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Abstract
This work proposes a systematic procedure to report the differences between 
heart rate variability time series obtained from alternative measurements 
reporting the spread and mean of the differences as well as the agreement 
between measuring procedures and quantifying how stationary, random and 
normal the differences between alternative measurements are. A description 
of the complete automatic procedure to obtain a differences time series (DTS) 
from two alternative methods, a proposal of a battery of statistical tests, and 
a set of statistical indicators to better describe the differences in RR interval 
estimation are also provided. Results show that the spread and agreement 
depend on the choice of alternative measurements and that the DTS cannot 
be considered generally as a white or as a normally distributed process. 
Nevertheless, in controlled measurements the DTS can be considered as a 
stationary process.

Keywords: heart rate variability, surrogate measurements, agreement, 
stationarity, normal distribution, randomness
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1. Introduction

Heart rate variability (HRV) has become a popular research tool because it reflects changes in 
the cardiac autonomic regulation (Billman et al 2015). Hence, HRV is considered as a window 
to the autonomic nervous system (ANS). There are several approaches to HRV analysis but 
most start with the estimation of the RR time series that is the series obtained from the succes-
sive time intervals between consecutive QRS complexes using a properly acquired electrocar-
diogram (ECG) (Task Force 1996) or some sort of surrogate fiducial point such as the distal 
pulse wave (Lu et al 2008) or the vibrocardiogram (Ramos-Castro et al 2012).

The advent of smartphones, smartwatches and wearable sensors has created a demand for 
biomedical measurement solutions that ideally must be non-obtrusive, robust to movement 
and accurate enough (Milošević et al 2011). Such measurement methods often are a surrogate 
measure or a poor-quality estimate of the ECG so, necessarily, there are differences between 
the time series obtained using the ECG or the new measurement method. The problem is that 
there are no guidelines or consensus on how to document or quantify the differences between 
these time series. This problem becomes of paramount importance taking into account that 
the number of approaches to quantify HRV grows every year as well as the demands of high 
precision and resolution of the time series for certain methods does too (Garcia-Gonzalez et al 
2004, Garcia-Gonzalez et al 2009). Moreover, the sensitivity of most methods to differences 
in the estimation of the time series depends on the dynamic changes of these differences and 
furthermore, some sources of errors between estimated HRV time series cannot be modelled 
as white normal processes. As an example, the error in a RR time series obtained from an ECG 
sampled at a sampling frequency fs using a perfect QRS detector can be modelled as a random 
process with power spectrum density (Merri et al 1990)

S f
f

f f
1

6·
· 1 cos 2· ·      0.5ee

s
2

( ) [ ( )] ⩽π= − (1)

where f is in cycles/beat as defined in (Lisenby and Richardson 1977). This sampling error has 
a higher spectral density on higher frequencies and accordingly has a greater effect on indexes 
that reflect fast changes in HRV than in indexes that reflect slow changes.

Currently there are two ways (that in some studies intersect) to document differences in 
the estimation of HRV parameters using different methods to obtain the RR time series. The 
first approach measures the difference for each obtained heart period and summarizes it by its 
mean, standard deviation and/or level of agreement (Parrado et al 2010, Gamelin et al 2006). 
This approach does not provide useful information as how the differences are distributed or 
if they can be considered as white noise so the effect on different HRV indexes is difficult 
to judge. Nevertheless, a more in depth analysis of differences between two RR time series 
measured with two different methods can provide useful information on validating new HRV 
measurement methods. The second approach quantifies the HRV using certain (very often 
standardized) indexes and compares the differences in the indexes (once again, mean, standard 
deviation and/or level of agreement) when using the two measurement methods (Nunan et al 
2008, Gil et al 2010) This approach does not provide information on the effect of choosing 
one method instead of the other for any not analyzed indexes so it is difficult to extrapolate the 
results to novel indexes. So, more detailed information to document the differences between 
RR time series obtained simultaneously using different measurement methods is needed. This 
information can be very useful not only to validate alternative methods but also to simulate the 
effect of these differences when proposing novel HRV indexes.

The aim of this work is to propose a methodology to report not only the spread and mean of 
the differences in RR time series when using different heartbeat detection methods but if these 
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differences can be considered stationary, white and/or normal random processes. The paper 
focuses on the validation of alternative or surrogate RR time series measurement procedures 
when a trusted measurement procedure is available.

2. Materials and methods

2.1. Proposal of a methodology for differences documentation

We will say that two HRV measurement methods are interchangeable when the bias and stan-
dard deviation of the differences are low enough to not affect the interpretation of results. 
Moreover, it is often desirable that the differences can be reasonably modelled as a stationary 
white normal process to simplify the analysis of discrepancies between measurement meth-
ods. Nevertheless, any additional knowledge on the properties of these differences may add 
to a better understanding of their effect on any HRV index. With this rationale in mind, we 
propose a set of procedures and tests for differences among measurement methods character-
ization and documentation.

Let us suppose two different methods (a and b) are employed to measure the RR time series 
for the same individual at approximately the same time. We define as RRa(n) the RR time series 
obtained by method a (where n ranges from 1 to N ) while RRb(m) is the corresponding time 
series using a different method b (m ranges from 1 to M ). We deliberately express each series 
indicating the beats n and m because both time series may not start and/or not end at the same 
time so the number of beats in each time series may not be equal. Figure 1 shows our recom-
mended proposed procedure to document the measurable differences between both time series. 
This systematic procedure can be applied to any experiment intended to validate new different 
RR time series measurement methods when a trusted one is also simultaneously employed.

Because misdetections on heart period may happen with any of the measurement methods, 
the first step of the procedure is to recognize outliers in both RR time series and correct them. 
The correction must be done in a way that after proper synchronization of time series and 
removal of periods of no simultaneous RR detections (it may happen that a method starts prior 
or ends after the other) there would be a consecutive correspondence of estimated RR time 
intervals so the differences can be properly computed by simply applying:

i RRc n i RRc m i i IDTS        1,a s b s( ) ( ) ( ) [ ]= + − + ∀ ∈ (2)

In (2), ns and ms are constants determined by the synchronization procedure and the dif-
ferences time series (DTS) is evaluated for I consecutive RR intervals. Figure 2 depicts the 
need for the correction and synchronization steps. Because the correction of artifacts in each 
RR time series is not always perfect (this is true for ectopic beats and missing beats), the 
differences involving RR intervals may be very high. In order to avoid this, the next step is 
the correction of outliers in the DTS. Once an acceptable DTS is available, its characteriza-
tion starts. The stationarity tests aim to ascertain if the DTS is stable, at least, in mean and 
variance so the bias and dispersion have any meaning. The randomness tests try to measure 
the degree of whiteness of the DTS. The normality test is necessary when in further studies 
confidence intervals of the differences must be estimated from the standard deviation or vice 
versa. Preferably, a sample distribution for the DTS should be provided. Finally, the DTS 
quantification, as stated in the introduction, is a very often reported measure of differences 
in HRV applications and consists in the quantification of the bias and dispersion of the DTS.  
In some studies, this quantification reports levels of agreement or confidence intervals.

There are several tests and procedures to complete all the steps of figure 1. In the next sec-
tion we recommend some of them and describe thoroughly our employed algorithm for DTS 
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documentation. Nevertheless, we do not intend to claim this procedure as the optimal approach 
but to straighten the importance to better characterize the differences among alternative meth-
ods and show how the results of the tests can be interpreted in some actual recordings.

2.2. A suggestion of tests and procedures

For outlier detection in both time series and the DTS we have employed a slight modification 
of the Grubbs test (Grubbs 1969) To decide if an outlier is present in the time series x(i), the 
modified Z-score time series (Iglewicz and Hoaglin 1993) is computed as:

Figure 1. Recommended procedure to obtain and document the differences in RR time 
series obtained from alternative measurement methods.
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and its maximum is found (Gmax at sample imax). It is decided that the sample at imax is an 
outlier if:

G i G
N

N

t

N t

1
·

2
max max

2

2
( ) = >

−
− +

 (4)

where N is the number of samples in the time series and t is the critical value of the t Student 
distribution with N-2 degrees of freedom and a risk α/(2·N ). In this work we have considered 
α  =  0.001 so the probability that a normal sample is treated as an outlier is kept very low. This 
procedure is repeated by eliminating the outlier from the time series (the new time series has 
N-1 samples and do not contains the sample imax) until the condition in (4) does not hold. The 
chosen quality statistic of the time series in figure 1 is the percentage of outliers found by this 
described test.

Figure 2. Example of the need of outlier correction and synchronization. The upper 
panel on the left (a) shows two unsynchronized time series where there is a measurement 
method (dotted line) that has two outliers. The upper panel onthe right (b) shows the 
two unsynchronized time series once the outliers have been detected and corrected. 
The lower panel on the left (c) shows the two synchronized time series while the lower 
panel on the right (d) shows the difference time series between the two synchronized 
time series. Note that the scales of figures (a) and (d) are, for the sake of visualization, 
different from those of figures (b) and (c).
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After detection and for RR time series, the outliers were classified as false positives (at least 
two consecutive RR intervals with a value significantly lower than the median of the previous 
10 RR intervals), false negatives (at least one consecutive RR interval with a value significantly 
higher than the median of the previous 10 RR intervals) or ectopic beats (two consecutive RR 
intervals, one with a significantly lower value and the other with a significantly higher value 
than the median of the previous 10 RR intervals). For a false positive, as many consecutive 
RR intervals were added as needed to obtain a corrected RR beat with a value near the mean 
of the previous ten RR intervals. A false negative was split in as many RR intervals with equal 
value as needed to be near to the mean of the previous ten RR intervals. Ectopic beats were 
substituted with two equal RR intervals corresponding to the mean of the two RR intervals 
involved in the artifact.

After artifact correction, the two time series (namely, RRca and RRcb) look as in figure 2(b) 
To synchronize them and obtain two aligned time series with the same number of samples as 
in figure 2(c) the procedure delays or advances a time series respect to the other a finite num-
ber of samples until the Fisher intraclass correlation coefficient (ICC) is maximized (Fisher 
1934) The ICC is estimated as:

n m
I s

RRc n n RR RRc m n RRICC ,
1

·
· ·
n

I

s s 2
1

a s b s( ) ( ( ) ) ( ( ) )∑= + − + −
=

 (5)
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RRc n n RRc m n
1

2·
·
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=
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⎧
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⎩

⎫
⎬
⎭∑ ∑= + − + + −

= =
 (7)

Finally, if La is the number of samples in RRca and Lb is the number of samples in RRcb 
then I is determined as:

I L n L mmin ,a s b s{ }= − − (8)

In this work and because the RR time series to compare are measured nearly simultane-
ously, we have searched the maximum of ICC by advancing or delaying a RR time series 
respect to the other by no more than 10 beats.

Time series are considered as synchronized when ICC is maximum. The agreement statis-
tic on figure 1 is, precisely, the maximum ICC that corresponds to use the delay parameters 
nsmax and msmax. On the other hand, the DTS is finally obtained as:

i RRc n i RRc m iDTS a s b smax max( ) ( ) ( )= + − + (9)

Because outlier correction on the RR time series can generate outliers in the DTS, the 
previously described procedure for the identification of outliers has been employed to label 
artifacts in this time series. The chosen DTS quality statistic on figure 1 is, as for the original 
time series, the ratio between the number of detected outliers and the number of available 
DTS samples. After outlier identification and depending on the next steps of analysis, two 
corrected DTS have been derived: If the characterization tests and statistics does not depend 
on the ordering of the time series (i.e. histogram based tests, standard deviation, etc) a time 
series is created in which all segments without outliers are merged. When the dynamics of the 
time series is of interest (as is the case of tests that look for residual correlation), any sample 
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labelled as an outlier is set to zero. From now on, we will name DTSm(i) the DTS rejecting 
outliers and merging the other data and DTSz(i) the DTS where the outliers have been replaced 
by zeros.

The differences quantification and distribution testing have been performed using the 
DTSm(i) time series. Bias and dispersion have been estimated using the arithmetic mean 
(DTSm) and the sample standard deviation (sDTSm) while the sample confidence interval has 
been estimated using the difference between the 97.5% and 2.5% percentiles (UDTSm). Normal 
distribution testing has been assessed using the Anderson-Darling goodness-of-fit hypothesis 
test (Anderson and Darling 1954) and the reported normality test statistic of figure 1 has been 
their proposed statistic:

W T
T

j u u
1

· 2· 1 · log log 1T
j

T

j T j
2

1
1( ) [ ( ) ( )]∑= − − − + −

=
− + (10)

where T is the number of samples in the error time series (lower than I if there are outliers 
in the DTS of equation (9)) and uj is the value of the cumulative distribution function of the 
normal distribution evaluated at the j sample of the standardized and sorted error time series. 
The standardization procedure consists of removing the mean and normalizing the resulting 
values by the sample standard deviation of the time series. The higher the statistic, the lower 
the probability that the time series can be considered as normally distributed. The asymptotic 
distribution of WT

2  is empirical and the critical values to accept or reject the null hypothesis of 
samples normally distributed can be found in statistical packages, tables or estimated using 
Monte Carlo simulations.

Moreover, to reinforce the agreement (or disagreement) of the normal hypothesis, the sam-
ple coverage factor has been computed as:

k
U

s2·
e

e

m

m

= (11)

If the distribution is approximately normal, this coverage factor should be (in average) 
around 1.96

To quantify the stationarity of the mean (first order moment) we have used the Kwiatkowski, 
Phillips, Schmidt and Shin (KPSS) test (Kwiatkowski et al 1992) with the null hypothesis that 
a time series is stationary around a constant value against the alternative that it is a nonstation-
ary unit-root process. The reported first moment stationarity test statistic on figure 1 is the 
KPSS statistic that is computed as:
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and I is the number of error samples in the DTSz(i) time series. The greater the KPSS statistic, 
the higher the nonstationarity of the mean is. The asymptotic distribution has a quite compli-
cated formulation and it is related with the integration of a mix of Brownian motions. Generally 
the critical values are obtained by simulation or are included in statistical software packages.

To assess the stationarity of the variance (second order moment) we have used the test sug-
gested by (Inclan and Tiao 1994) that is based on the M statistic estimated as:
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where the distance time series is obtained from the DTSz(i) time series as:
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M is the second moment stationarity test statistic on figure 1 and the greater the M statistic, 
the higher the nonstationarity of the variance is. The asymptotic distribution of M is empirical 
and the critical values to accept or reject the null hypothesis can be found in statistical pack-
ages, tables or estimated using Monte Carlo simulations.

The whiteness of the time series has been assessed using two statistics from two comple-
mentary tests: the normalized Q statistic from the Ljung–Box Q-test (Ljung and Box 1978) 
has been chosen as the residual autocorrelation statistic of figure 1 while the U statistic of the 
nonparametric Wald–Wolfowitz runs test for randomness on the sign of the DTS (with the 
residual mean previously removed) (Wald and Wolfowitz 1940) has been chosen as the statis-
tic for the runs test in figure 1.

The Q statistic of the Ljung–Box test is estimated as:
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is the estimation of the autocorrelation of the DTS at lag k and h is the number of analyzed 
lags that are chosen, as suggested by (Tsay 2005) as:

h Iround ln( ( ))= (19)

Finally, because Q asymptotically behaves as a χ2 random variable with h degrees of free-
dom and in order to provide a randomness indicator with no dependence on the number of 
samples of the time series, we report the normalized Q statistic defined as:
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Q
Q

h
n = (20)

To compute the U statistic of the Wald–Wolfowitz runs test, first the sign time series is 
obtained as:
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Next, the number of runs (R) is computed as the number of sign changes in the time series plus 
one. Moreover, the number of positive (np) and negative (nn) samples in sez(i) are counted.

If the time series was a random white process, the mean number of runs would be:

R
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while its standard deviation would be:
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Finally a continuity correction (c) that depends on R and the expected number of runs for a 
random white process is applied to obtain the U statistic as

U
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The runs test statistic asymptotically behaves as a standardized normal distribution so the 
critical values can be found elsewhere. Table 1 summarizes the proposed tests and statistics as 
well as their intended use.

2.3. Assessing the differences in estimating actual RR time series

In order to show the potentiality of the previously described battery of tests, we have employed 
three different databases: the first one (ECG database) consists of two high quality ECG chan-
nels simultaneously sampled, the second database (RR database) consists on RR time series 
recorded simultaneously by two different devices and the last one (PP database) has a high 
quality ECG signal and a finger photoplethysmography signal simultaneously sampled.

The ECG database has the purpose to assess how big the differences in RR time series 
estimation are when choosing a certain ECG lead instead of another. The database contains 
measurements from 20 young healthy subjects. Data were acquired using a Biopac MP36 
data acquisition system (Santa Barbara, CA, USA). Channels 1 and 2 of the system were 
devoted to measure conventional ECG with a bandwidth from 0.05 Hz to 150 Hz while chan-
nel 3 was employed to measure the respiratory signal obtained from a thoracic piezoresistive 
band (SS5LB sensor by Biopac, Santa Barbara, CA, USA) with a bandwidth from 0.05 Hz 
to 10 Hz. Channel 1 measured the ECG standard lead I while channel 2 measured the ECG 
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standard lead II. For the ECG measurement monitoring electrodes with foam tape and adhe-
sive gel (3M Red Dot 2560) were employed. Each channel was sampled at 5 kHz. During 
the measurement, the subjects were asked to be very still in supine position on a comfortable 
conventional single bed and awake. After attachment of sensors, we recorded a total of 60 min. 
From minute 5 to minute 55, the subjects were listening to a playlist of classical music. For 
analysis purposes, the 60 min measurement was segmented in 12 recordings of 5 min. For each 
of these recordings, the QRS complexes were detected for both leads. A first rough fiducial 
point was obtained using the Pan-Tompkins QRS detector (Pan and Tompkins 1985) but was 
further refined by maximizing the correlation between any detected QRS complex and the 
first detected QRS complex using templates of 200 ms duration centred on the rough fiducial 
point. After this detection and for each recording, two RR time series were obtained comput-
ing the successive time differences between consecutive R-wave fiducial points of each lead. 
The raw ECG among other signals can be downloaded from www.physionet.org/physiobank/
database/cebsdb/ (Garcia-Gonzalez et al 2013a, Garcia-Gonzalez et al 2013b, Goldberger  
et al 2000). For each five minute epoch and each subject, 12 indicators were computed from 
the two RR and DTS after synchronization (DTS was defined as the difference of the RR from 
the ECG standard lead I minus the RR from the ECG standard lead II). The indicators were 
the percentage of outliers in the RR time series obtained from the standard lead I using the 
Grubbs test and α  =  0.001 (%oa), the same percentage for the RR time series obtained from 
the standard lead II (%ob), the percentage of outliers using the Grubbs test and α  =  0.001 for 
the DTS once they have been synchronized (%oDTS), the ICC of the synchronized time series 
(ICC), the mean of the DTS (MDTS) expressed in milliseconds, the standard deviation of the 
DTS (SDDTS) also expressed in milliseconds, the sample coverage factor of the DTS (k), the 
Anderson–Darling statistic for normal distribution testing (WT

2), the stationarity of the mean 
test statistic (KPSS), the stationarity of the variance test statistic (M), the normalized residual 
autocorrelation statistic (Qn) and the nonparametric Wald–Wolfowitz runs test for random-
ness statistic (U). The mean, median, standard deviation and 5% and 95% percentiles of each 

Table 1. A summary of the proposed tests and statistics and their correspondence with 
the procedure described in figure 1.

Test/procedure
Involved 
equations Statistic Use

Repeated modified Grubbs 
test

(3) and (4) %oa, %ob, 
%oerr

Quality statistic for  
method a, b and error

Fisher intraclass correlation 
coefficient

(5)–(7) ICC Time series  
synchronization
Agreement statistic

Anderson-darling goodness- 
of-fit hypothesis test

(10) WT
2 Normality test statistic

Sample coverage factor (11) k Sample level of  
agreement estimation

Kwiatkowski, Phillips, 
Schmidt and Shin (KPSS) 
test

(12)–(14) KPSS First moment stationarity 
test statistic

Inclan and Tiao  
heteroscedasticity test

(15) and (16) M Second moment  
stationarity test statistic

Ljung-Box test of residual 
autocorrelation

(17)–(20) Qn Residual autocorrelation 
statistic

Wald–Wolfowitz runs test (21)–(25) U Runs test statistic
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indicator have been estimated and the raw values of WT
2 , KPSS, M, Qn and U have been com-

pared to critical values. Moreover, the Friedman repeated measures analysis of variance on 
ranks has been used to ascertain if there are significant differences in any indicator associated 
with the subject under measurement or the time epoch. The whole processing procedure and 
statistical analyses (for this and the other databases) have been performed using MATLAB® 
and its statistical toolbox.

Table 2 shows the critical values of WT
2 , KPSS, M, Qn and U when analyzing time series 

with N  =  300 samples (around the number of beats analyzed in a 5 min epoch) as well as the 
asymptotic value (N  →  ∞) for p  <  0.05 and p  <  0.001. Note that except for Qn, the depend-
ence of the critical value with the number of samples is negligible. The critical values for WT

2  
were obtained using the statistical toolbox of MATLAB®. The critical values for the KPSS 
in the statistical toolbox are provided only for probabilities between 0.01 and 0.10 so two 
Monte Carlo simulations with random normal noise, the first with 300 samples and 107 reali-
zations and the second with 100 000 samples (assumed as a high number of samples enough 
to characterize the asymptotic value) and 105 iterations were performed. The critical values of 
KPSS were estimated by computing the percentiles 95% ( p  =  0.05) and 99.9% ( p  =  0.001). 
Because M is not implemented in the statistical toolbox, the critical values were obtained 
using the same procedures as for the KPSS statistic except for the asymptotic valued for 
p  =  0.05 that was obtained directly from (Inclan and Tiao 1994). The critical values for Qn 
and for 300 samples were obtained by dividing the critical value reported by the statistical 
toolbox by 6 (the rounding of the natural logarithm of 300). The asymptotic critical values 
were obtained by extrapolating towards infinity the curve of the critical value reported by the 
statistical toolbox divided by the rounding of the natural logarithm of the number of samples. 
Finally, the critical values for the U statistic were obtained using the critical values of the t 
Student distribution as provided by the statistical toolbox. Because the critical values experi-
ence little change when the number of samples is high enough (are quite similar with 150 or 
450 samples that are a minimum and maximum number of heartbeats in 5 min), all the com-
puted statistics have been compared with the critical values for N  =  300. The critical value 
with most variability is Qn that changes from 2.21 for 150 samples to 2.10 for 450 samples.

The RR database (Parrado et al 2010) measures a sample of 90 healthy subjects. RR inter-
vals were recorded simultaneously with a Polar Heart Rate Monitor (Polar S810) with a 
resolution of 1 ms, and the Omegawave Sport Technology System (Eugene, OR) with the 
same resolution. Subjects rested comfortably and adequately dressed during the recording in 
a supine position in a quiet room maintained at the temperature of 19–23 °C. After 3 min of 
rest lying down, subjects were asked to remain supine quietly during 10 min without speaking 
or making any movements. HRV data was registered continuously for 5 min of free breath-
ing rhythm and 5 min of paced breathing at the frequency of 0.20 Hz (12 breaths/min) using 

Table 2. Critical values for the different evaluated statistics (both asymptotic and for 
300 samples). If the estimated statistic is higher than the reported critical value then the 
null hypothesis can be rejected with risk p.

N p WT
2 KPSS M Qn U

300 <0.05 0.750 0.454 1.314 2.099 1.968

→∞ <0.05 0.752 0.462 1.358 ≈1.600 1.960
300 <0.001 1.438 1.053 1.899 3.743 3.323

→∞ <0.001 1.441 1.170 1.951 ≈2.400 3.291
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the two systems. For each recording, the same 12 indicators as in the ECG database were 
obtained. The DTS was defined after synchronization as the difference of the RR time series 
obtained from the Omegawave system minus the RR time series obtained from the Polar sys-
tem. The mean, median, standard deviation and 5% and 95% percentiles of each indicator 
have been estimated and the raw values of WT

2 , KPSS, M, Qn and U have been compared to 
critical values. Moreover, a Friedman repeated measures analysis of variance on ranks has 
been used to assess if there are significant differences associated to the subject under measure-
ment while a Wilcoxon signed rank test has been used to detect if there are changes associated 
to the breathing pattern.

The PP database is quite similar to the ECG database except that it also acquires a chan-
nel of finger pulse photoplethismography (PPG). The database measured 22 healthy subjects 
acquiring the signal at 5 kHz during 60 min that were divided in 12 consecutive epochs each 
with duration of 5 min. Data were acquired using a Biopac MP36 data acquisition system 
(Santa Barbara, CA, USA). During the measurement, the subjects lay in a bed while listening 
to the same playlist of pop-rock music. QRS complexes were obtained from the standard II 
lead using a Pan–Tompkins detector and a further fiducial point refinement based on template 
matching. After detection, we looked for the pulse arrival in the PPG channel during 600 ms 
after each QRS complex. To detect the pulse we used three fiducial points after bandpass  
filtering the PPG between 0.05 Hz and 10 Hz using a 4th order bidirectional Butterworth 
filter. The peak (P) fiducial point corresponds to the maximum of the filtered PPG inside the 
600 ms window, the maximum derivative (MD) fiducial point corresponds to the maximum 
of the differentiated filtered PPG inside the same window, and finally, the tangent intersection 
(T ) fiducial point corresponds to the intersection of the straight line (linear approximation) of 
the filtered PPG at the maximum derivative with the minimum value of the filtered PPG in the 
analysis window (Peng et al 2015) For each recording, the RR time series obtained from the  
QRS fiducial points were compared with each of the three pulse to pulse (PP) time series  
that can be obtained using the P, MD or T fiducial points. For each pulse wave fiducial point, the 
DTS was defined as the difference between the RR time series obtained from the ECG minus 
the time series obtained from successive intervals between pulse arrivals. The same methodol-
ogy as in the previous databases has been employed to characterize the time series. The raw 
values of WT

2, KPSS, M, Qn and U have been also compared to critical values and a Friedman 
repeated measures analysis of variance on ranks has been employed to assess the effect of the 
subject under measurement, the time epoch and, of course, the employed fiducial point.

3. Results and discussion

Table 3 shows the summary of the results for the computed indicators in the ECG database 
while table 4 shows the percentage of recordings where the statistics are higher than the criti-
cal values (considering N  =  300 in table 2). As seen in the tables, the standard deviation of 
the DTS (SDDTS) is around 0.5 ms in mean but the error cannot be considered as normal 
distributed and rarely as a white process (Qn or U statistics are higher than the critical values 
for most of the 5 min epochs). On the other hand, the mean and variance of the DTS are highly 
stable indicating that the measurement conditions have not changed throughout the 5 min. The 
Friedman repeated measures analysis of variance on ranks shows that %oa, %ob, %oDTS, 
SDDTS, k, WT

2 , KPSS, Qn and U change very significantly among subjects ( p  <  0.001) while 
M changes significantly among subjects ( p  <  0.05) On the other hand, the same test shows 
that no indicator changes significantly through time epoch.
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Table 3. Summary of results for each indicator considering the 240 available recordings 
(20 individuals and 12 time series of 5 min duration for individual) of the ECG database. 
The indicators have been summarized by the mean, standard deviation, median and 
percentiles.

Indicator Mean
Standard 
deviation 5% percentile Median 95% percentile

%oa 0.29 0.60 0.00 0.00 1.66
%ob 0.26 0.53 0.00 0.00 1.61
%oDTS 0.25 1.21 0.00 0.00 1.15
ICC 1.00 0.00 1.00 1.00 1.00
MDTS (ms) 0.00 0.00 −0.01 0.00 0.01
SDDTS (ms) 0.52 0.27 0.28 0.47 1.06
k 1.90 0.14 1.68 1.90 2.12

WT
2 4.67 2.41 1.89 3.92 9.58

KPSS 0.02 0.02 0.01 0.01 0.05
M 0.98 0.40 0.51 0.88 1.85
Qn 24.8 21.6 4.01 16.3 78.4
U 3.27 1.94 0.44 3.08 6.27

Table 4. Percentage of 5 min recordings of the ECG database with statistics higher 
than the critical values in table 2. With Qn ∪ U we denote when either Qn or U (or both) 
statistics are higher that the critical value and with Qn ∩ U when both statistics are 
simultaneously higher than the critical value.

P WT
2 KPSS M Qn U Qn ∪ U Qn ∩ U

0.05 99.6% 0.00% 17.9% 100% 71.7% 100% 70.0%
0.001 97.5% 0.00% 4.58% 95.4% 42.9% 95.8% 42.5%

Table 5. Summary of results for each indicator considering the 180 available recordings 
(90 individuals and two time series of 5 min duration for individual (periodic and 
spontaneous breathing) of the RR database.

Indicator Mean
Standard  
deviation 5% percentile Median 95% percentile

%oa 0.11 0.56 0.00 0.00 0.36
%ob 0.11 0.56 0.00 0.00 0.41
%oDTS 1.06 2.05 0.00 0.54 4.30
ICC 1.00 0.00 1.00 1.00 1.00
MDTS (ms) 0.01 0.02 −0.03 0.01 0.05
SDDTS (ms) 1.28 0.27 1.05 1.20 1.77
k 1.82 0.15 1.59 1.82 2.09

WT
2 9.78 2.87 4.55 9.74 14.4

KPSS 0.07 0.06 0.02 0.05 0.19
M 0.98 0.37 0.55 0.90 1.69
Qn 11.4 4.24 6.76 10.4 18.9
U 4.59 2.82 1.10 4.16 12.2
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Tables 5 and 6 show the results for the RR database. In this case, the standard deviation of 
the DTS is (as expected) greater than in the ECG database (around 1.3 ms versus 0.5 ms) and 
can be justified in part by the lower resolution of the RR time series (1 ms in the RR database 
versus 0.2 ms for the ECG database). Once again, the DTS is stable in mean and variance 
and cannot be considered, in general, nor as a normal process neither as a white process. The 
Friedman repeated measures analysis of variance on ranks shows that SDDTS and WT

2  change 
very significantly among subjects ( p  <  0.001) while %oa, %ob, %oDTS and U change sig-
nificantly among subjects ( p  <  0.05) On the other hand, the Wilcoxon signed rank test shows 
that there are significant differences ( p  <  0.05) in SDDTS associated with the way of subjects 
are breathing (median: 1.19 ms when breathing at will versus 1.23 ms when breathing periodi-
cally) and in U (median: 4.32 when breathing at will versus 3.88 when breathing periodically).

Tables 7 and 8 show the results for the PP database separated according to the three differ-
ent fiducial points. The main difference in results is that the ICC is not 1.00 as in the previ-
ous databases although the agreement between the RR time series and the PP time series is 
still very high in accordance with previous studies (Gil et al 2010, Schäfer et al 2013) The 
Friedman repeated measures analysis of variance on ranks shows that the employed fiducial 
point changes very significantly (p  <  0.001) %oDTS, ICC, MDTS, SDDTS, k, WT

2 , KPSS,  
M and Qn. There were no significant differences in indicators when comparing those obtained 
with the MD or the T fiducial points. This result indicates that the PP time series obtained 
by the MD or the T fiducial points are quite similar. On the other hand, ICC is higher with 
these fiducial points indicating that they are better suited to be used as surrogate measures 
of the QRS complex instead of the peak of the pulse wave. This is confirmed by the lower 
MDTS and SDDTS for these fiducial points. Finally, the DTS using either MD or T are more 
normally distributed, more stable in mean and variance than using the P fiducial point but 
cannot be considered as white random process. All the indicators show very significant differ-
ences ( p  <  0.001) among subjects and the time epoch affects significantly ( p  <  0.05) to %oa, 
%oDTS and k and very significantly ( p  <  0.001) to %ob and SDDTS. Taking into account 
that the time between the QRS complex and the pulse arrival fiducial point is the pulse arrival 
time we can relate the SDDTS with the standard deviation of the pulse arrival time variability 
as follows:

n P n R n
PP n P n P n
RR n R n R n

n PP n RR n P n P n R n R n n PAT n

PAT
1
1

DTS 1 1 PAT 1

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

= −
= + −
= + −

= − = + − − + − = + −
 (26)

So the very significant changes in SDDTS can be attributed to changes in the pulse arrival 
time variability that may be caused with changes in the relaxation of the subjects while listen-
ing to music.

As a summary of the results for the three databases, generally the observed differences are 
not normal neither white (although they are reasonably stable in mean and variance). A high 
number of studies dealing with error sources in the HRV measurement study the effect of 

Table 6. Percentage of 5 min recordings of the RR database with statistics higher than 
the critical values in table 2.

p WT
2 KPSS M Qn U Qn ∪ U Qn ∩ U

0.05 100% 0.00% 15.6% 100% 90.0% 100% 89.4%
0.001 100% 0.00% 2.78% 99.4% 73.9% 100% 73.3%

M A García-González et alPhysiol. Meas. 37 (2016) 128



142

Table 7. Summary of results for each indicator considering the 264 available recordings 
(22 individuals and 12 time series of 5 min duration for individual of the PP database.

Indicator Fiducial point Mean
Standard 
deviation 5% percentile Median 95% percentile

%oa all 0.32 1.05 0.00 0.00 1.70
%ob P 0.48 1.15 0.00 0.00 1.98

MD 0.37 0.97 0.00 0.00 1.84
T 0.34 0.98 0.00 0.00 1.71

%oDTS P 3.48 4.89 0.00 1.38 15.1
MD 0.43 0.91 0.00 0.00 2.25
T 0.58 1.16 0.00 0.00 3.28

ICC P 0.97 0.05 0.88 0.99 1.00
MD 0.99 0.01 0.97 1.00 1.00
T 0.99 0.01 0.98 1.00 1.00

MDTS (ms) P 0.22 0.66 −0.34 0.05 1.48
MD 0.00 0.08 −0.13 0.00 0.13
T −0.02 0.10 −0.18 0.00 0.11

SDDTS (ms) P 11.6 8.75 3.79 9.48 24.5
MD 6.97 2.46 3.81 6.42 12.0
T 6.83 2.27 3.98 6.37 11.6

k P 2.11 0.15 1.86 2.10 2.36
MD 1.94 0.13 1.75 1.93 2.16
T 1.93 0.12 1.73 1.92 2.13

WT
2 P 1.77 1.19 0.33 1.49 4.11

MD 1.00 0.91 0.25 0.70 2.18
T 1.10 0.93 0.26 0.86 2.90

KPSS P 0.07 0.08 0.01 0.04 0.23
MD 0.03 0.03 0.01 0.02 0.08
T 0.03 0.03 0.01 0.02 0.09

M P 1.63 0.70 0.79 1.41 3.05
MD 1.22 0.56 0.54 1.11 2.25
T 1.25 0.60 0.49 1.13 2.28

Qn P 7.10 6.43 1.21 5.42 19.3
MD 16.5 12.5 4.42 12.8 37.5
T 18.2 12.3 6.76 14.3 40.7

U P 2.39 1.51 0.13 2.34 4.98
MD 2.60 1.60 0.19 2.37 5.47
T 2.73 1.62 0.23 2.57 5.50

Table 8. Percentage of 5 min recordings of the PP database with statistics higher than 
the critical values in table 2.

p Fiducial point WT
2 KPSS M Qn U Qn ∪ U Qn ∩ U

0.05 P 77.3% 0.38% 61.0% 86.4% 57.6% 90.2% 53.8%
MD 47.0% 0.00% 34.8% 99.2% 60.2% 99.2% 60.2%
T 58.7% 0.00% 39.4% 99.6% 63.6% 99.6% 63.6%

0.001 P 52.3% 0.00% 26.9% 68.9% 27.3% 70.1% 26.1%
MD 21.6% 0.00% 13.3% 96.2% 31.8% 96.2% 31.8%
T 20.5% 0.00% 13.6% 98.9% 37.5% 98.9% 37.5%
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errors in HRV indexes by adding white noise (or differentiated white noise) to a gold standard 
time series and evaluating the effect of the noise on the indexes. The obtained results in those 
studies may be compromised by the fact that actual differences between time series do not 
obey such simple models. Previous results (Garcia-Gonzalez et al 2013b) have shown that 
some part of the differences associated with the QRS detection is synchronous with breathing 
at least in the ECG database. Further work will study in more depth the role of the breathing 
in the dynamics of the DTS.

4. Conclusions

This work has described the complete automatic procedure to obtain the differences time 
series from two alternative measurement methods of RR time series and has proposed a bat-
tery of statistical tests and a set of statistical indicators to better describe these. Results show 
that the differences in practical measurements cannot be considered as normal nor as random 
processes. On the other hand, the differences are reasonably stable in mean and variance. 
Simulations of the effect of error sources in the RR time series using white normal processes 
are discouraged because they are not realistic.
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