
Modelling Service-Oriented Computing with Temporal Symbolic Graph
Transformation Systems

Nikos Mylonakis and Fernando Orejas
Department of Computer Science

Universitat Politècnica de Catalunya
Barcelona, Spain

Email: nicos@cs.upc.edu, orejas@cs.upc.edu

José Luiz Fiadeiro
Department of Computer Science

Royal Holloway University of London
Egham, UK

Email: jose.fiadeiro@rhul.ac.uk

Abstract—In this paper, we present a novel semantics for an
essential aspect of service-oriented computing: the mechanism
through which systems evolve through a symbiosis of state
transformations and run-time service discovery and binding.
The semantics is based on a new notion of temporal symbolic
graph-transformation systems: in temporal symbolic graphs,
interfaces can be specified using temporal logic, and service-
level agreements can be specified in that logic’s propositional
fragment. An important advantage of our framework is that it
can be supported by tools that implement temporal symbolic
graph transformations, which would also provide a means of
animating service-oriented systems evolution. We illustrate our
semantics with a simple trip-booking service.

Keywords-Service Oriented Computing (SOC); graph trans-
formation systems;

I. INTRODUCTION

Service Oriented Computing (SOC) is a software para-
digm that uses services provided by external sites distributed
over the Internet to deliver services to client applications.
Service-oriented programs can decide at run time which
services to select after a process of discovery and ranking
that takes into account how they meet required behavioural
requirements and service-level constraints.

A possible state model for SOC can be considered at two
levels of abstraction. At the lowest level, state configurations
are graphs of interconnected components; at the highest
level, business configurations are graphs of interconnected
activities, where an activity is a graph of components. This
definition at two levels of abstraction accounts for both state
changes that result from computations performed by com-
ponents and configuration changes that result from dynamic
service discovery and binding. In this paper, we present a
graph transformation approach to formalise both kinds of
changes in a uniform way. This approach is used to give
a semantics of the Sensoria Reference Modeling Language
(SRML) [1], but it could also be used in connection with
other approaches for modeling or specifying service systems.

SRML [1] is a service modeling language developed as
part of the EU-FET project SENSORIA [2], whose aim was
to develop a novel comprehensive approach to the enginee-
ring of software systems for service-oriented architectures

where foundational theories, techniques and methods are
fully integrated in a pragmatic software engineering appro-
ach. The language, which is based on those two levels of
abstraction, has supported basic research on fundamental
concepts of SOC including a model for service-oriented
interactions [3], an abstract model for service discovery and
binding [4], and a model for dynamic reconfiguration [5].

However, no operational semantics has been defined for
SRML that accounts for the symbiosis that exists between
the two levels of abstraction, i.e., the way computation at the
state level induces changes at the configuration level, and
vice-versa. This has precluded a full implementation of the
language and the development of tools that, like animation,
can support service development.

The work reported in this paper develops such an ope-
rational semantics using graph transformation systems – a
formalism for which several tools have been developed (for
example, in Maude [6]). For this purpose, we define a graph
transformation formalism that allows us to encode provides
and requires interface specifications in temporal logic as
well as service-level agreements (SLA). This formalism
is based on symbolic graphs [7] – the most expressive
graph formalism for specifying attribute values – which
we extend with a temporal logic to obtain what we call
‘temporal symbolic graphs’. Using this new formalism, we
define a transformation system for business configurations.
Our representation allows service modules to be connected
with requires and provides specifications using the temporal
logic LTL [8] and to express service-level constraints using
the propositional fragment of that logic.

The paper is organized as follows. In Section II we
present an overview of SRML. In Section III, we define
symbolic graphs with temporal formulas. Section IV is
dedicated to showing how we can define the crucial part
of the semantics of SRML (business configurations) using
temporal symbolic graph transformations; a simple example
of a service that makes flight and hotel reservations is used
as an example. Finally, in Section V, we discuss some related
work and conclude the paper.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. INTRODUCTION TO SRML

The essential concept of SRML is the notion of module,
which is inspired by the Service Component Architecture
(SCA) [9]; see [1], [10], [3], [4], [5] for a detailed descrip-
tion of the language and some of its semantic aspects. A mo-
dule can be seen as a graph of components that are connected
by wires along which they communicate asynchronously;
a module also includes provides and requires interfaces to
allow a module to bind to other modules.

As an example of a module we present a booking agent.
This module, which is graphically depicted in Figure 1,
offers a service for booking trips (flight and hotel). It
includes a single component (BookAgent) that takes care
of the booking and three interfaces: a provides interface
(Customer) for customer requests and two requires interfaces
(FlightAgent and HotelAgent). The BookAgent receives re-
quests for booking trips from customers that are connected to
the Customer interface; it then binds to a FlightAgent and a
HotelAgent to request a flight and a hotel, respectively; those
services provide the corresponding reservation confirmations
through a hotel and a flight code, which are then returned
to the customer by the BookAgent. For our purposes in this
paper, we focus only on how the BookAgent requests a flight
to the FlightAgent.

BOOKING AGENT

CR:
Customer

BA:
BookAgent

FA:
FlightAgent

HA:
HotelAgent

CB

BH

BF

Figure 1. BOOKING AGENT service module

Components are specified by a ‘business role’ consisting
of a signature and an orchestration part. A signature de-
clares the events or messages in which a component may
take part and the orchestration describes the behavior of
the component. In Figure 2 we exhibit a fragment of the
specification of the main component of the Booking Agent
module. In this specification, we declare that BookAgent
has an interaction called booktrip in which the compo-
nent participates by receiving and then sending information
(r&s), and another interaction called bookflight in which
the component participates by sending and then receiving
information (s&r). The interaction booktrip has four input

parameters (from, to, out and in) and one output parameter
(tconf).

In the orchestration part, first we declare the local va-
riables of the component and, possibly, their initialization.
Then we specify the effects of the interactions in which the
component may take part. For instance, in the example, the
local variables from, to, in, and out are used for storing
the basic data of the trip being booked (source, destination,
departure and return dates, respectively), and fconf and hconf
are used for storing the flight and hotel reservation codes
that have been booked. We also declare the local effects of
each interaction in which the component takes part. In the
example, we show the transition Torder, which is triggered
by the event booktrip that the component receives; the effects
of the transition are to assign the local variables from, to,
in, and out the contents of the corresponding parameters of
booktrip. The transition also triggers the sending of book-
flight with the corresponding input parameters instantiated
with the updated values of the local variables.

In this way, components interact asynchronously with
other components by exchanging events or messages. This
form of interaction is essential for supporting the forms of
loose binding that are typical in service oriented computing.
Note that events or messages model the interactions that are
exchanged between parties (service requesters and suppliers)
or internally within a party, but not exchanges within the
middleware infrastructure that implements service discovery,
selection and binding; that is, the modeling takes place
exclusively at the business level.

BUSINESS ROLE BookAgent is
r&s booktrip

 from,to:string; out,in:integer;
B tconf : (fcode,hcode);

s&r bookflight

 from,to:string; out,in:integer;
B fconf : fcode;

. . .
ORCHESTRATION

local
from,to:string; out,in:integer;
fconf : fcode; hconf : hcode;

transition Torder
triggered by booktrip

effects

from’ = booktrip.from ∧ to’ = booktrip.to ∧
out’ = booktrip.out ∧ in’ = booktrip.in

sends bookflight

bookflight.from = from’ ∧ bookflight.to = to’ ∧
bookflight.out = out’ ∧ bookflight.in = in’ ∧

. . .

Figure 2. BookAgent business role

External interfaces are specified through business pro-
tocols, which include a signature and a specification of
the conversations that the module expects relative to each
party. A fragment of the business protocol of Customer is
depicted in Figure 3. Business protocols are used by the

middleware when discovering external parties that can bind
to the interface. Wires bind the names of the interactions
and specify the protocols that coordinate the interactions
between two parties. For example, Booking Agent includes
the wire CB that connects the business role BookAgent with
the business protocol of the customer. For simplicity, we do
not illustrate wire specifications, which in the examples used
in the paper are simple one-to-one mappings between the
signatures of the specifications that do not impose additional
protocols (for example, encryption).

BUSINESS PROTOCOL Customer is
r&s booktrip

 from,to:string; out,in,reqdate:integer; getfb:bool;
B tconf : (fcode,hcode); orprice,price:float;

s confirm

 info:string, confb:bool;

. . .
BEHAVIOUR
23booktrip.getfb∧
2(booktrip.getfb =⇒ 3confirm.confb)

dif(booktrip.out, booktrip.reqdate) ≥ 90 =⇒
3booktrip.price = 0.9× booktrip.orprice

. . .

Figure 3. Customer business protocol

The specification of the Customer business protocol inclu-
des the interaction booktrip, which maps to the interaction
with the same name of BookAgent, and the interaction
confirm, which just sends a confirmation message to the
customer after receiving the trip request. The behavior of
the protocol is defined in the temporal logic LTL that we
define in next section; the first formula guarantees that a
confirmation message will always be sent after receiving a
booktrip request. The second states that if the date of the
request and the date of departure of the travel differs in 90
days or more, the final price of the travel has a 10% of
discount.

Another aspect of SRML that we will represent in
our framework is service level agreements (SLA). Service
modules are selected at run time to bind to interfaces subject
to given SLA. An SLA is a set of constraints that have
to be taken into account during discovery and selection.
Every constraint involves a set of variables that includes
both local parameters of the service being provided (e.g.,
the percentage of the cost of a trip that is refundable).
SRML adopts a framework for constraint satisfaction and
optimization in which constraint systems are defined in
terms of c-semirings [11]. These c-semirings contain a space
of degrees of satisfaction with two distinguished values –
1 for maximal satisfaction and 0 for no satisfaction – a
composition and a choice operation. The space of degrees
of satisfactions could be, for example, the set {0, 1} for
crisp constraints (i.e., those that are either satisfied or not
satisfied) or the interval [0, 1] for intermediate degrees of
satisfaction (soft constraints), A constraint system consists of

a c-semiring, a totally ordered set of configuration variables,
and a finite domain for each variable. A constraint consists
of a function defi that, given the values of some variables
of the constraint system, returns a degree of satisfaction. An
external configuration policy of a service module consists
of a constraint system based on a fixed c-semiring, a set of
constraints and an assignment of the configuration variables
to the components of the module (Customer, Booking Agent,
Flight Agent, etc).

In our example, we consider a constraint system over the
interval [0, 1], i.e., satisfaction levels are between worst (0)
and best (1). We work with three configuration variables
of type integer: pbd denotes the period before departure in
which the customer makes the refund request, prc is the
percentage of the refund that the Booking Agent decides
to assign to the customer, and bfee is the booking fee of
the Booking Agent. The variable pbd is assigned to the
customer and the variables prc and bfee to the Booking
Agent. We illustrate two constraints: the first requires that
the percentage prc of the cost that is refundable is bounded
by the least of 90 percent and a linear function of the period
before departure pbd during which the deal can be revoked
(the maximum refundable cost (100 percent) is obtained with
8 days or more):

def1(pbd, prc) =

1, if 1 ≤ pbd and prc ≤ 90

and prc ≤ 50 + 7 ∗ pbd
and prc ≤ 100.

0, otherwise.

(1)

The second constraint states that the degree of satisfaction
of a booking agent is inversely proportional to the booking
fee bfee:

def2(bfee) = 1/(1 + bfee) (2)

In [5] business configurations are defined using the notion
of state configuration. A state configuration is a pair of a
simple graph (undirected, without loops or multiple edges)
of components and wires, and a configuration state. A
configuration state is a mapping of states to the components
and states to the wires. Thus, a state configuration also
includes the values contained by the local variables of wires
and components, and the events or messages that are on the
components and wires waiting to be processed.

Configuration states can evolve in two different ways:
execution steps and reconfiguration steps. In execution steps,
the component states are changed by removing from the
buffer the messages selected to be processed and adding
those that are delivered to the component. The wire states
are changed by removing from the buffer the messages that
are delivered to the components and adding those that are
published to the wire.

For reconfiguration steps, SRML uses a typing mecha-
nism through which so-called activity modules are used for
typing the sub-configurations that, in a given state, execute

the business activities that are running. Such types are
needed for capturing the business activities that perform
in a configuration and determine how the configuration
evolves. When a service module SM whose provides in-
terface matches the requires interface of an activity module
AM is selected, the two modules are connected and the
activity is bound to this new service. This implies that
initialized instances of the components and wires of SM
are added to the state configuration and also to the activity
associated with AM . The activity module associated with
the enriched activity would include the components and
wires of that activity and, in addition, the remaining (non-
matched) interfaces of AM and SM .

The sequence diagram in Figure 4 captures part of the
execution associated with a request from a customer. The
execution involves four parties that are dynamically added
to the execution: the customer, the booking agent, the flight
agent and the hotel agent. Initially we just have the customer
agent, which sends a request to the booking agent. After a
process of service discovery and binding, one booking agent
is chosen, which receives the travel requests. After proces-
sing the request, the booking agent sends in parallel two
independent requests for hotel and flight booking. Again,
after two independent processes of service discovery and
binding, an hotel and a flight agent are chosen. They both
send in parallel the chosen hotel and flight to the booking
agent, and the booking agent sends this information to the
customer. In the rest of the paper we consider only a flight
request of a customer and represent as symbolic graphs with
temporal formulas two rules to generate and process events,
and the rule to connect the customer to the chosen booking
agent.

Customer

Agent

Booking

Agent

Flight

Agent

Hotel

Agent

PAR

booktrip֠

bookflight֠

bookflight✉

bookhotel֠

bookhotel✉

booktrip✉

confirm֠

Figure 4. A sequence diagram capturing part of the execution associated
with a request from a customer agent

III. FIRST-ORDER AND TEMPORAL SYMBOLIC GRAPHS

In this section, we first present symbolic graphs with
first-order formulas, and then we define temporal symbolic
graphs. Although the syntax of both are very similar, they
have different semantics. We present their semantics and, for
temporal symbolic graphs, we also present the semantics of
temporal transformation systems.

A. first-order symbolic graphs

Symbolic (hyper)graphs [7] can be seen as a specification
of a class of attributed graphs (i.e., of graphs including
values from a given data algebra in their nodes or edges).
In particular, in a symbolic graph, values are replaced by
variables, and a set of formulas Φ specifies the values that
the variables may take. We may consider that a symbolic
graph SG denotes the class of all graphs obtained by
replacing the variables in the graph by values that satisfy
Φ. For example, the symbolic graph with a propositional
formula in Figure 5 specifies a class of attributed graphs
including distances in the edges that satisfy the triangle
inequality.

Figure 5. A symbolic graph

Symbolic graphs are based on a special kind of labeled
graphs, called E-graphs, where labels are variables (for more
details, see [12], [13]). The only difference between the
notion of E-graph that we use and that in [12] is that we
deal with hypergraphs. This means that, for every graph G,
instead of having edges with just source and target graph
nodes, we have hyperedges that are connected to a sequence
of graph nodes. Additionally, nodes and hyperedges can have
attributes.

Definition 1: A first-order symbolic graph over the data
algebra D is a pair 〈G,ΦG〉, where G is an E-graph over
a set of variables X and ΦG is a set of first-order formulas
over the operations and predicates in D including variables
in X and elements in D.
In Figure 6 we give an example of a symbolic rule with one
symbolic graph on the left-hand side of the big black right
arrow and another on the right-hand side. The meaning of
the rule is explained below. The E-graph on the left-hand
side has two hyperedges: one denotes an event that has one

node and five attributes – the name of the event (booktrip)
and four event parameters; the other hyperedge denotes a
component that has three nodes and five attributes – the
name of the component (BookAgent) and four variable
components. These kind of graphs are part of business
activities as defined in the next section.

Symbolic graphs over D together with their morphisms
form the category SymbGraphsD. In [7] it is shown
that SymbGraphsD is an adhesive HLR category, which
means that all the fundamental results of the theory of graph
transformations apply to this kind of graphs [13].

As in [13], we consider that graph transformation rules
consist of three parts, L ←↩ K ↪→ R, the left-hand side L,
the right-hand side R, and K that is the common part of L
and R, i.e. K is included in both L and R. Nevertheless,
for simplicity, in our examples, only the left and right hand
sides of the rules will be shown, leaving the common part
implicit. Applying a rule L←↩ K ↪→ R to a given graph G
means matching L to some subgraph of G using an injective
morphism m : L → G, then computing a graph F that
includes all the elements in G that are not in the image of
L\K and, finally, computing the result of the transformation
H , obtained by adding to F all the elements that are in
L \K. Formally, this is equivalent to defining H in terms
of the diagram below, where (1) and (2) are pushouts.

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G F?

_oo � � // H

In the case of symbolic graph transformation, we consider
that the left-hand side of the rules includes no conditions.
As shown in [14] this is not a limitation but, on the contrary,
it allows for additional flexibility. This means that symbolic
graph transformation rules can be seen as standard graph
transformation rules together with a set of conditions, i.e.
the conditions of its right-hand side.

Definition 2: A symbolic graph transformation rule is a
tuple 〈L ←↩ K ↪→ R,Φ〉, where L,K,R are E-graphs over
the same set of variables XR, L ←↩ K ↪→ R is a standard
graph transformation rule, and Φ is a set of formulas over
XR, and over the values in the given data algebra D.
As an example, in Figure 6 we show a rule with two events
and a BookAgent component. The rule states that when
a booktrip event arrives, the BookAgent registers it and
sends a new bookflight event. The formula below expresses
that the origin, destination, and departure and return dates
are the same in the incoming event (booktrip) and in the
outgoing event (bookflight). The intermediate graph K in
general denotes the common subgraph between L and R. In
our example this would be the BookAgent hyperedge; for
simplicity, we do not depict it.

Figure 6. A symbolic rule

In this context, the result of applying a transformation
rule 〈L ←↩ K ↪→ R,Φ〉 to a symbolic graph 〈G,ΦG〉 is
equivalent to obtaining the symbolic graph 〈H,ΦH〉, where
H is the result of applying the rule L ←↩ K ↪→ R to
G and ΦH = ΦG ∪ m′(Φ). We may notice that applying
a symbolic transformation rule reduces or narrows down
the number of instances of the result. For instance, G
may include an integer variable x such that ΦG does not
constrain its possible values. However, after applying a given
transformation, the result graph 〈H,ΦH〉 may be such that
ΦH includes the formula x = 0, expressing that 0 is the
only possible value of x.

B. Temporal symbolic graphs

In this section we define temporal symbolic graphs and
their semantics. The basic idea is that first-order symbolic
graphs can be used to model the computation states of a
service system, but the use of temporal formulas allow us
to describe its behavior.

The temporal logic that we propose is very similar to
LTL as presented in [8]. The main difference is that we
work with expressions using the data algebra D, which
include operators such as <,>,=, 6=,≤ and ≥; we denote
by EXPR the set of correct expressions in the data algebra
D. Boolean expressions are LTL formulas and the syntax
of LTL formulas is as follows:
• If exprb is a correct boolean expression in EXPR,

exprb is an LTL formula.
• If tf1 and tf2 are LTL formulas, then true, false,
¬tf1, (tf1 ∧ tf2), ©tf1 and (tf1 U tf2) are also
LTL formulas.

Note that in our formulation of LTL we have not included
first-order formulas but propositional formulas plus the
temporal operators of LTL. This is because we do not
need the expressive power of first-order formulas to model
service-oriented programs, and because our tool for temporal
symbolic graph transformation is much more efficient if we
work with a simple propositional logic.

LTL formulas are generally interpreted over a state
transition system STS consisting a set of states S and a
transition relation →. An STS can be represented as a
computational graph, where each path, formed by a sequence
of states, corresponds to a possible run of the system. The

intuitive semantics of the temporal formulas over such a path
is as follows: the symbols ¬ and ∧ have their usual meaning;
the formula ©tf1 intuitively means that tf1 holds in the
immediate successor of the current program state; U is the
until operator – the formula (tf1 U tf2) intuitively means
that there exists a prefix of the path such that tf1 holds for
every state of the prefix and tf2 holds in the next state of
the prefix. The abbreviation 3 f = (true U f) intuitively
means that f will eventually hold, and 2 f = ¬3¬ f
means that f will always hold.

Now we present temporal symbolic graphs and their
semantics.

Definition 3: A temporal symbolic graph SG over the
data algebra D is a pair SG = 〈G,ΦG〉, where G is an
E-graph over a set of variables X and ΦG is a set of LTL
formulas over the operations and predicates in D including
variables in X and elements in D.

The semantics of temporal symbolic graphs is not a class
of attributed graphs but a class of state transformation sys-
tems (STS) whose states are attributed graphs. For example,
if we have a temporal symbolic graph with just one node
and an attribute b with the temporal formula 3(b = 5), the
semantics of this temporal symbolic graph is the class of all
state transition systems STSB where the attributed graphs
of their states have arbitrary values for that attribute b, but
with the particularity that at least in one state of all the
possible paths of the STSB, we have an attributed graph
with value 5 for b.

Syntactically, transformation rules for temporal symbolic
graphs are similar to first-order symbolic ones, in the sense
that they are also tuples 〈L ←↩ K ↪→ R,Φ〉, but now Φ
is a set of temporal formulas. Moreover, instead of using
arbitrary variables in the formulas in Φ to denote the values
of the attributes in the graphs in the rule, in this setting, if
a variable x denotes the value of an attribute in R and if
that attribute is also present in L, then its value in L will be
denoted by the reserved name xp. As before, the application
of a graph transformation rule to a given temporal symbolic
graph SG can be expressed in terms of a transformation of
E-graphs.

Definition 4: Given a temporal symbolic graph SG =
〈G,ΦG〉 and transformation rule p = 〈L ←↩ K ↪→ R,Φ〉
over a given data algebra D and given a morphism m :
L → G, we define the application of p to SG by means
of the matching m as the transformation SG =⇒p,m SH ,
where SH = 〈H,ΦH〉 is defined as follows:

1) H is defined by the double pushout diagram of E-
graphs depicted below:

L

(1)m

��

K

(2)

? _oo � � //

��

R

m′

��
G F?

_oo � � // H

2) ΦH = T (ΦG) ∪ m′(Φ) where T is a transformation
function on temporal formulas inductively defined as
follows:

• T (true) =⇒ true
• T (exprb) =⇒ exprb′

• T (¬f) =⇒ ¬T (f)
• T (f1 ∧ f2) =⇒ T (f1) ∧ T (f2)
• T (© f) =⇒ f
• T (f1 U f2) =⇒ f2 ∨ (f1 ∧ f1 U f2)

where exprb′ substitutes every variable x in exprb by
xp.

We briefly justify the transformation of the most relevant
cases:

• T (exprb) After applying a rule the value or the possible
values of the attribute x can be updated. In rules, we
use the notation x to denote the current value of the
attribute after applying a given rule and xp to denote
the previous value before applying a given rule. Thus,
after applying a rule, the previous value of an attribute
x still satisfies the proposition, if we use the previous
values for all the attributes which appear in expr.

• T (© f) If we have in the with-clause of a symbolic
graph this formula, after applying a rule f must hold.
If it does not hold the transformation is not valid.

• T (f1 U f2) If we have in the with-clause of a symbolic
graph this formula, after applying a rule one of the
following must happen:

– f2 holds.
– f1 holds and therefore we still have to check the

original temporal formula.
– f1 and f2 do not hold and therefore the transfor-

mation is not valid.

Next we give some definitions that are needed to define the
semantics of transformation systems for temporal symbolic
graphs.

Definition 5: A transformation system of symbolic graphs
is a symbolic graph SG0 together with a finite set of
symbolic rules SR.

Definition 6: A path of a transformation system
(SG0,SR) is a possibly infinite sequence of symbolic
graphs (SG0, SG1, SG2, ...) such that, for all i, SGi+1 is
obtained by applying a rule of SR to SGi.
The representation of the semantics of a transformation
system is again a state transition system where states are
now symbolic graphs and the transition relation is defined
by rule application of the transformation system. Temporal
formulas restrict the structure associated with the semantics
of the transformation system. For example, if a temporal
symbolic graph TSG has the temporal formula 3(b = 0)
requesting that the attribute b eventually has to have the
value 0, the semantics of TSG must not include paths in
which the attribute will never have the value 0.

Rules can add temporal formulas. When a temporal for-
mula is added to a symbolic graph by a rule, then the seman-
tics of the subtransformation system starting from this new
graph has to include only paths that satisfy this new temporal
formula. Therefore, the structure that defines the semantics
of a transformation system with temporal symbolic graphs
must include only the paths and subpaths that satisfy the
temporal formulas that are in the initial symbolic graph and
in all the symbolic graphs of the structure.

More precisely, we can define that a path of a transfor-
mation system satisfies a temporal formula as follows:

Definition 7: A path P = (SGi, SGi+1, . . .), where i ≥
0, of a transformation system (SG0,SR) satisfies a formula
with at least a temporal operator in the temporal symbolic
graph SGi if the following holds:
• P |= © tf if P has at least two symbolic graphs and

P ′ |= tf where P ′ = (SGi+1, ...) .
• P |= (tf1 U tf2) if there exists a subpath SGi, ..., SGj

where j ≥ i such that tf2 holds in SGj and, for all
i ≤ k < j, tf1 holds in SGk.

As a simple example, consider a symbolic graph with one
node and an integer attribute b, and a with clause containing
the propositional formula b ≥ 2∧ b ≤ 5, which requires that
the current value must be between 2 and 5, and the temporal
formula 3(b = 0) meaning that b eventually becomes 0.
Consider now a transformation rule that transforms the value
of the attribute with the equation b = bp − 1; the semantics
of the transformation system would be just a path where the
rule has been applied five times. In the last application of
the rule, the propositional formula will be transformed into
b ≥ −3∧ b ≤ 0 and, therefore, the temporal formula is still
satisfied. After applying once more the rule, the temporal
formula would not be satisfied anymore because b would
never become 0. If we add another rule that now transforms
the attribute with the equation b = bp − 2, the semantics
of the transformation system is a structure with paths of
lengths 2, 3, 4 and 5 rule applications, including all possible
permutations of the application of these two rules while the
temporal formula is satisfied.

As another example, consider the same initial symbolic
graph, the same first rule, but a different second rule consis-
ting of the propositional formula b = bp+1 and the temporal
formula 2(b ≤ 3), which states that b must always be lower
than or equal to 3. If we did not have the temporal formula
in the second rule, we could have non-bounded paths with
just applications of the second rule; this is because we can
always obtain the value 0 applying the first rule a similar
number of times. With the temporal formula in the second
rule, we have to guarantee that b has the value 3. Therefore,
although the paths are again non-bounded, the interval of
the values can not surpass b ≥ 3 ∧ b ≤ 6 because if we
apply the rule again, we can not prove anymore that b ≤ 3.

An interesting property of our semantics is that if we
have two temporal symbolic graphs SG1 and SG2 such

that SG1 is transformed to SG2 by a temporal symbolic
rule p, then we can build a transformation function from the
semantics of SG2 to the semantics of SG1. Basically for
each state transformation system STSG2 of the semantics
of SG2 we can build a state transformation system STSG1

which belongs to the semantics of SG1.

IV. A GRAPH-SEMANTICS FOR BUSINESS
CONFIGURATIONS

In our graph semantics, business configurations are re-
presented by symbolic graphs whose hyperedges represent
components and events. Each connected subgraph is a busi-
ness activity whose nodes represent wires. Additionally, the
semantics has two different graph transformation rules for
these two ways of transforming the state: state transforma-
tion rules and reconfiguration rules.

Symbolic graphs are especially adequate for business
configurations because they are the most convenient graph
formalism with attributes whose values have to be speci-
fied. Indeed, as shown in [7], symbolic graphs are more
expressive than the standard approach [12]: for example, it
allows us to specify arbitrary conditions on the attributes
of a graph. On the other hand, with symbolic graphs, we
may define different strategies for evaluating attributes when
doing graph transformation, allowing for more flexibility
[14]. Moreover, the extension with temporal formulas allow
us to model de behavior of components and modules and
to specify business protocols. In particular, as shown below,
requires and provides specifications can be represented in a
very natural way as a set of temporal formulas in the with
clause of symbolic graphs.

Our graph semantics is presented in the next two sub-
sections. First we present the graph semantics of business
configurations, and then its associated transformation sys-
tem.

A. Business configurations

The first definition addresses the basic concept of business
activity:

Definition 8: A business activity is a connected symbolic
graph with two types of hyperedges:
• Hyperedges that represent components with a positive

number of nodes, an attribute with the name of the
component and a set of attributes of the component.
We refer to them as component hyperedges.

• Hyperedges that represent events connected with just
one node, an attribute with the name of the event,
another with the type of the event and a set of attributes
of the event. We refer to them as event hyperedges.

We consider two types of nodes: internal and interface nodes.
Both types of nodes can be part of different component hype-
redges and event hyperedges. The main difference between
these two types of nodes is that interface nodes are the ones
with which subsystem binding is performed.

Next, we present the concept of business configuration:
Definition 9: A business configuration is a symbolic

graph that contains a set of business activities.
As mentioned in the definition of business activities, inter-
face nodes are not connected to another node. When these
nodes have an event hyperedge, they triggered a process of
selection of a reconfiguration rule package. For example, if
a customer has launched an activity module that requests
a booking agent to book just a flight, the symbolic graph
that represents the initial business configuration with an
instance of this activity module consists of a hyperedge that
represents the customer component with a set of attributes
for the flight. A graphical representation is in Figure 7.

with from = “Barcelona” ˄ to = “ New York” ˄ in = 240615

˄ out = 70715 ˄ getf = false ˄ conf = false ˄

reqdate = 150215 ˄ price = 0.0

from:string

to:string

in:int

out:int

flight:string

price:float

getf:bool

conf:bool

reqdate:int

Customer

Figure 7. Business configuration with just a customer activity

Figures 9 and 11 show two different stages of the initial
business configuration in Figure 7. Figure 9 has a customer
subsystem with a set of attributes (from, to, in, out, ...). The
hyperedge has an interface node with an event hyperedge.
After triggering a process of selection of a reconfiguration
rule package, the business configuration evolves to the one
in Figure 11, binding the interface node of a booking agent
subsystem. This subsystem has also two additional interface
hierarchical nodes. We further explain Figure 11 later in this
section.

B. Transformation systems for business configurations

In this subsection we present first the two kinds of
rules that we have in transformation systems for business
configurations: state transformation rules and reconfiguration
rules. After that we present reconfiguration rule packages
that combine both kind of rules.

Definition 10: A state transformation rule is a rule that
can make the following transformations in one activity:

• process an event, eliminating it from a node of a
hyperedge component;

• transform the values of the attributes of a component
hyperedge using information of the processed events of
its nodes;

• publish an event in the node of a hyperedge component.
An example of a state transformation rule is in Figure 8: it
publishes an event in the interface node of the hyperedge
component of the customer.

from:string

to:string

in:int

out:int

getf:bool

conf:bool

with fromf = from ˄ tof = to ˄ outf = out ˄ inf = in ˄

getf = true ˄ req � conf

Customer

from:string

to:string

in:int

out:int

getf:bool

conf:bool

Customer

booktrip֠

fromf: string

tof: string

outf: int

inf: int

req:bool

Figure 8. Rule initr associated with the customer activity

Other rules can be used for processing the information of
the reply-event of the booking agent or to start the payment.
When the rule initr in Figure 8 is applied to the business
configuration, the initiating event is added to the business
configuration. The resulting new business configuration is in
Figure 9. Note that the rule also has a temporal subformula in
the with-clause, which requests always a confirmation from
the chosen Booking Agent.

with from = “Barcelona” ˄ to = “ New York” ˄ in = 240615

˄ out = 70715 ˄ getf = true ˄ conf = false ˄

reqdate = 150215 ˄ price = 0.0 ˄

req � conf

from:string

to:string

in:int

out:int

flight:string

price:float

getf:bool

conf:bool

reqdate:int

Customer

booktrip֠

from: string

to: string

out: int

in: int

req:bool

Figure 9. New business configuration with a trigger event

Definition 11: A reconfiguration rule connects one busi-
ness activity with another.

An example of a reconfiguration rule is in Figure 10: it binds
a business activity including a customer component with
a business activity including a booking agent component.
Note that the rule requires that the customer have at least
five attributes. Two of the attributes are getf , which is true
because the customer requires information about a flight,
and conf , which is false because the customer has not
received confirmation yet from the booking agent. The other
three attributes are needed to define a temporal formula that
provides a discount in the price of the flight.

The Booking Agent has also two boolean attributes:
getfb, which is true when the agent is treating a booking
request, and confb, which is true when the agent has sent a
confirmation of the request with or without information on
the reservation. This reconfiguration rule has also temporal
formulas in the with-clause. They express the provides spe-
cification of the Booking Agent. The first two conjunctions
express that the agent will always receive the request after
it has been sent, and that, if the agent receives a request,
it will always send a confirmation. The last conjunction of
the temporal formula expresses that if the request arrives 90
days before the flight departure, the customer will receive a
discount of 10%.

Definition 12: A reconfiguration rule package contains
one distinguished reconfiguration rule and a set of state
transformation rules.
The event in Figure 9 triggers a process of selection of a re-
configuration rule together with a set of state transformation
rules. The selected reconfiguration rule is the one in Figure
10. After applying the reconfiguration rule, an instance of

getf:bool

conf:bool

out:int

reqdate:int

price:float

getf:bool

conf:bool

out:int

reqdate:int

price:float booktrip֠

from: string

to: string

out: int

in: int

booktrip֠

from: string

to: string

out: int

in: int

BookingAg

fromf:str

tof:str

inf:int

outf:int

flightf:str

getfb:bool

confb:bool

orprice:float

with getf = true ˄

prov � getfb ˄ (getfb ⇒ (conf ˄ confb)) ˄

dif(out,reqdate) ≥ 90 ⇒ price = orprice – orprice*10/100

prov:bool

Figure 10. A reconfiguration rule

a booking agent module is connected to the instance of
the customer activity module as represented in Figure 11.
Before making the connection, we have to prove that the
provides specification of the Booking Agent denoted by the
boolean variable prov implies the requires specification of

the customer denoted by the boolean variable req.

booktrip֠

from: string

to: string

out: int

in: int

from:string

to:string

in:int

out:int

flight:string

price:float

getf:bool

conf:bool

reqdate:int

Customer

fromf:string

tof:string

inf:int

outf:int

flightf:string

getfb:bool

confb:bool

orprice:float

BookingAg

with from = “Barcelona” ˄ to = “ New York” ˄ in = 240615

˄ out = 70715 ˄ getf = true ˄ conf = false ˄

reqdate = 150215 ˄ price = 0.0 ˄ getfb = false ˄

req � conf ˄

prov � getfb ˄ (getfb ⇒ (conf ˄ confb))

dif(out,reqdate) ≥ 90 ⇒ price = orprice – orprice*10/100

req:bool prov:bool

Figure 11. Updated business configuration with a booking agent

A business repository contains all the possible services
that are available at a certain time to make a binding in a
process of selection of a reconfiguration rule package.

Definition 13: A business repository is a set of reconfi-
guration rule packages.

Now we present the concept of transformation systems
for business configurations:

Definition 14: A transformation system for business con-
figurations consists of:

• a business configuration
• a business repository
• a set of state transformation rules.

Finally we present the two different ways through which
we can transform a transformation system for business
configurations:

Definition 15: A transformation step in a transformation
system for business configuration can be one of the fo-
llowing:

• An application of a state transformation rule to the
current business configuration. The result updates the
business configuration.

• After a process of selection of a reconfiguration rule
package by an interface node of an activity and at least
an event hyperedge, the application of the distinguished
rule of the selected reconfiguration package to the
current business configuration. In this case we update
again the business configuration. The rest of the rules
of the reconfiguration rule package are added to the
current set of state transformation rules.

In our running example, the initial business configuration in
Figure 7 has been transformed to the business configuration
in Figure 9 by first applying the state transformation rule in
Figure 8. In a second step, after applying the distinguished

rule in Figure 10, we obtain the business configuration in
Figure 11.

A process of service discovery and binding is needed
to obtain a reconfiguration rule package. The set of state
transformation rules is then updated with the set of state
transformation rules associated with the reconfiguration rule.
This new set of rules will include rules to process the
initiating event of the customer and generate two new
initiating events to book a flight by a Flight Agent and to
book a hotel by an Hotel Agent (in our case, just a Flight
Agent).

To complete the execution of the service oriented program
presented in the sequence diagram in Figure 4, we would
need another reconfiguration rule to connect the Booking
Agent with a Flight Agent and some state transformation
rules to send the chosen flight from the Flight Agent to
the Booking Agent, and from the Booking Agent to the
Customer.

Figure 12. Updated business configuration with a booking agent

We now explain how service level agreements can be
added to our framework. First the operations of c-semirings
can be easily added to the data algebra D of symbolic
graphs. The two constraints defined in Section II can be
added in the reconfiguration rule of our example in the
following way:
• Add the configuration variables as attributes of the

attached components. In our case the attribute pbd : int
is assigned to Customer and the attributes prc : int and
bfee : int are assigned to the Booking Agent.

• Add a variable for each constraint in the node that
connects the Customer and the Booking Agent in the
symbolic graph of the right-hand side of the reconfi-
guration rule. In that node there is already a boolean
variable named prov : bool. In our case the variables
sla1 : {0, 1} and sla2 : [0, 1] would be added.

• In the with-clause of the reconfiguration rule add a
formula for each case which defines a constraint. For
our example we have three formulas, two for the first
constraint and one for the second:

– 1 ≤ pbd ∧ prc ≤ 90 ∧ prc ≤ 50 + 7 ∗ pbd∧
prc ≤ 100 => sla1 = 1

– ¬(1 ≤ pbd ∧ prc ≤ 90 ∧ prc ≤ 50 + 7 ∗ pbd∧
prc ≤ 100) => sla1 = 0

– sla2 = 1/(1 + bfee)

In general, a business configuration can have several in-
dependent activities. In Figure 12 we have two independent
activities of two different customers, one in the final state
of the running example of the paper, and the other ready
to trigger a process of discovery of another booking agent
which has not to be the same as the chosen for the other
customer. We omit the attributes of the components and
events and the with-clause, and we encapsulate the two
independent activities.

Finally, we relate our semantic framework with the one
presented in [5]. We concentrate on the following concepts
of their semantics:
• configuration steps
• business reflective configurations and reconfiguration

steps
Configuration steps are related to our concept of state
transformation rules. In [5], work configuration steps affect
components and wires. Components and wires have buffers;
in a configuration step, the messages selected to be proces-
sed are removed from every component buffer and those
messages that are delivered to the component from the wire
are added.

From the point of view of the wires, configuration steps
change every state of the wires by removing from the buffer
the messages that are delivered to the components and
adding those that are published to the wire by the connected
components. There are two constraints that configuration
steps must satisfy: every wire delivers all messages to and
only to the component it connects, and all the messages that
are published to the wire come from the same connected
components.

Our state transformation rules do not formalize this be-
havior exactly but in a similar way. Being more concrete,
components do not have proper buffers and events only exist
in the nodes of the component hyperedges that correspond
to the concept of wires. A state transformation rule can
transform the state of a component but an event can not
inhabit it. A state transformation rule can also generate
events to a wire. The two constraints must be satisfied
also in state transformation rules and they must be checked
before adding a reconfiguration rule package to a business
repository.

The business configurations in [5] have activities typed
by activity modules. These types are used for deciding how
the configuration will evolve through events that trigger
the discovery process. This information on types makes
business configurations reflective, which makes the system
adaptable to reconfiguration. In reconfiguration steps the
business configurations evolve at the level of activities and
at the level of types. In our case, we do not have this
notion of type but we have information in the with-clause
of the business configuration and in the with-clause of a
reconfiguration rule. More concretely, in the with-clause of
the business configuration we can have the requirements
specification of an activity module, and in the with-clause
of the reconfiguration rule we can have also the provides
specification of a service module, using temporal formulas.

V. CONCLUDING REMARKS

In this paper, we have presented a novel approach for
describing in a uniform way the evolution of service systems
by state transformations and run-time service discovery and
binding, and we have used it to define a semantics for
SRML, a language that was developed as part of the
European project Sensoria [2]. The main difference between
SRML and other approaches in the area of service-oriented
systems such [15], [16], [17], [18] is that SRML supports
service binding at run time.

Several semantic aspects of SRML have already been
addressed in several papers (e.g., [3], [4], [5]). In this paper,
we replace the original semantics of business configurations
with a transformation system that can be easily implemented
with a tool for symbolic graph transformation. Additionally,
our approach offers a formal semantics for binding that is
independent of specific languages that might be adopted. It
is also more expressive in relation to the conditions through
which services can be selected, which could be used to
enhance existing languages such as WSDL [19].

In this paper, we have also presented the novel notion of
temporal symbolic graphs, which could play a relevant role
in the specification of reactive systems. In the future we plan
to study the foundations of this new kind of graphs, setting
the basis for their use in different contexts.

We plan to study how to define hierarchical graph transfor-
mation with flexible notions of hierarchical graph morphisms
so that it is possible to perform transformations that change
the hierarchical structure of a graph. This approach would be
a variation of the work reported in [20]. This would allow us
to define a semantics for an ambient calculus with business
configurations and business repositories.

ACKNOWLEDGMENT

This work has been partially supported by funds from
the Spanish Ministry for Economy and Competitiveness
(MINECO) and the European Union (FEDER funds) under
grant COMMAS (ref. TIN2013-46181-C2-1-R).

REFERENCES

[1] J. L. Fiadeiro, A. Lopes, L. Bocchi, and J. Abreu,
“The sensoria reference modelling language,” in Rigorous
Software Engineering for Service-Oriented Systems - Results
of the SENSORIA Project on Software Engineering for
Service-Oriented Computing, ser. Lecture Notes in Computer
Science, M. Wirsing and M. M. Hölzl, Eds. Springer,
2011, vol. 6582, pp. 61–114. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-20401-2 5

[2] M. Wirsing and M. M. Hölzl, Eds., Rigorous Software
Engineering for Service-Oriented Systems - Results of the
SENSORIA Project on Software Engineering for Service-
Oriented Computing, ser. Lecture Notes in Computer
Science. Springer, 2011, vol. 6582. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20401-2

[3] J. L. Fiadeiro, A. Lopes, and J. Abreu, “A formal model
for service-oriented interactions,” Sci. Comput. Program.,
vol. 77, no. 5, pp. 577–608, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2011.12.003

[4] J. L. Fiadeiro, A. Lopes, and L. Bocchi, “An abstract model of
service discovery and binding,” Formal Asp. Comput., vol. 23,
no. 4, pp. 433–463, 2011.

[5] J. L. Fiadeiro and A. Lopes, “A model for dynamic reconfi-
guration in service-oriented architectures,” Softw Syst Model,
pp. 12:349–367, 2013.

[6] A. Boronat and J. Meseguer, “An algebraic semantics for
mof,” in FASE, ser. Lecture Notes in Computer Science, J. L.
Fiadeiro and P. Inverardi, Eds., vol. 4961. Springer, 2008,
pp. 377–391.

[7] F. Orejas and L. Lambers, “Symbolic attributed graphs for
attributed graph transformation,” in Int. Coll. on Graph and
Model Transformation. On the occasion of the 65th birthday
of Hartmut Ehrig, 2010.

[8] Z. Manna and A. Pnueli, The temporal logic of reactive and
concurrent systems - specification. Springer, 1992.

[9] “The Open Service Oriented Architecture collaboration,” whi-
tepapers and specifications available from www.osoa.org (see
also oasis-opencsa.org/sca).

[10] J. L. Fiadeiro, A. Lopes, and L. Bocchi, “Algebraic semantics
of service component modules,” in WADT, 2006, pp. 37–55.

[11] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based
constraint satisfaction and optimization,” J. ACM, vol. 44,
no. 2, pp. 201–236, 1997.

[12] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, “Fundamental
theory of typed attributed graph transformation based on
adhesive HLR-categories,” Fundamenta Informaticae, vol.
74(1), pp. 31–61, 2006.

[13] ——, Fundamentals of Algebraic Graph Transformation,
ser. EATCS Monographs of Theoretical Computer Science.
Springer, 2006.

http://dx.doi.org/10.1007/978-3-642-20401-2_5
http://dx.doi.org/10.1007/978-3-642-20401-2_5
http://dx.doi.org/10.1007/978-3-642-20401-2
http://dx.doi.org/10.1016/j.scico.2011.12.003

[14] F. Orejas and L. Lambers, “Lazy graph transformation,”
Fundam. Inform., vol. 118, no. 1-2, pp. 65–96, 2012.
[Online]. Available: http://dx.doi.org/10.3233/FI-2012-706

[15] W. van der Aalst, M. Beisiegel, K. M. van Hee, D. König, and
C. Stahl, “A soa-based architecture framework,” in The role
of business processes in service oriented architectures, ser.
Dagstuhl seminar proceedings, vol. 06291. Schloss Dagstuhl,
2006.

[16] M. Broy, I. H. Krüger, and M. Meisinger, “A formal model
of services,” ACM Trans Softw Eng Methodol, vol. 16, no. 1,
2007.

[17] B. Benatallah, F. Casati, and F. Toumani, “Web service con-
versation modeling: a cornerstone for e-business automation,”
IEEE Internet Computing, vol. 8, no. 1, pp. 46–54, 2004.

[18] W. Reisig, “Modeling and analysis techniques for web servi-
ces and business processes,” in FMOODS, ser. Lecture Notes
in Computer Science, vol. 3535. Springer, 2005, pp. 243–
258.

[19] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana, “Web services description language
(WSDL),” 2001, 1.1. Technical report, W3C, available from
www.w3.org/TR/wsdl/.

[20] F. Drewes, B. Hoffmann, and D. Plump, “Hierarchical
graph transformation,” J. Comput. Syst. Sci., vol. 64,
no. 2, pp. 249–283, 2002. [Online]. Available: http:
//dx.doi.org/10.1006/jcss.2001.1790

http://dx.doi.org/10.3233/FI-2012-706
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1006/jcss.2001.1790

	Introduction
	Introduction to SRML
	first-order and temporal symbolic graphs
	first-order symbolic graphs
	Temporal symbolic graphs

	A graph-semantics for business configurations
	Business configurations
	Transformation systems for business configurations

	Concluding remarks
	References

