different time periods in the
future: 15, 30, 45, 60 and 75 seconds, corresponding to 7.5, 15, 22.5, 30 and
37.5 minutes in the “real time” of the web traces. This leads to the generation
of 5 pairs of “Assessments”-“Forecasts” time-series, that are compared with the
CCC to evaluate what is the precision degradation as the forecasts are performed
for longer periods of time ahead.

The obtained results are presented in Table 7. For 15-second predictions
(7.5 minutes in “real time”), the precision is very high: 95.54%. As it can
be observed in Figure 7, the “Forecasts” time-series follows very closely the
“Assessments” one during all the simulation.
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Time ahead (s) CCC (%)
15 95.54
30 94.08
45 92.51
60 89.84
75 87.47

Table 7: Obtained CCC for different prediction time-spans

Figure 7: VM ecological efficiency assessments and 15-second forecasts during the experiment

From Table 7, it is straightforward that the longer the time span in the
predictions, the lower the precision of the forecasts, which is quite obvious.
Figure 8 shows how for 75-second predictions even though the “Forecasts” time-
series follows the “Assessments” one during the simulation, it is not as precise as
when performing 15-second predictions. In this case, the “Forecasts” time-series
is delayed with regards to the changes in the “Assessments” one. Moreover, some
individual predictions suffer from a greater deviation from the real observed
value than before.
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Figure 8: VM ecological efficiency assessments and 75-second forecasts during the experiment

5. Conclusions

In this paper we investigated the environmental impact of cloud resources
and specifically about techniques to measure and monitor the CO2 footprint of
virtual machines in cloud computing infrastructures. We identified ecological
efficiency of VMs as the metric that effectively defines such impact and we
modeled this metric using energy and performance related parameters of the
hosting system. To this end, we proposed a service architecture which allows
monitoring the eco-efficiency of VMs in private cloud scenarios. The designed
system aggregates information from public energy data-stores and historical
data for each country in order to define the CO2 emission factors for each region
of interest. Through this methodology we are able to calculate the eco-efficiency
of VMs in a location and time specific manner.

The proposed framework has been validated against VM deployments in
cloud infrastructures within Germany. The results gathered from the executed
experiments demonstrated the intra-day variation of CO2 emission factors in
each state of Germany and therefore the potential for an eco-efficient resource
management of VMs. In addition, we captured the eco-efficiency levels for:
(a) identical VMs deployed in different locations (Berlin, Karlsruhe), and (b)
different size of VMs deployed in the same infrastructure.

We have also presented two different methods to estimate the eco-efficiency
of a VM to be deployed in the infrastructure, when it specifies the amount of
performance in BWIPS that it requires for its execution. These two methods
can be used seamlessly depending on the way the provider operates. The results
have demonstrated that the tool performs such predictions with a good accuracy,
with different scenarios (with an empty infrastructure or with a VM already
running on it). We have observed that the precision directly depends on the
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precision of the used power model. Given that the used power sensor has a
granularity of 10W, this has affected the precision of our power model in the
experimentation. Moreover, we have used a linear power model, but the usage
of a more sophisticated one could also improve its precision.

Finally, we have also evaluated the accuracy of the tool to predict the eco-
efficiency of a VM during its execution. We have stated that the precision of
the tool is very high (95.54%) for short-term predictions (7.5 minutes ahead),
and it degrades as predictions are performed for longer periods of time in the
future.

The targeted users of the toolkit are cloud providers that can use services
developed to monitor and predict the eco-efficiency of their own infrastructure.
Such methodology could be integrated into cloud middleware, and therefore
allow the providers for better internal management or offering new green ser-
vices to the costumers. Thus, the establishment of ecological efficiency as an
important factor of ICT services and cloud resources does not only have an
environmental impact but also innovative market potentials.

As future steps of this research we are aiming at extending the ecological
efficiency calculation formula by considering also the activity of the memory
and disk resources when estimating the performed work of a VM. Contempo-
rary production servers 4 that have been developed with the last generation
CPU cores have significantly improved the processor power consumption and
therefore resources like memory, network and disk must be considered as well.
In addition, we would like to extend the data model and methodology of cal-
culating the CO2 Factors taking into account the energy providers too. Even if
the energy resources of a region are the ones that the power providers are con-
suming, there can be significant variations in the energy mix that each company
uses and therefore that could affect eco-footprint of the consumers. We also aim
to improve the precision of the power predictions by using a more sophisticated
power model than the current one. It should consider other aspects apart from
the CPU utilization, such as memory usage, disk usage and processor perfor-
mance counters. Finally, having completed with this work an analysis of the
energy and ecological efficiency at the level of the VM, we will focus our efforts
towards a holistic ecological modeling of cloud resources considering the cooling
costs, environmental parameters and migration capabilities.
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[31] Í. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart,
J. Torres, R. Bianchini, Greenslot: scheduling energy consumption in green
datacenters, in: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, Seattle, WA,
USA, ACM, 2011, p. 20. doi:10.1145/2063384.2063411.

[32] Greenpeace, Campain Report, How Clean is Your Cloud? (2012).
URL http://www.greenpeace.org/international/en/publications/

Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/

[33] H.-J. Wagner, M. Koch, J. Burkhardt, T. Böckmann, N. Feck, P. Kruse,
CO 2 -Emissionen der Stromerzeugung, BWK 59 (10) (2007) 44–52.
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