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ABSTRACT 

An important problem to be addressed by diagnostic systems in industrial applications is 

the estimation of faults with incomplete observations. This work discusses different 

approaches for handling missing data, and performance of data-driven fault diagnosis 

schemes. An exploiting
 
classifier and combined methods were assessed in Tennessee-

Eastman process, for which diverse incomplete observations were produced. The use of 

several indicators revealed the trade-off between performances of the different schemes. 

Support vector machines (SVM) and C4.5, combined with k-nearest neighbourhood (kNN), 

produce the highest robustness and accuracy, respectively. Bayesian networks (BN) and 

centroid appear as inappropriate options in terms of accuracy, while Gaussian naïve Bayes 

(GNB) is sensitive to imputation values. In addition, feature selection was explored for 

further performance enhancement, and the proposed contribution index showed promising 

results. Finally, an industrial case was studied to assess informative level of incomplete 

data in terms of the redundancy ratio and generalize the discussion. 
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1. INTRODUCTION 

Due to the increasing complexity of modern industrial processes, preventive monitoring 

and fault diagnosis (FD) have become essential to ensure safe operation, improve product 

quality and sustain economic profit of manufacturing. A new generation of digital 

instruments, data processing devices, automation systems and high-performance 

computing tools, have promoted the development of a smart platform for plant monitoring 

and diagnosis. In addition, various methodologies have been developed to address the FD 

challenge (Venkatasubramanian et al., 2003).  Among them, data-driven diagnosis methods 

offer appropriate solutions to many difficulties arising in this field (MacGregor and Cinar, 

2012; Qin, 2012; Yin et al., 2012). This work investigates the performance of different 

data-driven FD approaches submitted to increasing loss of data.   

FD is mainly a classification problem and machine learning provides various tools for 

classification. Based on the decision boundaries (hypothesis space source), classification 

approaches  have 4 major types as listed below (Marquez et al., 2007):   

 Distance based methods. e.g. k-nearest neighbourhood (kNN) (Duda et al., 2001) 

and centroid (Salton, 1989);  

 Rule based methods. e.g. C4.5, as an extension of decision tree (Quinlan, 1993), 

and AdaBoost (Schapire and Singer, 1999); 

 Probabilistic methods. e.g. Bayesian network (BN) (Pearl, 1988) and Gaussian 

naïve Bayes (GNB) (Friedman et al., 1997); 

 Margin based methods. e.g. support vector machines (SVM) (Cristianini and 

Taylor, 2000) and artificial neural networks (Duda et al., 2001). 

Performance of classifiers is affected by the quality of data, and there are potential factors 

that may cause incomplete data sets. Figure 1 shows the typical flow of data in a chemical 

plant and potential causes of missing data. In fact, chemical systems include different 

blocks, such as process, control, data acquisition, FD systems and human interface. 

Generally, sensors readings, off-line analyses, and records of actuators status constitute the 

input data source of the FD system in a chemical plant. These data are also called features 

or observations in the classification literature and they are used indistinctly. Furthermore, 

there are various types of media for transmitting data, such as wire, wireless (satellite and 

radio) and fiber-optic. In any case, different hardware, software or administrative problems 
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are likely to disrupt access of the FD system to complete datasets. Sensors and actuators 

are subject to different occasional failures due to wear, abrasion, exposure to physical 

damage or lack of energy supply (Kadlec et al., 2009; Zhao and Fu, 2015). They may be 

out of service due to maintenance or removal. In addition, improper calibration of sensors 

or control valves leads to unreliable or out of range data (Wang et al., 2007). Thus, the 

records may be automatically deleted by the preprocessing block of the monitoring system 

(e.g. outlier detection). Furthermore, different types of measurements and sampling rates 

(e.g. off-line analysis vs. on-line sensing) may produce sparse datasets (Kadlec et al., 2009) 

and information may be delayed by administrative issues (Warne et al., 2004). Moreover, 

temporary unavailability of data may happen due to malfunction or disruption of the data 

acquisition system, which have various causes such as higher bit rate error, short circuit of 

cables, break of circuit, induced current or even harsh weather (ISO, 1994; Ji and Elwalid, 

2002; Rodriguez et al., 2002).  

Based on the above discussion, in an industrial practice it is necessary to deal with 

incomplete datasets and unknown measurements, while continuously demanding useful 

and reliable information to support decision-making. Complexity of this issue depends on 

the mechanism of missing data and the informative level of the process database. Three 

standard mechanisms are usually considered (Rubin, 1976): missing completely at random 

(MCAR), missing at random (MAR), not missing at random (NMAR). MCAR and MAR 

are called ignorable mechanisms, and it is not required to take into account causes of 

missing data in the analysis of the datasets (Schafer, 1997). However, the NMAR 

mechanism leads to loss of valuable information that cannot be properly compensated 

(García-Laencina et al., 2010). On the other hand, the informative level of a database 

depends on the existence of co-linear variables, partial redundancy or duplication of data, 

which can simplify the analysis of missing data (Kadlec et al., 2009). Determining the 

informative level of a dataset was studied by Auffarth et al. (2010) and Peng et al. (2005) 

Considering the above-mentioned facts, the performance of different FD methodologies to 

cope with incomplete input datasets needs to be examined. Since most diagnostic systems 

cannot assign a fault to incomplete features, it is required to consider additional procedures 

along with conventional classifiers. Indeed, FD with missing data concerns two different 

problems, handling missing values and classification. As shown in Figure 2, reported 
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approaches for solving these problems can be grouped into four types (García-Laencina et 

al., 2010; Scheffer, 2002; Sharpe and Solly, 1995)  

 Deletion of the incomplete feature vectors, and classification of the complete data 

portion only; 

 Development of a multi-classifier corresponding to all combination of feature 

subsets, and classification of incomplete data using the model trained by the same 

available features;  

 Imputation or estimation of missing data, and classification using the edited set; 

 Implementation of exploiting procedures for which classification can be still 

accomplished in the presence of missing variables. 

In the first and third approaches, handling missing values (deletion and imputation, 

respectively) and classification are two problems that should be solved separately. In 

contrast, the second and fourth approaches are able to directly handle incomplete input 

datasets (Ahmad and Tresp, 1993; Huang, 2008). The first alternative is too simplistic and 

may be unacceptable in many applications. The second approach (multi-classifier) requires 

a set of training models based on all possible combinations of features. Sharpe and Solly 

(1995) have reported this promising approach to be more efficient than others while 

dealing with very limited number of faults and features. Although numerous features exist 

in chemical processes, this approach quickly explodes in terms of complexity and number 

of classifier models (Gabrys, 2002). Therefore, this work addresses and discusses the last 

two approaches (grey boxes in Fig. 2).  

Estimation of missing values of a dataset, which is a preliminary step in the third approach, 

can be accomplished via various methodologies (Fortuna et al., 2007; Gonzalez, 1999; 

Little and Rubin, 2014). Generally, they can be grouped into four types in spite of the 

overlap between some basic principles:  

 Regression: e.g. least squares (Chen and Chen, 2000), auto-regression and moving-

average models (Palit and Popovic, 2006) as well as kNN (Batista and Monard, 

2002); 
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 Statistical method: e.g. mean (García-Laencina et al., 2010), maximum-likelihood 

(ML) and expectation–maximization algorithms (EM) (Ibrahim, 1990; Walczak 

and Massart, 2001b), principal component analysis (PCA) and partial least squares 

(PLS) (Kadlec et al., 2011; Nelson et al., 2006; Walczak and Massart, 2001a); 

 Soft computing: e.g. artificial neural network (ANN) (Abdella and Marwala, 2005; 

Bishop, 1995) and fuzzy inference system (FIS) (Atkeson et al., 1997; Luo and 

Shao, 2006); 

 Phenomenological models: e.g. first principle models such as energy and mass 

balance (Chéruy, 1997) and adaptive observers (Bastin and Dochain, 1990). 

Moreover, attention has also been paid to hybrid methods (Kadlec et al., 2009). However, 

phenomenological models require deep understanding of the underlying physical and 

chemical phenomena, and are usually limited to ideal steady states. On the other hand, 

faults often lead to transient and/or unsteady state in chemical processes. Therefore, this 

work covers data-driven imputation models which readily reflect real conditions of process 

systems (grey boxes in Fig. 2).  

Nelson et al. (1996) studied process monitoring in the presence of missing measurements 

using principal component analysis (PCA) and partial least squares (PLS). They presented 

three approaches for estimating scores: a single component projection method, a method of 

simultaneous projection to the model plane, and conditional mean imputation. Their 

analysis of a Kamyr pulp digester with 22 measurements and up to 20% missing data 

revealed that the conditional mean replacement method is generally superior to the other 

approaches. Subsequently, uncertainty intervals were derived for assessing the 

performance of monitoring applications with incomplete observations. The size of 

uncertainty regions helped to distinguish between situations where model performance 

with missing measurements was acceptable or not (Nelson et al., 2006). 

The last approach of FD with missing data is exploiting procedures that have robust 

algorithms when coping with missing features. They can keep on classifying even in the 

presence of incomplete input data. For example, ID3 is an extension of the decision tree 

algorithm that handles an unknown feature by generating an additional edge for the 

unknown value. Thus, the classification of an incomplete dataset is fulfilled by taking into 
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account an unknown edge like other values (Sharpe and Solly, 1995). Nevertheless, the 

results have revealed that ANN is superior to ID3 in terms of classification performance. 

Furthermore, Huang (2008) proposed to take advantage of BN and the fact that it needs no 

change in the model and the network setup to cope with incomplete datasets. However, the 

reported results cannot be generalized to other cases due to generating redundant 

information by feature extension in that work. In other words, robustness of the BN was 

assessed in terms of missing artificial features rather than missing original data. Thus, a 

more comprehensive framework for evaluation of performance is required. 

The aim of the above mentioned works was producing reliable diagnosis from new 

incomplete observations. However, developing an FD system from incomplete training 

data has also attracted researchers’ attention. In this regard, various algorithms have been 

developed, including Bayesian PCA  (BPCA) (Ge and Song, 2011), Hopfield neural 

networks (Wang, 2005) and training-estimation-training (TEST) (Yoon and Lee, 1999). 

This issue is important for developing a model with small sample size or online updating 

of the model. Nevertheless, since there exists a large amount of historical data in chemical 

plants, it is possible to provide a complete training dataset, because observations with 

missing values can be discarded from the training subset based on the assumption that 

observations are independent. Thus, designing a diagnostic system for chemical plants with 

training data contained missing measurements may not be a critical issue. Hence, this work 

is focused on the FD with new incomplete observations.      

FD of chemical processes with missing data has not been satisfactorily addressed in the 

literature. Therefore, there is a need to provide an appropriate FD framework dealing with 

incomplete data. Comprehensive assessment of various tools, as well as identification of 

their advantages and limitations is required. In the present work, standard centroid, C4.5, 

GNB, and SVM methods, as representative of each type of classification approaches 

(Marquez et al., 2007), were investigated while missing values were artificially produced 

in the datasets. Diagnosis performance of the exploiting procedure (BN), facing incomplete 

data, was specified. Imputation was accomplished using mean, PCA, kNN and ANN as 

statistical, regression, and soft computing methods, respectively. Combinations of different 

imputation and classification models were examined. Various indexes, such as accuracy, 

robustness and sensitivity, were defined for an evaluation purpose. Moreover, enhancing 
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the performance of the classification was explored through feature extraction.  Finally, a 

new index was proposed to determine the level of redundancy, which facilitates handling 

of incomplete data.  

2. METHODOLOGY 

2.1. Tools  

In this section, classification and imputation methods used in the subsequent sections are 

introduced. 

2.1.1. Classification  

Different types of classifiers are listed in Section 1. In the present work, FD systems are 

developed by following methods:  

 Centroid (distance based), which is based on “mean difference” as a simple and 

intuitive concept of discrimination (Jiang et al., 2009).  

 C4.5 (rule based), which builds decision trees consisting of sets of ordered rules 

based on information entropy (Amarnath et al., 2013). Then, the decision tree that 

best matches a new observation in terms of highest weight reflects the type of fault.  

 GNB and BN (probabilistic), which consist of maximizing the conditional 

probability of a particular fault given a set of observations (Liu et al., 2010; Verron 

et al., 2007). A Gaussian probability and a conditional probability table (CPT) are 

assigned to each variable using GNB and BN, respectively.   

 SVM (margin based), which discriminates different fault instances, as positive and 

negative points, using a kernel function (hyperplane) that maximizes the margin 

(Yélamos et al., 2009). 

 

2.1.2. Imputation  

Most monitoring or diagnosis algorithms fail in case of missing data, and imputation is 

suggested as an alternative solution (Fig. 2). In this study, four imputation options are 

examined to edit an incomplete dataset: the mean imputation and PCA, which are 

statistical methods, the kNN imputation, which is a regression, and ANN, which is a soft 

computing method.  

http://en.wikipedia.org/wiki/Entropy_(information_theory)
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The mean imputation is the earliest and easiest approach that fills the missing point by the 

average value of that variable in the historical records. Another statistical alternative is an 

iterative algorithm based on PCA. It consists of initial estimation of missing values, 

decomposition to principal components, reconstruction of features, and replacing of 

prediction in missing variables until convergence (Walczak and Massart, 2001a).  Multi-

layer perceptron (MLP), which is one of the most popular ANN-based models, utilizes 

supervised learning technique, called back-propagation. Thereafter, it is used for 

estimation of missing values based on other available values. The kNN method is a 

distance based method, in which k (number of nearest neighbours) donors are selected 

from the complete historical database, so that they minimize a distance function. Then, the 

average of corresponding variable in the k donors is replaced in the missed point.  

It is worth noting that although the kNN method is usually implemented for classification 

purposes, in the present work it is used for regression. Furthermore, it is more 

advantageous to apply the kNN method rather than conventional regression methods, in 

which explicit model should be trained. Based on the ¨lazy learning¨ approach of kNN 

that locally approximates the distance function, no training model construction is required 

(Zhang and Zhou, 2007). In this way, the kNN method can be easily applied even if 

various measurements are missed at each time step.   

2.2. Design of Experiments 

Figure 3 illustrates the general procedure for evaluation of FD performance whenever 

datasets are incomplete. The procedure is described as follows: 

Step 1: The original data are arranged in a matrix in which each row represents the time 

series of a measured variable. For each state of the system (faulty and normal), T
f
 samples 

of V variables are recorded in the matrix:   

11 12 1

21 22 2

1 2

f f f
T

f f f
f T

f f f
VTV V

x x x

x x x

x x x

 
 
 
 
 
  

X  f V TR X ;    v=1, 2, …, V     t=1, 2, …, T
f
        (1)   

where x
f
vt is the value of the v

th
 measured variable at the sampling time t in the f

th
 state of 

the system. Then, the collection of F various states are considered as a labelled process 

dataset: 
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 | 1,2,...,f f F XX L  
fF V TR  X L         (2) 

Step 2: The labelled process dataset, X L , is split into training matrix, X L , and a test 

matrix, X , which are used for fitting the parameters of the models and estimating of 

unknown faults, respectively. For the sake of simplicity, in the subsequent sections, the f
th

 

index of measurements is ignored (e.g. xvt) whenever dealing with the test dataset. 

Step 3: The training matrix, X L , is standardised as follows, to make the algorithm less 

sensitive to particular variables:  

f
f vt v
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x
x






  

(3)                                                                                             
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          (5) 

where 
fT  is the number of training samples for each fault. 

Step 4: Parameters of each classifier, mentioned in section 2.1, are fitted based on the 

standardised training matrix, X L , obtained in the previous step.   

Step 5: Some measurements are artificially deleted from the complete test dataset, X . In 

particular, 4 incomplete test matrices were produced in this work by random deletion of 

10%, 20%, 30% and 40% of measurements. All test matrices are scaled using mean (Eq.4) 

and variance (Eq.5) of the training dataset.  

Step 6: Imputation methods are applied to configure an estimated full test dataset, X , 

based on the complete training dataset, X L . The BN, as an exploiting method, can skip 

the imputation step to predict faults with incomplete data.  

Step 7: The efficiency of different imputation methods is evaluated by the Pearson 

correlation as the predictive accuracy (PAC) index: 
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(6)                                                                                             

where N is the number of missing values; 
vnx and 

vnx  are true (in X ) and imputed (in X ) 

values of the v
th

 variable, respectively; and 
v  and 

v are the means of the true and 

imputed values of the v
th

 variable, respectively. A good imputation method will produce a 

PAC value close to 1. 

Step 8: The snapshot of the test dataset at each time step,  
1 v V

vtx
 

 , is assigned to the fault 

that is predicted by the classifier.   

Step 9: The performance of classifiers is evaluated by comparing predicted faults and true 

faults for each snapshot. In this order FD outcomes are arranged in a confusion matrix as 

presented in Table 1 (Yélamos et al., 2007). Then, performance indexes including 

accuracy, precision, recall, and F1 are calculated as follows:  

Accuracy
a d

a b c d




  
  (7)                                                             

Precision
a

a b



 (8) 

Recall
a

a c



 (9) 

1
2

F
Precision Recall

Precision Recall


 


 (10) 

where a is the number of samples corresponding to faulty situations and diagnosed as such 

(true positive); b is the number of samples diagnosed as faulty but were not (false 

positive); c is the number of samples  corresponding to faulty but not diagnosed situations 

(false negative) and d is the number of samples not happened and not diagnosed (true 

negative). The classifier performance regarding each individual fault is assessed through 

F1, which can be interpreted as a weighted average of the precision and recall. The 

accuracy index is appropriate for global evaluation.  

3. TEP CASE STUDY  

The Tennessee-Eastman process (TEP) proposed by Downs and Vogel (1993) is widely 

used for testing diagnosis techniques. The dynamic simulation of this process includes a 
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control strategy created by Ricker (1996). Figure 4 illustrates the process and 

instrumentation diagram of the TEP, which consists of five major unit operations, 

including a reactor, a product condenser, a vapour–liquid separator, a recycle compressor 

and a product gas stripper. Two products (G and H) are produced by two simultaneous 

gas–liquid exothermic reactions and a byproduct (F) is generated by two additional 

exothermic reactions from reactants A, C, D and E. This process has 12 manipulated 

variables, 22 continuous measurements and 19 composition measurements. The 20 pre-

defined faults of the TEP are presented in Table 2. The TEP includes random error and 

white noises that impact on diagnosis complexity.  

The original datasets, fX , were generated by the simulation of a 30-h operation horizon 

for each fault and the normal situation. Sampling every 0.1 h resulted in a labelled process 

data matrix, 21 53 300
R

 
X L . Training dataset, 21 53 180

R
 

X L , and test dataset, 21 53 120
R

 
X , 

were built by randomly splitting samples (60:40 ratio). After standardising the training 

dataset, the 5 FD systems, centroid, C4.5, BN, GNB, and SVM (default radial based 

function) were used and assessed. In order to compare their raw performance in case of 

incomplete observations no parameter tuning was attempted to the standard methods.     

4. RESULTS AND DISCUSSION OF THE TEP CASE STUDY  

4.1. Performance  

As discussed in section 1, the BN is able to exploit all available information, complete or 

incomplete, to estimate the state of the system (Huang, 2008). In the first stage, the 

capability of this FD approach was evaluated on the TEP to produce a reference result for 

subsequent comparison. The performance index, F1, for each fault is given in Appendix A.  

Figure 5 illustrates how the global accuracy of the BN degrades with missing data. The 

global accuracy of the BN drops below 0.10, while more than 20% of data are not 

available. On the other hand, simple mean imputation can recover accuracy of the BN to 

some extent. Furthermore, pre-treatment of the incomplete test data with 3NN imputation 

shows significant performance improvement of the BN. 

From algorithmic point of view, the BN can keep inference of the state of the system even 

with incomplete data, as mentioned before. Despite its apparent robustness, the BN 

classifier has performed poorly in the presence of missing data. The main reason is 
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existence of numerous faults in the TEP case study that burden the classification. However, 

BN performance was enhanced when combined with imputation (Fig. 5). When partial data 

are missing, most methodologies require imputation to edit the test dataset before 

classification. Subsequently, the performance of centroid, C4.5, BN, GNB and SVM, 

coupled with different imputation methods, mean, PCA, ANN and 3NN, were analysed. 

Figure 6 illustrates the global accuracy of these methodologies as a function of data 

incompleteness. FD methods can be ranked in terms of global accuracy as follows: C4.5, 

GNB, SVM, BN and centroid when data are complete (0% missing data). This can be 

taken as a reference for further comparative purposes. In addition, despite the type of 

classifier, 3NN and ANN imputation keeps the performance higher than other imputations 

due to higher accuracy in terms of PAC (Appendix A).  

The accuracy loss due to missing data also depends on the classification along with the 

imputation choice. In order to quantify this effect, the robustness index is introduced as: 

mis

comp
Robustness

Accuracy

Accuracy
  (11)                                                                                             

where Accuracy
comp

 and Accuracy
mis

 are the accuracies obtained by each method when 

missing data in the test sets, X , is 0% and 40% , respectively. Hence, Figure 7 compares 

the fault diagnosis methods in terms of robustness. Generally, 3NN imputation is shown to 

provide the highest robustness, regardless of the type of classifier. Despite high accuracy 

of C4.5 in case of complete observations (Fig. 6), it does not keep this behaviour whenever 

faced with incomplete observations (Fig. 7). In other words, C4.5 is not robust respect to 

missing data.  

Furthermore, the imputation approaches, mean, PCA, ANN and 3NN, have different 

impact on the accuracy. The sensitivity of each integrated methodology can be assessed by 

the following index: 

max min
 Sensitivity Accuracy Accuracy  (12)                                                                                             

where Accuracy
max

 and Accuracy
min

 are maximum and minimum accuracies obtained by 

the corresponding classifier when the test sets suffer 40% missing data. Sensitivities of 

different approaches are compared in Figure 8. This figure shows that SVM and centroid 

methods are less sensitive than other algorithms.  



13 
 

This behaviour can be explained by the principles (space source hypothesis) of these 

methods. In the training stage, decision boundaries that can discriminate faults are 

determined. Training of SVM and centroid includes a loop that determines the optimal 

boundary in terms of maximum margin. However, training of other methods terminates 

once a decision boundary is determined. The optimal decision boundary of SVM and 

centroid allows to better discriminate the feature space regardless of the imputation 

method. In other words, the widest margin surrounding the boundary increases the 

tolerance limit of the feature space. This is in accordance with the fact that learning bias 

has proved to have good properties in terms of generalization bounds for the classifier 

(Marquez et al., 2007). 

4.2. Computational time 

The computer configuration used in this work was a core i7-3770@3.40GHz processor 

with 8GB RAM. Computational times of all models, considering various ratios of missing 

data, are given in the Appendix A. In general, results reveal that CPU times for 

classification models are negligible in comparison with imputation models. In terms of 

increasing CPU time, imputation methods rank as follows: mean, PCA, 3NN, ANN. On the 

other hand, 3NN and ANN have higher accuracy in terms of PAC compared with mean 

and PCA. Furthermore, Figure 7 shows that integration of any classifiers with 3NN 

imputation guarantees the highest robustness of the fault diagnosis. However, 3NN and 

ANN require higher computational effort than mean and PCA imputation.  

The performance of imputation would be greatly improved if the computational burden can 

be reduced, and reduction of the search space seems worthy of being explored towards this 

end. In other words, decreasing the number of variables can help finding the nearest 

neighbour sooner. Therefore, the subset of measurements that are highly affected by 

different faults should be selected as the significant feature set. The contribution index ( CI

) is introduced in this work for the feature selection as:  

1 1

1 1 1

1

|| ||

|| ||

f

f

F T
f i

vt vt
f i t

v F F T
j i

vt vt

i j t

CI

x x

x x

 

  

 









 ,f v 
   

F VR CI                                   
 (13) 



14 
 

The deviation of the measurements corresponding to each fault at each time step is 

assessed by the Euclidean distance. Then, a subset of variables, 
fV , consisting of the S 

elements having the highest 
f

vCI  is selected as the collection of significant features for 

each fault:   

 1,2,...,I V  (14)                                                                                             

   
\

| | ,min max
f f

f f f f f

i j

i A j I A

A I A S CI CI
 

  
    
  

V   f  (15)                                                                                             

A set of significant features, V , is the union of these subsets:  

1

F
f

f 

V V    
(16)                                                                                             

In the TEP case study, the set V  includes 41 measurements while S is 15. Therefore, 

variables of the significant feature matrix would be reduced from 53 to 41, i.e., 

21 41 300ˆ R  X L . Then steps 2-9 of the procedure described in section 2.2 were implemented 

on the matrix X̂ L . Figure 9 shows how this feature reduction can substantially decrease 

the computational effort of the 3NN imputation. In addition, Figure 10 demonstrates the 

effect of this feature selection on the accuracy of the different fault diagnosis approaches 

examined. Generally, higher accuracy and lower CPU time are achieved by feature 

selection regardless of imputation methods (Appendix A). Therefore, significant 

improvements can be achieved by appropriate feature selection, although further 

investigation is required to assess and compare other feature selection techniques. 

4.3. Comparison assessment of TEP 

In sections 4.1 and 4.2, different algorithms were evaluated using various criteria in the 

presence of missing measurements. This section presents an overall comparison of the 

methods through the following normalized indexes: 

 

min

max min

Accuracy Accuracy
A

Accuracy Accuracy





  (17)                                                             
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min

max min
1

imputation imputation

i

imputation imputation

CPU CPU
T

CPU CPU


 


 (18) 

min

max min
1 classification classification

c

classification classification

CPU CPU
T

CPU CPU


 


 (19) 

min

max min
1

Sensitivity Sensitivity
S

Sensitivity Sensitivity


 


 (20) 

min

max min

Robustness Robustness
R

Robustness Robustness





 (21) 

In each index, minimum and maximum performance criteria correspond to the best and 

worst results calculated in previous sections. In this way, the capability of each tool in 

terms of each index is normalized and scaled to facilitate the comparison. The spider plots 

of indexes for each integrated methodology based on the significant feature matrix are 

illustrated in Figure 11, in which rows and columns correspond to the classification and 

imputation methods, respectively. Each axis of the spider plots represents an index 

(Eqs.17-21). For comparative assessment, it should be noted that closeness of indexes to 

one or zero reflects superiority and inferiority of a correspond method, respectively.   

The selection of an appropriate fault diagnosis methodology depends on the process 

monitoring requirements, but accuracy is imperative because a false alarm may mislead 

operators. Hence, centroid and BN are not recommended in terms of accuracy. On the 

other hand, C4.5-3NN guarantees the highest accuracy (Eq. 17), and is applicable while 

FD computational time is not important issue, e.g. in case of offline monitoring, root case 

analysis or availability of a high-performance computing system. Otherwise, a flexible FD 

approach enabling the operator to select and switch imputation methods could be 

considered. In this way, the classification combined with PCA imputation allows quickly 

inferring the state of the system (Eq. 18), and more reliable results would be obtained 

through 3NN imputation. Thus, the GNB, which is too sensitive to imputation values, is 

not an appropriate choice (Eq. 20). Furthermore, SVM performs better than C4.5 and GNB 

in terms of robustness (Eq. 21), which is an important issue in case of increasing loss of 

data. Finally, Figure 12 demonstrates an FD scheme that can tolerate missing data for a 

general application. It represents interactions between various blocks including: feature 

extraction, classification and imputation.  
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5. INDUSTRIAL CASE STUDY 

Data from an industrial gas sweetening unit was used for further validation and discussion 

of the proposed model. Most gas processing plants include a sweetening unit for removing 

sour gas components from the gas stream, using chemical solvents such as amines (Fig. 

13). The acid gas constituents (H2S and CO2) react with an aqueous solution in a high-

pressure absorber. Subsequently, the acid constituents are stripped from the solvent in a 

regenerator at high temperature.  

One of the most frequent problems in a gas sweetening unit is amine foaming in the 

absorber, which results in loss of proper vapour-liquid contact, solution hold up and poor 

solution distribution. The adverse consequences include off-specification product, 

excessive amine loss, reduced gas-treating capacity and energy loss. Some root causes of 

foaming, which are considered as faults, are accumulation of heavy hydrocarbon, solid 

particle in amine and surface active agents in the feed fluid. Therefore, in this work there 

are four different states, including the mentioned faults and the normal case. 

Records of 48 on-line sensors in significant parts of a gas sweetening unit were available 

from a gas refinery. Among them, 3, 5, 8 and 11 sensors for pressure, level, flow and 

temperature were selected based on CI  (Eq. 13). The database, 4 27 1250 
RX L , was 

provided by the 27 sensors and consisted of 1250 sample points for each individual state of 

the system, which include normal, presence of surface active agents, solid particles in the 

system, and hydrocarbon accumulation in the column. The time interval between samples 

was 1 min.  

A training dataset, 4 27 625 
RX L , which had complete records of measurements, was 

selected.  In order to evaluate the proposed procedure, five different testing subsets, 

4 27 125 
RX , were considered. Two test datasets suffered 11% and 26% missing data during 

operation of the real plant. It is worth mentioning that missing data were not artificially 

induced. Moreover, artificial incomplete data is required to provide a reference for 

evaluation of the real mechanism. Thus, 0%, 11% and 26% measurements were randomly 

deleted from the other three complete test datasets.   
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6. RESULTS AND DISCUSSION OF THE INDUSTRIAL CASE 

STUDY 

In the TEP case study, missing data had a random mechanism. Herein, it was intended to 

evaluate the diagnostic performance when dealing with a real case. The accuracy of 

prediction of missing data and FD performance extremely depend on the informative level 

of data. When some features highly depend on each other or their duplication or partial 

redundancy exist, the imputation methods may accurately estimate missing values based on 

the available values (Kadlec et al., 2009). Consequently, discrimination efficiency of the 

FD system is not expected to significantly degrade if redundant features exist. In order to 

assess this important issue, an index, called redundancy ratio, is introduced here. 

In order to calculate the redundancy level of a dataset, it is required to evaluate dependency 

of variables. It is usually characterized in terms of mutual information (Sayood, 2012), 

which is obtained based on the training dataset as follows:  
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Thereafter, inherent informative level of an original database in terms of redundancy can 

be quantified by the redundancy index, RI, which has been introduced by Peng et al. 

(2005): 
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In case of incomplete dataset, the redundant information is disturbed. Degradation of 

informative level of data due to missing data can be characterized by the redundancy ratio, 

RR, as follows: 
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where NaNX  and 
c

NaNX  are incomplete and complete subsets of X .    
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This analysis was implemented on the dataset of the sweetening unit. 
27 27MI R  was 

determined based on the training subset using Eq. (22). Then, redundancy ratios of the 

complete and incomplete testing subsets were achieved based on Eq. (24) which are shown 

in Figure 14 by solid lines. The negative slopes of these lines show that the missing data 

degrades the informative level of the data (have measured in terms of redundancy ratio). 

Furthermore, the effect of the real mechanism of missing data was more adverse than that 

of the random mechanism which led to the lowest redundancy ratio. It is expected that 

estimation of missing data might be burden with lower informative level of the real case 

study. Thereafter, incomplete data was edited by the 3NN imputation, which is an efficient 

approach according to the TEP case study (Fig. 11). Then, accuracy of the 3NN imputation 

in terms of PAC was assessed, as shown in Figure 14 by dashed lines. Although the real 

mechanism of missing data has led to a lower PAC in comparison with the random 

mechanism, the impact is minor. 

Next, the FD system was developed based on X L  using C4.5-3NN, which was shown to 

be the most accurate classifier among the others (refer to Section 4.3). Performance of the 

FD system for real and random mechanisms of missing data was evaluated in terms of 

accuracy and the results are presented in Figure 15. The minor deviation of accuracy due to 

mechanisms reveals that this industrial case study has approximately a random mechanism. 

Consequently, the cause of missing data is ignorable. Therefore, the results of TEP case 

study can be generalized to this case as well. 

7. CONCLUSION  

Fault diagnosis of chemical process systems with missing data, which is a common 

problem in the industrial practice, was investigated. Machine learning provides tools to 

cope with this challenge rather than ignoring incomplete observations, but they need to be 

assessed and compared. This work undertakes this comparative study using the TEP 

benchmark, for which missing values were artificially produced in the datasets.  

First, the BN, as a promising exploiting option, was evaluated. This technique can directly 

infer the state of the system even in case of incomplete information. However, the 

alternatives of editing the incomplete observations using imputation were shown to 

produce better performance. Then, the combination of various classifiers -centroid, SVM, 
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GNB, BN, and C4.5- with imputation methods –mean, PCA, ANN and kNN- was 

investigated. It was found that C4.5 integrated with 3NN imputation results in the highest 

accuracy. BN and centroid are not appropriate selection in terms of accuracy.  The 

combination of SVM with 3NN is highly robust to missing measurements. In addition, 

SVM was shown to be scarcely sensitive to the imputation method, while the GNB is very 

sensitive. 

The trade-off between performance indicators, including accuracy, robustness, sensitivity 

and computational effort, was discussed and practical guidelines are proposed. However, 

the best approach should be selected based on the most important requirements of each 

practical application. Finally, the feature reduction, by means of the proposed contribution 

index (CI ), was examined to reduce the computation effort, and the promising results 

obtained encourage future work to assess and compare further feature selection techniques. 

Sweetening gas unit of an industrial plant was studied to explore the effect of mechanism 

of missing data. The real incomplete datasets have a low deviation from the random 

missing mechanism in terms of redundancy ratio. Thus, the original cause of missing data 

can be ignored in the analysis. Therefore, results and guidelines obtained in the TEP case 

study can be also implemented for this case. 

NOMENCLATURE 

A  normalized index of accuracy  

f

vCI      contribution index 

f   index of states of system 

F          number of states of system 

I  set of variables 

J  set of faults 

N        number of missing values 

R  normalized index of robustness  

S  normalized index of sensitivity  

S  maximum number of significant features 

T
f
  number of samples 

f
T   number of training samples 
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Tc  normalized index of CPU time of classification   

Ti  normalized index of CPU time of imputation  

v  index of variables 

V       number of variables 

fV      set of significant features for each fault 

V        set of significant features  

x           measured variable 

x
       

standardized value of measurement 

x        imputed values of missing variable 

X L      labelled process dataset 

X L    training matrix 

X L       standardised training matrix 

X         test matrix 

X        standardised test matrix 

X        estimated test dataset 

X̂ L      significant feature matrix 

 

Greek symbols 

v             mean of the v
th

 variable in the training dataset 

v       
mean of true values of the v

th
 variable in the test dataset 

v      
mean of a imputed the v

th

 
variable in the test dataset 

σv         variance of the v
th

 variable in the training dataset 

Acronyms 

ANN   artificial neural network 

BN   Bayesian network 

Cond     condensate  

CPU  central processing unit 

CWS     cold water stream 

DCS  distributed control system 

EM  expectation–maximization 

FD         fault diagnosis 



21 
 

FI        flow indicator 

FIS   fuzzy inference system  

GNB      Gaussian naïve Bayes 

ID3   Iterative Dichotomiser 3 

kNN      k-nearest neighbourhood  

LI     level indicator 

MAR   missing at random  

MCAR  missing completely at random  

MI  mutual information  

ML  maximum-likelihood  

MLP   Multi-layer perceptron 

NMAR  not missing at random 

PAC      predictive accuracy index 

PCA      principal component analysis   

PI      pressure indicator 

PLC  programmable logic controller  

PLS   partial least squares 

SC  sample connection  

SCADA supervisory control and data acquisition 

Stm  steam 

SVM  support vector machines 

TEP  Tennessee-Eastman process 

TI        temperature indicator 
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