
1 
 

A MILP model for the Teacher Assignment Problem 

considering teachers’ preferences 

 

Domenech B*, Lusa A 

Department of Management (DOE); Institute of Industrial and Control Engineering (IOC) 

Universitat Politècnica de Catalunya (UPC). Av. Diagonal 647 – floor 11, 08029, Barcelona (Spain). 

Corresponding author (*): (+34) 934 016 579; bruno.domenech@upc.edu 

 

 

Abstract 

The Teacher Assignment Problem is part of the University Timetabling Problem and involves assigning 

teachers to courses, taking their preferences into consideration. This is a complex problem, usually solved 

by means of heuristic algorithms. In this paper a Mixed Integer Linear Programing model is developed to 

balance teachers’ teaching load (first optimization criterion), while maximizing teachers’ preferences for 

courses according to their category (second optimization criterion). The model is used to solve the 

teachers-courses assignment in the Department of Management at the School of Industrial Engineering of 

Barcelona, in the Universitat Politècnica de Catalunya. Results are discussed regarding the importance 

given to the optimization criteria. Moreover, to test the model’s performance a computational experiment 

is carried out using randomly generated instances based on real patterns. Results show that the model is 

proven to be suitable for many situations (number of teachers/courses and weight of the criteria), being 

useful for departments with similar requests. 

 

Keywords: Timetabling; Linear programming; Teacher assignment problem; MILP model. 

 

 

1. Introduction 

 

The Timetabling Problem involves organizing a set of elements (which can be persons, 

objects, meetings, etc.) in time. It has been demonstrated that if all possible solutions 

were to be examined even for a reasonable amount of elements, the calculation time 

would be excessively high (NP-hard problem) [Avella & Vasil’Ev, 2005]. This 

complexity has led to the development of several models and heuristics to solve a wide 

range of problems for many applications [Gunawan & Ng, 2011]. Among others, the 

educational domain, and particularly the University Timetabling Problem, has been 

much studied. Carter & Laporte [1998] proposed an interesting classification for this 

problem: (1) Course Timetabling, to schedule courses respecting syllabus as well as 
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classroom and teachers’ availability; (2) Class-Teacher Timetabling, to plan class-

teacher meetings avoiding overlaps for a given teacher assignment to courses and 

classrooms; (3) Student Scheduling, to plan the sections of courses respecting classroom 

capacities once students have chosen courses; (4) Teacher Assignment, to assign 

teachers to courses maximizing a preference function; and (5) Classroom Assignment, 

to assign events to classrooms once the event timetable has been scheduled. 

 

The University Timetabling Problem and its sub-problems have been studied in detail 

during the last five decades. Due to computational limitations when increasing the 

number of teachers and courses involved, many heuristics and metaheuristics (such as 

simulated annealing, genetic algorithms or tabu search) have been developed according 

to the specific problem to be dealt with [Carter & Laporte, 1998]. However, thanks to 

recent advances in computer software and hardware, Mixed Integer Linear 

Programming (MILP) models have been used to solve the University Timetabling 

Problem, obtaining optimal or near-to-optimal solutions [Johnson et al., 2000; Avella & 

Vasil’Ev, 2005]. These models have usually been solved using efficient solution 

procedures, such as Lagrangean relaxations [Daskalaki et al., 2004]. 

 

For example, over the last decade, Dimopoulou & Miliotis [2001] proposed an integer 

programming model to build a combined courses-examinations timetable for a Greek 

university, considering classroom availability and students’ flexibility in their choice of 

courses. A constraint programming approach was developed by Valouxis and Housos 

[2003] assuming that teachers move from one classroom to another, while students 

always remain in the same classroom. Idle hours between the daily teaching 

responsibilities are minimized and teachers’ requests for early or late shift assignments 

are satisfied. The model was applied to typical Greek high schools. Daskalaki et al. 

[2004] solved the university timetabling problem for an Engineering Department with a 

large number of courses and teachers at a Greek University. The authors developed an 

integer programming model that respects many operational rules from most universities 

while satisfying expressed preferences for teaching periods, days of the week and 

classrooms for courses. Later, Daskalaki & Birbas [2005] proposed an alternative 

solution approach for the previous model. Al-Yakoob & Sherali [2007] faced the 

problem of a university in Kuwait in assigning classes to time slots observing gender 

policies, as well as dealing with parking and traffic congestion. 
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Following the classification proposed by Carter & Laporte [1998], this paper focusses 

on the Teacher Assignment Problem (4), which is one of the least studied sub-problems. 

In most works dealing with this problem, the assignment is solved before scheduling 

courses in time [Gunawan et al., 2008]. In contrast, very few papers focus on the 

opposite option: to assign teachers to courses once the courses have been scheduled. In 

this case, the main difficulty is to include teachers’ preferences for courses, since this 

choice has to be adapted to the course timetables. To solve this problem, the approaches 

that have primarily been used are meta-heuristics, multicriteria decision processes or 

case-based approaches, among others [Petrovic & Burke, 2004]. One of the first MILP 

models developed to solve the Teacher Assignment problem was proposed by Tillet 

[1975], to maximize a preference function, combining both the teachers’ and the 

department manager’s preferences. Selim [1982] designed a complex algorithm to 

assign teachers to courses considering teachers’ availability and department requests for 

courses (such as courses that may not be taught at the same time). Dinkel et al. [1989] 

developed a decision support system to assist in maximizing teachers’ satisfaction and 

improving classroom utilization in the teachers-courses assignment. Fahrion & 

Dollansky [1992] designed an algorithm to assign faculty members to courses, which 

included a priori fixed assignment options, such as desired classrooms according to size 

or the availability of auxiliary support. Hultberg & Cardoso [1997] proposed a MILP 

model, basing the formulation as a fixed charge transportation problem, to assign 

teachers to courses while minimizing the average number of distinct subjects taught by 

each teacher. Wang [2002] presented an approach based on genetic algorithms, 

distinguishing between hard constraints (that necessarily have to be met) and soft 

constraints (that have to be satisfied as much as possible). Another approach, used 

recently by Gunawan et al. [2008; 2011], combines simulated annealing and tabu search 

metaheuristics, allowing each course to be taught by more than one teacher and limiting 

the academic load on each teacher. This work has recently been extended in Gunawan et 

al. [2012], where a Lagrangean relaxation is used to solve the mathematical models. 

 

As a research extension, Gunawan et al. [2012] proposed developing models that allow 

the requirements of more universities to be considered. In this context, this work aims to 

solve the Teacher Assignment Problem for the Department of Management (DOE) at 

the School of Industrial Engineering of Barcelona (ETSEIB) in the Universitat 

Politècnica de Catalunya (UPC), Spain. The paper provides four main contributions: 
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1. The University Timetabling Problem is solved, including two novel considerations 

not studied together in literature, but necessary for the case study: balancing 

teachers’ load (optimization criterion 1) and maximizing teachers’ preferences for 

courses, considering their category (optimization criterion 2). 

 

2. A MILP model is developed to solve the problem. As input data, the load, schedule 

and other specific characteristics of teachers and courses are considered. As a result, 

the most appropriate teacher-course assignment is obtained for the optimization 

criteria. 

 

3. The objective function of the MILP model is developed using weighting parameters 

to assign more or less significance to the optimization criteria. The model is solved 

by the case study, discussing results according to such parameters. The results prove 

that the model allows for a wide range of situations to be modelled, depending on 

the importance ascribed to the balance between teachers’ load and the satisfaction of 

teachers’ preferences. 

 

4. One of the major limitations identified in literature is that the proposed models 

cannot be solved for big departments, the use of alternative solving procedures, such 

as relaxations, heuristics or metaheuristics being necessary. Therefore, the 

performance of the developed MILP model is tested, through a computational 

experiment, for instances of up to 50 teachers and 200 courses. Results show that 

the model can obtain acceptable solutions for up to 40 teachers in a maximum 

calculation time of one hour; a short time considering the kind of problem to be 

solved. The model can then be useful for departments with similar requests. 

 

The rest of the paper is organized as follows. In Section 2 the target problem is defined 

in detail, leading to the development of the MILP model in Section 3. The case study of 

the DOE-ETSEIB-UPC is solved in Section 4, discussing results according to the 

weighting parameters of the objective function. In Section 5 a computational experiment 

is carried out to test the model’s performance. Finally, the main conclusions are 

summarized in Section 6. 
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2. Description of the problem 

 

This research deals with the Teacher Assignment Problem for the DOE-ETSEIB-UPC, 

which is one of the largest departments in the university in terms of the number of 

teachers and courses. At the beginning of the academic year, the university 

administration gives the department manager a timetable with the fixed weekly schedule 

of the courses for the next two semesters (autumn and spring). Each semester is 

organized into 15 weeks which are identical, except for some minor variations (such as 

public holidays) assumed to be insignificant. Therefore, the problem faced is to assign 

the teachers of the department to the courses taught in two sample weeks, one for each 

semester, balancing their teaching loads and satisfying their preferences for courses. 

Each week is composed of 5 days (from Monday to Friday) and each day is divided into 

26 half-hour time slots (from 8:00 a.m. to 9:00 p.m.). Courses are taught in consecutive 

time slots on one or more days, depending on the teaching load as detailed afterwards. 

 

In general terms, two main components define the problem: courses and teachers. On 

the one hand, a course refers to a subject (or a set of related subjects) which is taught 

during a semester. Courses can be organized into sections with different schedules, 

according to the amount of enrolled students; and/or into sections with the same 

schedule, for example when dealing with problem or laboratory lessons with reduced 

groups of students. In any case, each section from each course has its own demand for 

teaching activity hours or points (from now on TAP). This value represents the total 

academic load that each section requires for a teacher, for the classes themselves as well 

as their preparation and evaluation activities. Thus, when a teacher is assigned to a 

section of a course, s/he teaches it during a specific schedule and, in exchange, s/he adds 

the corresponding TAP demand to his/her load. 

 

On the other hand, teachers are the persons responsible for teaching classes. Each 

teacher can choose his/her schedule (the hours of every day of the week that s/he can 

teach) in order to combine lectures with academic (such as management or research) 

and personal activities. Moreover, teachers may wish to perform their teaching activity 

distributed over both semesters, which is the usual case, or concentrated in one 

semester, for example to carry out an external research stage during the other semester. 

In any case, teachers’ teaching activity is measured through the TAP requirement, 
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which depends on the category (as detailed next) and some other management activities 

performed. There are six categories, representing teachers’ research, academic and 

management expertise: Full Professor, Reader, Lecturer, Contributor, Assistant and Part 

Time Lecturer. Apart from different TAP requirements, the main difference between 

them for the purpose of this paper is that the first five categories are full time teachers 

and represent the principal university staff. However, some unexpected events, such as a 

higher than expected amount of students enrolled, or some particularities in the courses, 

needing the expertise of somebody working in the industry, may require some Part 

Time Lecturers. These teachers are employed by the university for a short period and a 

specific activity. Therefore, the TAP requirement specified in their agreement must be 

satisfied to ± 5%. In exchange, full time teachers can be more under or overloaded 

(although respecting some reasonable limits) since their load can be easily balanced 

from one year to another. 

 

So far, the mandatory requirements of the problem have been presented. Additionally, 

some other considerations are included to better represent real assignment requirements. 

These considerations have been identified by collaborating with the manager of the 

DOE-ETSEIB-UPC, who is the person in charge of the teachers-courses assignment: 

 

1. To balance teachers’ load. Courses’ TAP demands and teachers’ TAP requirements 

do not necessarily coincide. Thus, when dealing with the teachers-courses 

assignment, some teachers can be under or overloaded. Varying the assignment, this 

load can be concentrated in a reduced group of teachers or can be shared among all 

of them. In the second case, teachers will globally be equally harmed or favored. 

Hence, the equilibrium for the load among teachers must be achieved. 

 

2. To satisfy teachers’ preferences for courses according to their category. As stated 

before, there are six categories of teachers. The higher the category, the higher the 

teacher’s teaching, research and management expertise, and so the priority when 

meeting his/her preferences for courses and sections is also higher. Therefore, 

satisfaction of teachers’ preferences for courses must be maximized, assuming a 

certain index representing the category. In this way, the academic quality of the 

department is expected to improve, since teachers will, generally, teach the courses 

they desire. 
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3. MILP model 

 

In this Section, the proposed MILP model is presented, organized into: data, which are 

the real-life parameters needed to solve the problem; variables, which are the aspects of 

solutions to be known; objective function, which contains the optimization criteria; and 

constraints, which are the real-life limitations that delimit solutions. 

 

3.1. Data 

 

T Number of teachers. 

C Number of courses. 

Scp Set of sections from each course c in semester p; c=1,…,C; p=1,2. 

Ctp TAP requirement of teacher t in semester p; t=1,…,T; p=1,2. If a 

teacher wants to perform his/her teaching activity in a specific semester, 

a value 0 can be assigned to the other semester. 

Dcsp TAP demand of section s from course c in semester p; c=1,…,C; s∈	Scp; 

p=1,2. 

MINt Minimum TAP percentage that teacher t has to perform; t=1,…,T. 

MAXt Maximum TAP percentage that teacher t has to perform; t=1,…,T. 

TStpdh ∈ {0,1} Teacher availability. 1 iff teacher t is available in time slot h from day d 

of semester p, 0 otherwise; t=1,…,T; p=1,2; d=1,…,5; h=1,…,26. 

CScspdh ∈ {0,1} Course scheduling. 1 iff section s from course c is realized in time slot h 

from day d of semester p, 0 otherwise; c=1,…,C; s∈ Sc; p=1,2; 

d=1,…,5; h=1,…,26. 

Ptcs Preference of teacher t for section s from course c; t=1,…,T; c=1,…,C; 

s∈	 Scp; p=1,2. A value of 0 indicates that the teacher t cannot be 

assigned to the section s from the course c. Besides, progressive 

increases in this parameter indicate higher preferences. 

Gt Category of teacher t; t=1,…,T. The higher this value, the higher the 

category of teacher t. 

αi Weighting parameter assigned to each component of the objective 

function; i=1,…,3 (as explained in Section 3.3). 
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3.2. Variables 

 

 Decision variables: 

tcspy  1 iff teacher t is assigned to section s from course c in semester p, 0 

otherwise; t=1,…,T; c=1,…,C; s∈	Scp; p=1,2 | Ptcs>0. 

tp
  TAP overload of teacher t in semester p; t=1,…,T; p=1,2. 

tp
  TAP underload of teacher t in semester p; t=1,…,T; p=1,2. 

 Other variables: 

  Maximum relative TAP under or overload for a teacher per semester. 

 

3.3. Objective function 
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 (1) 

 

The objective function includes the two optimization criteria explained in Section 2: 

balancing teachers’ load and maximizing teachers’ preferences. For the first criteria, 

usually the standard deviation is minimized (squared root of the mean squared deviation 

from required load). However, this is not a linear function, so an approximation is 

considered: to minimize (1) the mean relative deviation of teaching load from 

requirements (TAP under and overloads of all teachers in both semesters) and (2) the 

maximum relative deviation of teaching load from requirements (maximum TAP under 

or overload for a teacher per semester). For the second criteria, the assignment 

preference of teachers for courses is maximized, considering teachers’ categories. Note 

that in order to include the three criteria in the same objective function, their values are 

normalized. Also note that the weighting parameters (αi) are introduced in the objective 

function. This will be the focus of discussion in Section 4. 

 

 



9 
 

3.4. Constraints 
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 (10) 

 

Constraint (2) forces an adequate teacher-course assignment. In semesters when a 

course is taught, only one teacher can be assigned. Constraint (3) establishes the 

absolute TAP under (δ+
tp) or overload (δ+

tp) for each teacher in each semester. This is 

obtained by comparing the total TAP to be achieved with a specific assignment and the 

TAP requirement. Constraints (4) and (5) mean that the total TAP assigned to a teacher 

for a year must be between the preset values MINt and MAXt. Constraint (6) defines the 

maximum relative TAP under or overload performed by a teacher in a semester. 

Constraint (7) prevents teachers imparting more than one course simultaneously (during 

the same weekday time slots). Constraint (8) relates the scheduling of teachers and 

sections: a teacher can teach a section of a course if and only if s/he is available during 

the time slots in which the course is taught. Finally, constraint (9) means that Δ, δ+
tp and 

δ–
tp are non-negative variables; and (10) means that ytcsp is a binary variable. 
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4. Case study 

 

In this Section, the previously developed MILP model is used to solve the teachers-

courses assignment of the DOE-ETSEIB-UPC. For this purpose, first the characteristics 

of the department, used as input data for the model, are described (Section 4.1). Then, 

the results are discussed according to the calibration of the weighting parameters (αi) 

utilized in the objective function to assign more or less importance to the optimizing 

criteria (Sections 4.2 and 4.3). 

 

4.1. Department characteristics 

 

The DOE-ETSEIB-UPC is composed of 20 teachers who have to teach 24 courses 

organized into 68 sections and distributed over two semesters. The manager of the 

department is in charge of gathering all the information required; either in collaboration 

with the university administration, mainly for the characteristics of courses, and asking 

teachers, mainly for their timetables and preferences for courses. Next, the teachers’ 

details and course characteristics are described: 

 

 Teachers’ TAP requirements (Ctp). This value depends on the teacher’s category: 

Full Professors (48), Readers (72), Lecturers (54), Contributors (72), Assistants (9 

or 18) and Part Time Lecturers (9, 18, 27, 36, 45 or 54). From these values, a certain 

amount (that can vary from 0 to 18) is deducted for each teacher, according to the 

management activities performed. Additionally, all the teachers want to perform 

their teaching activity during the two semesters, except for one of them who prefers 

to concentrate the activity in the first one. 

 Courses’ TAP demands (Dcsp). In general terms, sections from courses can have one 

of the following TAP demand values: 4.5, 9, 13.5 and 18. Two (or more) sections 

from the same course can have the same or a different TAP demand, depending on 

the amount of students enrolled and the type of lessons given (theoretical, problems 

or laboratory). Additionally, in certain cases, the TAP demand can be increased or 

decreased to take into account some particularities of each course. 

 Minimum and maximum TAP percentage (MINt and MAXt). This value must be 

within ± 5% from the TAP requirement for Part Time Lecturers and within ± 50% 

for the remaining categories. 
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 Teacher availability (TStpdh). In general terms, teachers are available at any moment 

of the week, except for some occasional exceptions early in the morning or late in 

the afternoon, mainly due to personal incompatibilities. 

 Course scheduling (CScspdh). The timetable of each course basically depends on the 

TAP demand: for 4.5 TAP courses, 1 hour/week; for 9 TAP courses, 2 hours/week; 

for 13.5 TAP courses, 3 hours/week; and for 18 TAP courses, 4 hours/week. 

 Preference (Ptcs). A 0 is assigned to teachers who cannot teach a course; a 1 refers to 

teachers who could teach a course; and a 3 is for teachers who are particularly 

interested in a course. 

 Category (Gt). A value is assigned to each category: Full Professors (0.286), 

Readers (0.238), Lecturers (0.190), Contributors (0.143), Assistants (0.095) and Part 

Time Lecturers (0.048). These values were determined by the DOE-ETSEIB-UPC 

manager, after discussing with teachers of different categories of the department. 

 

With this information, the model can be solved and it is expected that the teachers-

courses assignment that best balances teachers’ load and satisfies their preferences will 

be obtained for the DOE-ETSEIB-UPC. However, depending on the weighting 

parameters (αi) from the objective function, the solution might logically vary. In fact, 

the calibration of the cost coefficients has been a widely discussed subject in literature 

[Daskalaki et al., 2004]. Therefore, results are discussed according to such parameters in 

the next two Sections: first α1 and α2 are calibrated, since they both refer to achieving a 

balanced load among teachers; and then their combination is calibrated regarding α3 

(teachers’ preferences). 

 

4.2. First calibration 

 

As stated previously, an adequate strategy for balancing teachers’ load consists in 

minimizing the standard deviation of the TAP assignment. However, this would not be a 

linear option, so an approximation is considered: to minimize the mean and the 

maximum relative deviations of teaching loads from requirements. Both components are 

respectively related to the weighting parameters α1 and α2. Therefore, the aim of the first 

calibration is to determine the values of α1 and α2 that minimize the global standard 

deviation. Thus, the calibration parameter λI is defined according to equation (11): 
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Table 1 shows the results of the model when varying the calibration parameter from 0.0 

to 1.0 with progressive 0.1 increases. For each solution the optimal value of the 

objective function (all the solutions are proven optimal solutions), the values of the 

three criteria from the objective function and the real standard deviation are shown. 

 

When increasing the calibration parameter λI the global tendency is that the mean 

relative deviation of teaching load from requirement diminishes, while the maximum 

relative deviation of teaching load from requirement rises. Additionally, the difference 

between the maximum and the minimum mean relative deviation (0.102) is lower than 

for the maximum relative deviation (0.752). Therefore the minimum standard deviation 

is attained for λI = 0.2; and this is the value chosen for the second calibration. It is worth 

to highlight that when λI goes from 0.4 to 0.5 and from 0.6 to 0.7, the opposite behavior 

as before can be observed. This is due to a non-linear relation between the mean relative 

and the maximum relative deviation of teaching load from requirements and the 

standard deviation. Consequently, each case study requires from a particular analysis in 

order to find the best combination of the weighting parameters α1 and α2. 

 

Table 1 – Results for the first calibration (α1 vs. α2) 

 

λI 

Mean relative deviation 
of teaching load from 

requirements 

Maximum relative deviation 
of teaching load from 

requirements 
Standard deviation 
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 
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1 0.0 0.180 0.248 6.761 
2 0.1 0.137 0.250 6.404 
3 0.2 0.128 0.257 6.361 
4 0.3 0.127 0.257 6.623 
5 0.4 0.119 0.274 6.654 
6 0.5 0.127 0.257 6.616 
7 0.6 0.100 0.306 6.972 
8 0.7 0.117 0.276 6.877 
9 0.8 0.084 0.356 7.118 

10 0.9 0.083 0.364 7.155 
11 1.0 0.078 1.000 10.415 
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Fig. 1 shows the TAP requirement compared to the real TAP performed by each teacher 

for the selected solution (λI = 0.2). The global TAP requirement (of teachers) is slightly 

higher than the global TAP demand (of courses), so most teachers perform less teaching 

activity than required. In particular, Teachers T1 to T11 are not Part Time Lecturers 

and, except for T11 (which is a particular case with a very low requirement), their 

relative deviation varies between 11.8% and 25.5%. Although there are some 

differences between their loads, the relative deviation tends to be uniform and does not 

significantly depend on the TAP requirement of teachers. For Part Time Lecturers (T12 

to T20), the limit of a relative deviation less than 5% marks the differences observed 

between teachers. In any case, this whole teachers-courses assignment contrasts with 

other solutions (as for λI = 1.0), where the underload is concentrated in a reduced set of 

teachers, the rest having a relative deviation close to 0. 

 

 
Fig. 1 – TAP requirement and performed and relative deviation 

from required load for each teacher (solution using λI = 0.2) 

 

4.3. Second calibration 

 

Once the weighting parameters α1 and α2 have been calibrated, a second calibration is 

carried out with the aim of matching the relative importance amongst the standard 

deviation (α1 and α2) and teachers’ preferences (α3). In this sense, the solution that best 

achieves equilibrium for the load among teachers while maximizing teachers’ 

satisfaction is expected to be obtained. For this purpose the calibration parameter λII is 

defined according to equation (12): 
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where λI = 0.2, as determined in Section 4.2. Fig. 2 shows the obtained pareto-optimal 

solutions when comparing the standard deviation in teachers’ load (horizontal axis) and 

teachers’ preferences (vertical axis), depending on the calibration of parameter λII (the 

different blue diamonds). As observed, for low λII values, solutions tend mainly to meet 

teachers’ preferences but at the expense of overloading teachers with the globally higher 

preferences while underloading teachers with the globally lower preferences. For high 

λII values, solutions tend to achieve a greater equilibrium between teachers’ load, 

regardless of the preference for the assignment. For intermediate λII values, solutions 

achieve an adequate compromise between balancing teachers’ loads and satisfying their 

preferences. 

 

 
Fig. 2 – Standard deviation between Teachers’ load vs. Teachers’ preferences 
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All the options belong to the set of pareto-optimal solutions, i.e. efficient teachers-

courses assignments that minimize the standard deviation between teachers’ loads, 

while maximizing teachers’ preferences. Therefore, each option can be chosen to be 

implemented in the case study of the DOE-ETSEIB-UPC. The manager of the 

department will choose the option according to what s/he considers to be more 

appropriate. In this way the model can be adapted to different situations, not only 

depending on teachers and courses, but also on the final decision-maker. 

 

5. Computational experiment 

 

As stated in Section 1, one of the major limitations of the use of MILP models for the 

University Timetabling Problem, and particularly the Teaching Assignment Problem, is 

the difficulty of finding a solution. For that reason several algorithms, heuristics and 

metaheuristics, have usually been developed by researchers to solve their specific 

versions of the problem. However, integer programming is gaining acceptance as a tool 

to provide optimal or near-optimal solutions in progressively shorter running times 

[Atamtürk & Savelsbergh, 2005]. Therefore, in this Section a computational experiment 

is carried out in order to analyze the performance of the MILP model developed in 

Section 3. For this purpose several instances are randomly generated, based on the 

characteristics of the DOE-ETSEIB-UPC described in detail in Section 4. The data used 

to generate the instances is described next: 

 

 Number of teachers (T): 10, 20, 30, 40, 50. 

 Number of courses (C): A reasonable number of courses is considered, depending 

on the number of teachers. In particular the double, triple and quadruple ratio of 

courses to teachers are studied. 

 Set of sections (Scp): Considering that this is a computational experiment to analyze 

the performance of the model, and for the sake of clarity, a single section is 

considered for each course. 

 Instances: 50. 

 

 



16 
 

No more than 50 teachers (and consequently 200 courses) instances are generated since 

these are sufficient to represent the kind of departments that could use the proposed 

model. As a result of combining the 5 teacher scenarios, the 3 course scenarios and the 

50 instances for each combination, 750 instances are solved. The rest of the data is also 

generated randomly but ensuring that instances are solvable, since no particularized 

study can be carried out for each instance. In this sense, a conservative philosophy is 

respected, always based on the characteristics of the DOE-ETSEIB-UPC, giving a 

realistic approach to each instance. The data used is listed next: 

 

 Teachers TAP requirement (Ctp). 

o Full Professors (48 minus a random value between 0 and 18). 

o Readers (72 minus a random value between 0 and 18). 

o Lecturers (54 minus a random value between 0 and 18). 

o Contributors (72 minus a random value between 0 and 18). 

o Assistants (9 or 18 randomly). 

o Part Time Lecturers (9 times a random value between 1 and 6). 

Additionally, to better represent real departments, these values are proportionally 

adapted, ensuring that the sum of TAP requirements is close to the sum of TAP 

demands, with a margin of 5%. 

 Courses TAP demand (Dcsp). Four types of courses are considered (in similar 

amounts) with the next TAP demands: 4.5, 9, 13.5 and 18. 

 Minimum and maximum TAP percentage (MINt and MAXt). Within ± 5% from the 

TAP requirement for Part Time Lecturers and ± 50% for the other categories. 

 Teacher availability (TStpdh). All the teachers are available at any moment, to ensure 

there are no incompatibilities due to a lack of teachers for a specific time slot. 

 Course scheduling (CScspdh). A different schedule type for each type of course: 

o For 4.5 TAP courses, 2 consecutive time slots per day. 

o For 9 TAP courses, 4 consecutive time slots per day. 

o For 13.5 TAP courses, two groups of 3 consecutive time slots over different 

days. 

o For 18 TAP courses, two groups of 4 consecutive time slots over different days. 

 Preference (Ptcs). A value of 1 is established for each teacher-course pairing to 

ensure the feasibility of solutions. 
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 Category (Gt). The category of each teacher is randomly chosen, approximately 

respecting real proportions, and the values are maintained from the case study: 

o 10% of Full Professors, Gt value 0.286. 

o 30% of Readers, Gt value 0.238. 

o 10% of Lecturers, Gt value 0.190. 

o 10% of Contributors, Gt value 0.143. 

o 15% of Assistants, Gt value 0.095. 

o 25% of Part Time Lecturers, Gt value 0.048. 

 Weighting parameters of the objective function (α1, α2, α3): a random value is 

defined for each one, but ensuring that the sum is 1. Note that the aim is not to study 

the αi values, but to ensure that the model can be solved for any combination of αi. 

 

To carry out the computational experiment, a maximum calculation time is set to 3600 

seconds for each instance. The MILP model is solved using the IBM ILOG CPLEX 

12.2 Optimizer, on a PC 3.16 GHz Intel Core 2 Duo E8500 with 3.46 GB of RAM. 

Figures 3, 4 and 5 show the results for the computational experiment. In the vertical 

axis: the average percentage of proven optimal solutions, the average calculation time 

and the average GAP (value given by the ILOG CPLEX software and representing the 

difference between the obtained solution and the bound) for solutions whose optimality 

has not been demonstrated (called “feasible solutions”) are respectively illustrated. The 

number of teachers is shown in the horizontal axis, while the different lines represent 

different ratios between courses and teachers. 

 

 
Fig. 3 – Proven Optimal Solutions depending on the number of teachers and courses 
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Fig. 4 – Average Calculation Time depending on the number of teachers and courses 

 

 
Fig. 5 – Average GAP depending on the number of teachers and courses 

 

Results show the performance of the model when varying the number of teachers and 

the ratio between courses and teachers. In short, 179 of the 750 instances solved are 

proven optimal solutions (23.9%); the global average calculation time is 2641.8 

seconds; and the global average GAP for feasible solutions is 16.4%. Moreover, apart 

from some occasional exceptions, the higher the number of teachers and/or the ratio 

between teachers and courses the lower the percentage of proven optimal solutions, 

while the average calculation time and the average GAP is higher. 
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When examining solutions in-depth, some characteristics are detected. For the ratios 2 

and 3 the average percentage of proven optimal solutions (Fig. 3) decreases from 100% 

for 10 teachers to around 10% for 50 teachers. In contrast, for the ratio 4 this percentage 

decreases from 53% to 0%. Also, when increasing the number of teachers from 10 to 

50, the average calculation time (Fig. 4) rises from some tenths of second (for ratio 2), 

around 400 seconds (for ratio 3) and around 1900 seconds (for ratio 3), to more than 

3200 seconds. This value is calculated as the mean between the exact calculation time in 

the case of proven optimal solutions and the maximum of 3600 seconds for feasible 

solutions. In these cases, the average GAP (Fig. 5) does not exceed 20%, except for the 

case of 50 teachers. 

 

The above-mentioned results prove that the developed MILP model obtains very good 

solutions for departments of up to 10 teachers and from 20 to 40 courses. In the cases of 

20, 30 and 40 teachers (and consequently from 40 to 120 courses) acceptable solutions 

are obtained in a maximum calculation time of 3600 seconds. Finally, in the case of 50 

teachers, worse results are obtained, with a very low percentage of proven optimal 

solutions and an average GAP exceeding 20%. 

 

Nevertheless, it is worth emphasizing that the instances used for this computational 

experiment have been generated following a conservative philosophy; i.e. to ensure that 

the model can always obtain a feasible solution. In contrast, in a real situation a 

particularized analysis of the input data would be carried out (instead of standardized 

decisions) and more accurate results would be obtained. For example, teacher 

availability (TStpdh) and teacher preferences for courses (Ptcs) have been broadly defined, 

while in a real case more enclosed values would be considered. 

 

Additionally, in the case study presented in Section 4, 20 teachers and 24 courses (68 

sections) were studied. Assuming this is one of the largest departments in the university, 

the range 20-40 teachers (which obtains acceptable solutions) broadly covers the target 

departments that could use the model. In fact, for larger departments some subdivisions 

generally exist and can be studied separately. In the case study from Section 4, apart 

from the group of Logistics (studied in this paper) there are the groups of Economics 

and Marketing. Teachers from the same group have some flexibility (knowledge and 

expertise) to teach the corresponding courses, but this is not the case between groups. 
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In any case, the developed MILP model aims to replace the traditional manual process 

of teacher assignment, which is a complex task usually carried out by the manager of 

the department over several days in a kind of trial-and-error way and which requires a 

deep knowledge of the problem. Therefore, the maximum calculation time for a 

particular case study could be considerably extended and, together with a particularized 

analysis of the input data, better solutions would surely be obtained. 

 

 

6. Conclusions 

 

This paper deals with the Teacher Assignment Problem, which involves assigning a set 

of teachers to a set of courses with predefined schedules. For this purpose a MILP 

model is developed that allows the balancing of the teachers’ load and the maximizing 

of their preferences for courses, while considering the limitations of the problem itself: 

teachers’ TAP requirements, category and schedule as well as courses’ TAP demands 

and timetables. Moreover, some weighting parameters allow the importance of the 

optimization criteria to be adjusted in order to adapt the results to different situations. 

 

To validate the model two computational experiments are carried out. First, the 

particular case of the DOE-ETSEIB-UPC is solved. For this purpose a two-step analysis 

is performed. On the one hand, the balance between teachers’ load is studied, calibrating 

the mean and the maximum relative deviations of teaching loads from requirements that 

minimize the standard deviation. On the other hand, the balance between teachers’ load 

and the maximization of teachers’ preferences are calibrated. In any case, results are 

discussed according to the weighting parameters, proving that the model can be shaped 

to the specific problem, thus being useful for other departments with similar requests. 

Secondly, 750 instances based on real patterns are randomly generated but modifying 

the number of teachers and courses. Results show that the model can be solved for 

situations of up to 40 teachers, obtaining acceptable solutions in a reduced calculation 

time. 
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