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Abstract

This paper provides new dilated linear matrix inequalities (LMIs) characterizations for the finite time boundedness (FTB)
and the finite time stability (FTS) analysis of discrete-time uncertain linear systems. The dilated LMIs are later used to design
a robust controller for the finite time control of discrete-time uncertain linear systems. The relevant feature of the proposed
approach is the decoupling between the Lyapunov and the system matrices, that allows considering a parameter-dependent
Lyapunov function. In this way, the conservativeness with respect to previous results is decreased. Numerical examples are
used to illustrate the results.
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1 Introduction

The idea of finite time stability (FTS) allows to analyze or design control systems that present some constraints
on the state response without being necessarily stable. In fact, when the behavior of the system over a fixed time
interval is of interest, a system could be defined stable when, given some initial conditions, the state remains within
some desired bounds in such time interval, and unstable when it does not (Amato et al., 2001; Amato and Ariola,
2005; Amato et al., 2010b). Another concept which is strongly related to FTS is finite time boundedness (FTB),
which takes into account norm bounded disturbances affecting the system (Amato et al., 2001). FTB implies FTS,
but the converse is not true.

These concepts have been developed considerably in the last decade (Amato et al., 2014). In particular, the devel-
opment of results based on differential/difference linear matrix inequalities (DLMIs) has attracted a lot of interest,
mainly due to the possibility of providing necessary and sufficient conditions for the FTS/FTB of linear systems (Ichi-
hara and Katayama, 2009; Amato et al., 2010a,b). In these works, it has been shown that the FTS of a time-varying
linear system is guaranteed if and only if either a certain inequality involving the state transition matrix is satisfied,
or a symmetric matrix function solving a certain Lyapunov differential/difference inequality exists. However, due
to computational complexity issues, simpler sufficient (not necessary) conditions for FTS are used to address the
problem of designing controllers guaranteeing some finite-time performance.

The problem of designing a robust finite time control law for uncertain systems has been solved only in the
continuous–time case (Amato et al., 2001, 2011), and it seems that the discrete-time case represents still an open
problem. In this paper, using the dilation technique suggested by de Oliveira et al. (1999), we provide new dilated
linear matrix inequalities (LMIs) characterizations for the FTB and the FTS analysis. The dilated LMIs are used to
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design a controller for the robust finite time control of discrete-time uncertain linear systems. The relevant feature
of the proposed approach is the decoupling between the Lyapunov and the system matrices, that allows considering
a Lyapunov function that depends on the parametric uncertainty. In this way, the conservativeness with respect
to previous results, e.g. Amato et al. (2010b), is decreased. It is worth highlighting that in Amato et al. (2010b),
time-varying linear systems without uncertainty are considered, in which case a time-varying Lyapunov matrix al-
lows to obtain less conservative results than the ones obtained using a constant Lyapunov matrix. However, in the
present work, the considered systems are subject to parametric uncertainty too, in which case using a Lyapunov
function that associates a different Lyapunov matrix to each possible value of the unknown parametric uncertainty
seems to be the most effective choice for reducing conservativeness with respect to parameter-independent Lyapunov
functions.

2 Preliminaries

Let us recall the definitions of FTS and FTB in the case of discrete-time LTV systems (Amato et al., 2001; Amato
and Ariola, 2005)

Definition 1 The discrete-time LTV system

x(k + 1) = A(k)x(k) (1)

is said to be finite time stable (FTS) with respect to (c1, c2,N,R), with c2 > c1 > 0, N > 0 and R ≻ 0, if

x(0)TRx(0) ≤ c1 ⇒ x(k)TRx(k) < c2 ∀k ∈ {1, . . . ,N} (2)

Definition 2 The discrete-time LTV system

⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = A(k)x(k) +G(k)w(k)
w(k + 1) = F (k)w(k)

(3)

is said to be finite time bounded (FTB) with respect to (c1, c2,N,R, d), with c2 > c1 > 0, N > 0, R ≻ 0, and d > 0 if

⎧⎪⎪⎨⎪⎪⎩

x(0)TRx(0) ≤ c1
w(0)Tw(0) ≤ d

⇒ x(k)TRx(k) < c2 ∀k ∈ {1, . . . ,N} (4)

Notice that FTS can be recovered as a special case of FTB when w = 0. Finally, the following lemmas provide
sufficient conditions for the FTB and the FTS of discrete-time LTV systems.

Lemma 1 Given ρ ≥ 1, the discrete-time LTV system (3) is FTB with respect to (c1, c2,N,R, d) if there exist
positive scalars λ1, λ2 and two positive definite matrix-valued functions Q1(⋅) ∶ k ∈ {0,1, . . . ,N} ↦ Q1(k) ∈ Snx×nx

and P2(⋅) ∶ k ∈ {0,1, . . . ,N}↦ P2(k) ∈ Snw×nw such that

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ρQ1(k) Q1(k)A(k)T O O

A(k)Q1(k) −Q1(k + 1) G(k) O

O G(k)T −ρP2(k) F (k)TP2(k + 1)
O O P2(k + 1)F (k) −P2(k + 1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

≺ 0 ∀k ∈ {0,1, . . . ,N − 1} (5)

Q1(0) ≻ λ1R−1 (6)

Q1(k) ≺ R−1 ∀k ∈ {1, . . . ,N} (7)

P2(0) ≺ λ2I (8)

⎛
⎝

c2
ρN

− λ2d
√
c1

√
c1 λ1

⎞
⎠
≻ 0 (9)
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PROOF. The proof is inspired by the one provided in (Amato and Ariola, 2005) for the case of discrete-time LTI
systems, and is omitted here due to space limitation.

Notice that by considering F (k) = G(k) = O and d = 0, conditions for analyzing the FTS of discrete-time LTV
systems can be obtained. The analysis of FTS, with respect to FTB, is less demanding from a computational point
of view, due to the lower size of the matrix inequalities and the lower number of variables that should be found (FTS
analysis involves finding a positive scalar λ1 and a positive definite matrix-valued function Q1(⋅), contrarily to FTB
analysis which involves finding in addition λ2 and P2(⋅)). It can be shown that the sufficient condition for FTS of
discrete-time LTV systems provided by Amato et al. (2010b) are a particular case obtained when ρ = 1 and c1 = 1.

3 Main results

The following theorems provide new dilated LMIs for analyzing the finite time boundedness and the finite time
stability properties of discrete-time LTV systems.

Theorem 1 Given ρ ≥ 1, the discrete-time LTV system (3) is FTB with respect to (c1, c2,N,R, d) if there exist
positive scalars λ1 and λ2, two positive definite matrix-valued functions Q1(⋅) ∶ k ∈ {0,1, . . . ,N} ↦ Q1(k) ∈ Snx×nx

and P2(⋅) ∶ k ∈ {0,1, . . . ,N} ↦ P2(k) ∈ Snw×nw , and two matrix-valued functions H1(⋅) ∶ k ∈ {0,1, . . . ,N − 1} ↦
H1(k) ∈ Rnx×nx and H2(⋅) ∶ k ∈ {1, . . . ,N}↦H2(k) ∈ Rnw×nw such that (6)-(9) and

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ρ (He{H1(k)} −Q1(k)) H1(k)TA(k)T O O

A(k)H1(k) −Q1(k + 1) G(k) O

O G(k)T −ρP2(k) F (k)TH2(k + 1)
O O H2(k + 1)TF (k) P2(k + 1) −He{H2(k + 1)}

⎞
⎟⎟⎟⎟⎟⎟
⎠

≺ 0 (10)

∀k ∈ {0,1, . . . ,N − 1} hold.

PROOF. The proof is inspired by the results obtained in de Oliveira et al. (1999). We first show that (5) implies
(10). In fact, if (5) holds, we can choose H1(k) = H1(k)T = Q1(k) and H2(k + 1) = H2(k + 1)T = P2(k + 1) in (10)
and recover (5).

It remains to show that (10) implies (5). To do so, let us assume that (10) holds, and let us notice that, for a given
k, it can be rewritten as

⎛
⎜⎜⎜⎜⎜⎜
⎝

ρQ1(k) O O O

O −Q1(k + 1) G(k) O

O G(k)T −ρP2(k) O

O O O P2(k + 1)

⎞
⎟⎟⎟⎟⎟⎟
⎠

+He

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜
⎝

−ρI O

A(k) O

O F (k)T

O −I

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ξ(k)
⎛
⎝
I O O O

O O O I

⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≺ 0 (11)

Ξ(k) =
⎛
⎝
H1(k) O

O H2(k + 1)
⎞
⎠

(12)

such that the Elimination Lemma (Gahinet and Apkarian, 1994) can be applied, resulting in

⎛
⎝
ρA(k)Q1(k)A(k)T − ρ2Q1(k + 1)

ρG(k)T
ρG(k)

F (k)TP2(k + 1)F (k) − ρP2(k)
⎞
⎠
≺ 0 (13)

which, using a congruence transformation with diag(ρ−1I, I), and applying Schur complements, can be shown to be
equivalent to (5), thus completing the proof. ◻
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Theorem 2 Given ρ ≥ 1, the discrete-time LTV system (1) is FTS with respect to (c1, c2,N,R) if there exist λ > 0,
a positive definite matrix-valued function Q(⋅) ∶ k ∈ {0,1, . . . ,N} ↦ Q(k) ∈ Snx×nx , and a matrix-valued function
H(⋅) ∶ k ∈ {0,1, . . . ,N − 1}↦H(k) ∈ Rnx×nx such that

⎛
⎝
−ρ (H(k) +H(k)T −Q(k)) H(k)TA(k)T

A(k)H(k) −Q(k + 1)
⎞
⎠
≺ 0 (14)

∀k ∈ {0,1, . . . ,N − 1} and

Q(0) ≻ λR−1 (15)

Q(k) ≺ R−1 ∀k ∈ {1, . . . ,N} (16)

hold.

PROOF. It is a direct consequence of Theorem 1, when F (k) = G(k) = O and d = 0. ◻

The new conditions introduced in Theorems 1 and 2 introduce the new variables H1(k), H2(k) and H(k) in order
to achieve the separation of the Lyapunov matrices Q1(k), Q2(k) and Q(k) from the matrices A(k) and F (k). The
advantage of doing so is that the new conditions allow to write new robust finite time boundedness (RFTB) and
robust finite time stability (RFTS) conditions that are less conservative than the ones derived directly from Lemma
1.

To this aim, let us consider an uncertain LTV system, represented by

x(k + 1) = Ã(k)x(k) (17)

⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Ã(k)x(k) + G̃(k)w(k)
w(k + 1) = F̃ (k)w(k)

(18)

with
Ã(k) =∑

NA

i=1
αiAi(k), αi ≥ 0, ∑

NA

i=1
αi = 1 (19)

F̃ (k) =∑
NF

j=1
φjFj(k), φj ≥ 0, ∑

NF

j=1
φj = 1 (20)

G̃(k) =∑
NG

l=1
γlGl(k), γl ≥ 0, ∑

NG

l=1
γl = 1 (21)

Notice that the uncertainty representation in (19)-(21) is quite general, and can be regarded as structured uncertainty.
Then, the RFTB and the RFTS are defined as follows.

Definition 3 The uncertain LTV system (17) is said to be RFTS with respect to (c1, c2,N,R), with c2 > c1 > 0,

N > 0 and R ≻ 0, if and only if it is FTS for all Ã(k).

Definition 4 The uncertain LTV system (18) is said to be RFTB with respect to (c1, c2,N,R, d), with c2 > c1 > 0,

N > 0, R ≻ 0 and d > 0, if and only if it is FTB for all Ã(k), F̃ (k) and G̃(k).

Then, the following theorems provide sufficient conditions for the RFTB and the RFTS of the uncertain LTV systems
(18) and (17), respectively.

Theorem 3 Given ρ ≥ 1, the uncertain discrete-time LTV system (18) with uncertainty domain given by (19)-(21)
is RFTB with respect to (c1, c2,N,R, d) if there exist positive scalars λ1,ijl and λ2,ijl, positive definite matrix-valued
functions Q1,ijl(⋅) ∶ k ∈ {0,1, . . . ,N}↦ Q1,ijl(k) ∈ Snx×nx and P2,ijl(⋅) ∶ k ∈ {0,1, . . . ,N}↦ P2,ijl(k) ∈ Snw×nw and two
matrix-valued functions H1(⋅) ∶ k ∈ {0,1, . . . ,N − 1} ↦ H1(k) ∈ Rnx×nx and H2(⋅) ∶ k ∈ {1, . . . ,N} ↦ H2(k) ∈ Rnw×nw

such that
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⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

ρ (Q1,ijl(k) −He{H1(k)}) H1(k)Ai(k)
T

Ai(k)H1(k) −Q1,ijl(k + 1)

O Gl(k)
T

O O

O O

Gl(k) O

−ρP2,ijl(k) Fj(k)
TH2(k + 1)

H2(k + 1)TFj(k) P2,ijl(k + 1) −He{H2(k + 1)}

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

≺ 0 (22)

∀k ∈ {0,1, . . . ,N − 1} and

Q1,ijl(0) ≻ λ1,ijlR−1 (23)

Q1,ijl(k) ≺ R−1 ∀k ∈ {1, . . . ,N} (24)

P2,ijl(0) ≺ λ2,ijlI (25)

⎛
⎝

c2
ρN

− λ2,ijld
√
c1

√
c1 λ1,ijl

⎞
⎠
≻ 0 (26)

hold for all i = 1, . . . ,NA, j = 1, . . . ,NF and l = 1, . . . ,NG.

PROOF. Due to a basic property of matrices (Horn and Johnson, 1990), any linear combination of positive (nega-
tive) definite matrices with non-negative coefficients, of which at least one different from zero, is positive (negative)
definite. Hence, using the coefficients αi, φj and γl defined in (19)-(21), it follows from (22)-(26) that (10) and (6)-(9)

hold for any Ã(k), F̃ (k) and G̃(k). It follows that Theorem 1 holds for any Ã(k), F̃ (k) and G̃(k), i.e. the uncertain
LTV system (18) is RFTB with respect to (c1, c2,N,R, d). This completes the proof. ◻

Theorem 4 Given ρ ≥ 1, the uncertain discrete-time LTV system (17) with uncertainty domain (19) is RFTS
with respect to (c1, c2,N,R) if there exist positive scalars λi, positive definite matrix-valued functions Qi(⋅) ∶ k ∈
{0,1, . . . ,N}↦ Qi(k) ∈ Snx×nx and a matrix-valued function H(⋅) ∶ k ∈ {0,1, . . . ,N − 1}↦H(k) ∈ Rnx×nx such that

⎛
⎝
ρ (Qi(k) −He{H(k)}) H(k)TAi(k)T

Ai(k)H(k) −Qi(k + 1)
⎞
⎠
≺ 0 (27)

∀k ∈ {0,1, . . . ,N − 1} and

Qi(0) ≻ λiR−1 (28)

Qi(k) ≺ R−1 ∀k ∈ {1, . . . ,N} (29)

⎛
⎝

c2
ρN
√
c1

√
c1 λi

⎞
⎠
≻ 0 (30)

hold for all i = 1, . . . ,NA.

PROOF. The proof is similar in the reasoning to the one of Theorem 3, thus it is omitted. ◻

It is worth noticing that, contrarily to Theorems 1 and 2, that do not use a parameter-dependent Lyapunov function
(the matrix-valued functions Q1(⋅) and P2(⋅) do not depend on the uncertainty), in Theorems 3 and 4 the parameter-
dependent Lyapunov functions are used.

The conditions presented in Theorem 3 and 4 can be easily extended to solve the problem of the finite time control
of uncertain LTV systems. Due to space limitation, only the case of RFTB control will be discussed. To this aim,
let us consider uncertain LTV systems of the form

⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Ã(k)x(k) + B̃(k)u(k) + G̃(k)w(k)
w(k + 1) = F̃ (k)w(k)

(31)

5



with Ã(k), F̃ (k) and G̃(k) defined as in (19)-(21), and

B̃(k) =∑
NB

h=1
βhBh(k), βh ≥ 0, ∑

NB

h=1
βh = 1 (32)

and let us search the gain K(k) for the state-feedback control law

u(k) =K(k)x(k) (33)

such that the resulting closed-loop system

⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = (Ã(k) + B̃(k)K(k))x(k) + G̃(k)w(k)
w(k + 1) = F̃ (k)w(k)

(34)

is RFTB with respect to (c1, c2,N,R, d). The following corollary provides a solution to this problem.

Corollary 1 Given ρ ≥ 1, the uncertain discrete-time LTV system (31) with uncertainty domain given by (19)-(21)
and (32), under control law (33), is RFTB with respect to (c1, c2,N,R, d) if there exist positive scalars λ1,hijl,
λ2,hijl, positive definite matrix-valued functions Q1,ihjl(⋅) ∶ k ∈ {0,1, . . . ,N} ↦ Q1,hijl(k) ∈ Snx×nx and P2,hijl(⋅) ∶
k ∈ {0,1, . . . ,N} ↦ P2,hijl ∈ Snw×nw , and matrix-valued functions H1(⋅) ∶ k ∈ {0,1, . . . ,N − 1} ↦ H1(k) ∈ Rnx×nx ,
H2(⋅) ∶ k ∈ {1,2, . . . ,N}↦H2(k) ∈ Rnw×nw and Γ(⋅) ∶ k ∈ {0,1, . . . ,N − 1}↦ Γ(k) ∈ Rnu×nx such that

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

ρQ1,hijl(k) O O O

O −Q1,hijl(k + 1) Gl(k) O

O Gl(k)
T

−ρP2,hijl(k) O

O O O P2,hijl(k + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

+He

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜

⎝

−ρH1(k) O O O

Ωih(k) O O O

O O O F (k)TH2(k + 1)

O O O −H2(k + 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

≺ 0 (35)

∀k ∈ {0,1, . . . ,N − 1} and
Ωih(k) = Ai(k)H1(k) +Bh(k)Γ(k) (36)

Q1,hijl(0) ≻ λ1,hijlR−1 (37)

Q1,hijl(k) ≺ R−1 ∀k ∈ {1, . . . ,N} (38)

P2,hijl(0) ≺ λ2,hijlI (39)

⎛
⎝

c2
ρN

− λ2,hijld
√
c1

√
c1 λ1,hijl

⎞
⎠
≻ 0 (40)

hold for all h = 1, . . . ,NB, i = 1, . . . ,NA, j = 1, . . . ,NF and l = 1, . . . ,NG and if the controller gain is chosen as
K(k) = Γ(k)H1(k)−1.

PROOF. This corollary follows from Theorem 3, taking into account that the closed-loop system is described by
(34), and through the change of variable Γ(k) =K(k)H1(k). ◻

From a computational point of view, once a value for ρ is fixed, the feasibility of the conditions stated in Theorems
3-4 and Corollary 1 are linear matrix inequalities (LMIs) feasibility problems.

4 Illustrative examples

In the following, the DLMI-based FTS analysis results provided by Amato et al. (2013) are compared with the
proposed RFTS analysis condition obtained through the process of dilation (see Theorem 4). To this aim, let us

consider 100 random realizations of the uncertain LTV system (17), with the matrix Ã(k) ∈ R3×3 satisfying (19),
and let us find the minimum value of c2 that guarantees the feasibility of the analysis condition when c1 = 1, N = 4,
R = I and ρ = 1. The comparison between the conditions presented by Amato et al. (2013) and the one given by
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Fig. 1. Minimum value of c2 that provides feasibility of the analysis conditions for NA = 1, NA = 2 and NA = 3. Comparison
between the conditions from Amato et al. (2013) and the proposed dilated LMIs conditions (Theorem 4).

Theorem 4 will be performed in the cases NA = 1, NA = 2 and NA = 3 (notice that the first case corresponds to the
absence of uncertainty). It is worth highlighting that in the cases NA = 2 and NA = 3, the conditions proposed by
Amato et al. (2013) are slightly modified in order to take into account the presence of uncertainty, by assuming that

they hold for every value of Ã(k).

In Fig. 1, it can be seen that, when NA = 1 (no uncertainty), there are no differences between the results obtained
with the analysis conditions obtained from Amato et al. (2013) and the RFTS analysis by dilated LMIs proposed
in Theorem 4. In fact, the case NA = 1 corresponds to Theorem 2, in which case an exact equivalence between
the non-dilated LMIs and the dilated LMIs holds (see proof of Theorem 1). On the other hand, when NA > 1, the
proposed dilated LMIs exhibit less conservativeness (in the sense of obtaining feasible LMIs for a smaller value of
c2) than the conditions obtained from Amato et al. (2013).

Finally, let us consider an uncertain LTV system as in (31), with Ã(k), B̃(k), F̃ (k), G̃(k) defined as in (19)-(21)
and (32), with NA = NB = NF = NG = 3 and with matrices Ai(k) ∈ R3×3, Bh(k) ∈ R3×1, Fj(k) ∈ R1×1, Gl(k) ∈ R3×1,
i = 1,2,3, h = 1,2,3, j = 1,2,3, l = 1,2,3 and k = 0,1,2,3, and let us consider the problem of finding a state-feedback
control law (33) such that (34) is RFTB with respect to (1, c2,4, I,1) (see Definition 2 for the meaning of each value
in this quintuplet). Using Corollary 1, a minimum value c2 = 59 for which the LMIs exhibit feasibility is obtained. A
comparison of the open loop and the closed loop trajectories, obtained for 100 random realizations of the uncertain
LTV system, with random initial conditions satisfying x(0)Tx(0) = 1 and w(0)Tw(0) = 1, is shown in Fig. 2. It can
be seen that in the open loop case x(k)Tx(k) > 59 for some simulations (red lines). Hence, the open loop system is
not RFTB with respect to (1,59,4, I,1). On the other hand, for the closed loop system x(k)Tx(k) < 59 in all the
simulations, thus demonstrating its RFTB with respect to (1,59,4, I,1).

5 Conclusions

New robust finite time boundedness and robust finite time stability conditions for uncertain discrete-time LTV sys-
tems have been provided. These conditions, which have the relevant feature of decoupling the Lyapunov matrices
from the systems ones, have been obtained through a process of dilation, starting from existing results about finite
time control. Using these conditions, time-varying parameter-dependent Lyapunov matrices can be considered, allow-
ing to overcome the conservativeness with respect to time-varying not parameter-independent Lyapunov matrices.
Finally, the problem of robust finite time control has been solved. Simulation results have demonstrated the reduced
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Fig. 2. Comparison between open loop and closed loop trajectories with a controller designed to be RFTB with respect to
(1,59,4, I,1) using Corollary 1.

conservativeness of the proposed conditions with respect to the existing results, as well as proved the effectiveness
of the proposed conditions in achieving robust finite time control in presence of uncertainties.
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