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Abstract

Nowadays a lot of research is done in the field of human-robot interaction to allow robots to work

in human environments. Haptic perception is crucial for human and robot safety since it allows to

detect contacts. It is also important for surface exploration be able to detect contact between a

robot and its environment. This thesis presents a probabilistic representation of contacts in order

to complement or in some cases replace computer vision systems. Torque measurements were used

to determine probable collisions (i.e. positions and forces) on robot links. The suggested algorithm

were tested in simulation and afterwards experiments were done with the robot arm Kuka LWR.
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Chapter 1

Introduction

1.1 Motivation

Can robots be placed in human environments? They undoubtly can in most science fiction movies.

Nonetheless, robots’ capabilities are still limited and a lot of research on the human-robot interaction

field needs to be done [1]. This is a wide field which includes the study of methods for motion planning

and the perception of humans.

This project focuses on robot perception, a field which mostly uses computer vision-based algo-

rithms. When dealing with collisions, this kind of algorithms are less useful and other means of

sensing are required. Proprioceptive sensors (i.e. torque and force) can provide information in order

to detect collisions (position and force). Knowing where collisions take place provides the robot in-

formation about the environment. This kind of information is essential in order to introduce robots

to human environments.

1.2 Environment information for Human-Robot interaction

Factories frequently use robots in structured environments so they can execute tasks efficiently.

The rooms where robots work are equipped with many sensors that allow to precisely monitor the

state of every element around the robot. These sensors provide information about changes on their

surroundings. Despite the fact that they collect environment information, most of the time they are

not prepared for substantial changes. For instance, a robot that works within a known area, moving

objects from one place to another, or welding pieces of metal together is programmed to do those

tasks but it may not expect a change on the objects that it handles or maybe a variation in the light

1



Chapter 1. Introduction 2

conditions. For that reason, a robot’s working area is restricted and physically isolated from many

agents, including humans. But there are other arguments against the cooperation between humans

and robots on the same place besides the limitations on the robot to substantial changes. Most of

them are basically for human safety.

Human environment is different from the factory’s controlled environment. It is constantly under

modification and transformation. However, we are able to adapt thanks to a lot of sensors (e.g.

eyes, ears, skin) that continuously give information to us. Since we are young we learn about our

surroundings and cause-effect relationship, which allows us to foresee changes. Moreover, we are

able to know which is the best or easiest way to solve a new problem.

Consequently, in order to introduce robots in human environments they need more tools to

perceive the world like we do. Research has been focused on computer vision systems in order to

equip robots with visual perception [2]. Although this is indeed essential, the study of other senses

is also important. We focus on haptic perception because it can provide information about contact

events which are also important when interacting with dynamic environments.

Two different kinds of haptic sensors exist: external and internal. External sensors are placed

on the surface of the robot, emulating the human skin. Contacts could be directly determined by

this artificial skin [3]. However, the technology is not developed enough to cover the whole surface

of a robot. Internal sensors are able to measure torques or strain between parts of the body. Joint

torque information can also be used to detect contacts on the robot’s surface [4].



Chapter 2

Contact estimation

2.1 Problem statement

Robots should be able to work and interact with humans without any difficulties or risks. This

would generate the possibility for having human-robots interaction and cooperation. For instance,

they could help elderly people at home or take care of children. Moreover, as they have abilities we

don’t and vice versa, cooperation would allow to carry out some tasks humans and robots could not

do separately. Consequently, we have to provide them with methods to perceive their surroundings

and define safety standards.

However, we are still far from that reality and a lot of research needs to be done. The International

Organization for Standardization (ISO) has standards for robot safety, however, they are limited for

industry and personal care robots [5], [6]. For this reason, it is necessary to develop new technologies

in order to enforce safety standards. One of these technologies is based on the detection of humans

and environments. Despite the fact that computer vision algorithms are the most commonly used,

other sensors could complement or even replace them in some cases. Just like humans, robots could

use tactile sensors and contact detection algorithms to explore surfaces and detect collisions on the

robot’s surface.

The robot used in the experiments has no artificial skin that could provide direct information

about contacts. However, it is equipped with a single-axis torque sensor at every joint, which

could contribute some information towards the representation of the contacts depending on the

configuration of the robot and the sensed torques. The issue of using a single-axis torque sensor is

that we want to determine a contact location and force without complete information. For instance,

if the applied force is parallel to some the measurement axis we won’t be able to measure any

torque from that contact on those sensors. Moreover, several contacts may have the same torque

3



Chapter 2. Contact estimation 4

response because the problem is not bijective. For instance, for a single sensor we could have the

same measurement for a contact far away from the sensor with a low force and a contact close to the

sensor and a high force. In order to overcome this problem we suggest a probabilistic representation

of the contacts that allows multiple solutions given a the torque measurement of several sensors. We

are going to sample a set of possible contacts over the surface of the robot and then we will compute

for each one the probability to be the actual contact. We are going to see that for the accuracy

depends on the contact location and also the robot’s configuration.

2.2 Related work

As mentioned before, vision systems have been studied in depth [2], [7], [8] even though the first

studies on tactile perception algorithms date back to the 80s. A first contact location estimation

method was presented by Salisbury [4], who used a six-axis force-torque sensor placed at the wrist

of the arm and the knowledge of the geometry of the sensing tool to estimate the contact position

between two rigid bodies. Takeshi et al. [9] found a more general solution that can be applied to

any kind of sensing tool. Later, other authors [10] estimated external forces at the end-effector of a

robot manipulator using joint torque measurements.

When dealing with human-robot interaction, complete information is required because collisions

anywhere on the surface have to be detected. As a consequence, the methods mentioned previously

are not satisfactory, as they only consider collisions at the end-effector. Research in several fields

suggested different solutions in order to overcome this problem.

Some authors [11], [12] were focused on the design of a haptic non-convex-shaped end-effector that

offers full-body coverage, with which they can directly compute the position and force of a single

contact point without using sensor arrays. However, this method is not suitable for our purpose

because the end-effector tool shape has to be specific for each task and we are focusing the study of

robot arms, which have to interact actively with the environment, performing different tasks.

In machine learning, Lu et al. [13] suggested a neural network approach and a model based

method. Using a base and wrist force-torque sensor they were able to detect collision forces and

disturbance torques on the manipulator joints. Another way to predict external torques and detect

collisions was developed recently on [14] where fuzzy identification and time series modeling were

used. Contrary to other methods previously mentioned, this last one enables simultaneous detection

of multiple contacts.

Another multiple-contact detection method is introduced in [15] merging visual information ob-

tained from a depth camera and a model-based technique.

Probabilistic estimation approaches have also been studied. A first work [16] presents a way

to estimate contacts by means of a probabilistic approach using force control. This research was
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improved later [17] with a Bayesian approach called Scaling Series in order to perform global object

localization.

Finally, the work done in [18] uses the same information we used (i.e. only torque measurements)

to estimate contacts. The approach suggested is based on nonlinear constrained optimization. The

drawback of this method is the complexity of the optimization. For this reason, they considered

some assumptions: cylindric links and no friction on the robot’s surface. With those assumptions

they were able to run the algorithm in real time.

2.3 Our solution

Our proposed solution is based on a probabilistic approach. We used the measurement of external

torques as inputs for our method, which represents a distribution of the most probable collisions.

The algorithm samples a set of N particles and determines the probability of being the actual contact

for each one. Particles are defined by a collision and the link where it takes place. The collision is

defined in the frame of a joint by a contact position ~r ∈ R3 and a contact force ~F ∈ R3. The external

torque is defined by ~τ ∈ Rn, n being the number of torque sensors. The probability of having an

external torque for a collision (F, r) is defined as:

P (~τ , ~F ,~r) (2.1)

This probability can be decomposed as:

P (~τ , ~F ,~r) = P (~F ,~r|~τ)P (~τ) (2.2)

Using the Bayes rule one can obtain1:

P (F, r|τ) =
P (τ |F, r)P (F, r)

P (τ)
(2.3)

As τi are conditional independent we can rewrite 2.3 as:

P (F, r|τ) =

(
n∏

i=1
P (τi|F, r)

)
P (F, r)

P (τ)
(2.4)

1From now on it is assumed that the contact force, the contact position and the torque are vectors.
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At this point, the prior P (F, r) needs to be discussed because it could have a significant effect on

the performance of the algorithm. Clearly, the collision must happen on the robot’s surface S ⊂ R3.

This implies that the prior has to be null for all r /∈ S. We think that execution time is an important

factor to take into account when developing algorithms for robots. In our case, it depends on several

factors, one of which is the number of particles. If we increase it, then the probability to find a

particle close to the actual contact increase as well as the execution time. In order to reduce the

number of particles used we add two more constrains on the contact. The first one is to consider

no friction on the contact point so all forces are normal to it. The second one was to consider only

pushing forces. The forces and positions where the prior is not null are less now. Function f is

defined to rewrite this prior. The output of this function is the normal vector of the surface S at

the position ~r pointing inside the surface:

f : R3 → R3

~r → -n̂(~r)

So the prior can be written as:

P (F, r) =

1, if r ∈ S and F
||F || = f(r)

0, otherwise
(2.5)

We need to discuss briefly the shape of the likelihood P (τi|F, r). One can consider that mea-

surements of external torques have white noise so they would follow a normal distribution N (µ, σ2).

Consequently it is not a strong assumption to consider the likelihood as a normal distribution too:

P (τi|F, r) =
1

σ2i
√

2π
e

−(τi−µi)
2

2σ2
i (2.6)

The value of σ2i may depend somehow on the amplitude of the sensor’s noise and µi is equal to the

torque produced by the collision (F, r) at joint i.

2.4 Practical procedure

Considering the robot arm as open kinematic chains of rigid bodies with n rotational joints and

q ∈ Rn, the robot dynamic model is:

M(q)q̈ + C(q, q̇)q̇ + g(q) = ~τ (2.7)
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Where M(q) > 0 is the symmetric inertia matrix, C(q, q̇) is the Coriolis and centrifugal vector, g(q)

is the gravity vector and τt corresponds to the generalized torques vector which can be decomposed

into friction torque (τf ), motor torque (τm) and external torque (τe):

τt = τf + τm + τe (2.8)

It is assumed that there is no friction between joints. In addition, in simulations and in the exper-

iments with the real robot neither gravity was considered nor motor torques were applied. Conse-

quently the dynamic model is reduced to:

M(q)q̈ + C(q, q̇)q̇ = τe (2.9)

In the case of the simulations done with Matlab, this external torque was computed manually

knowing the collision force and location and it was introduced as a parameter to the algorithm.

External torques were computed using 2.9 for simulations with Gazebo. A world plug-in reads

the robot’s joint positions, velocities and accelerations2. With those information and the robot chain

data stored in a URDF file, the KDL [19] library computed the inertia matrix and the Coriolis and

centrifugal vector required for solving the equation. Finally, we used ROS to communicate the plug-

in and the program with the algorithm. The use of ROS nodes for this project allowed us to change

Figure 2.1: Coding structure

from the simulated world in Gazebo to the real robot easily. It also allowed us to display graphical

results using the ROS tool RViz.

In order to carry out the experiments with Kuka LWR IV, a fixed position was set for the robot.

Estimated external torques were read directly from the robot using the Fast Research Interface (FRI)

library. Joint positions were read using the same procedure. Although the same code could run in

simulation and with the real robot, we modified the code so that the robot experiments would have a

better performance. First, we reduced the execution time by dividing the algorithm in three phases

2Those measurements were filtered to have less noisy values.
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A, B and C with different priors. Consequently, possible contacts on each phase are different. We

call A, B and C the sets that group those contacts on each phase. Contacts c1, ..., cm ∈ C are

obtained directly from the original mesh. Contacts b1, ..., bn ∈ B ⊂ C is obtained using the K-means

procedure described in algorithm 1. The same algorithm is used to get contacts a1, ..., ak ∈ A ⊂ B,

but in this case the input set is B and the output set is A. Notice that in line 16 we select as a

centroid of cluster i the element of C closer to the mean of the cluster. This force centroids to lie

on the surface of the robot as it would make little sense to have the centroids off the surface. The

number of possible positions for phase A was 200, for phase B was 1000 and for phase C was 4605.

Figure 2.2 shows contact positions for each phase.

Algorithm 1 K-means procedure

1: procedure Clustering(C = {c1, c2, ..., cm}) . It clusters contacts in C
2: n := number of clusters
3: B = {b1, b2, ..., bn} (set of cluster centroids)
4: L = {l(c)|c = 1, 2, ...,m} (set of cluster labels of C)
5: for each bi ∈ B do . Select n random centroids
6: bi ← cj ∈ C (random selection)
7: end for
8: for each ci ∈ C do . Assign a cluster for each element in C
9: l(ci)← argmin

j∈{1,...,n}
||ci − bj ||2

10: end for
11: change← true
12: while change do
13: change← false
14: for each bi ∈ B do . Update centroids
15: x := {cj |l(cj) = i}
16: bi ← argmin

{cj |l(cj)=i}
||x̄− cj ||2

17: end for
18: for each ci ∈ C do
19: newLabel := argmin

j∈{1,...,n}
||ci − bj ||2

20: if l(ci) 6= newLabel then . Update cluster labels if required
21: l(ci)← newLabel
22: change← true
23: end if
24: end for
25: end while
26: return B, L
27: end procedure
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Figure 2.2: Possible contact positions for sets C (left), B (middle) and A (right) appear in red and
in black all the points of the surface.

A second modification was done regarding the contact distribution. Random sampling was used

in Matlab and Gazebo to select contacts following the prior distribution. This is, for each position we

sampled several particles with a random force intensity within a range [Fmin, Fmax]. This sampling

method could provide a smooth probability representation for a large number of samples. The

problem was that large number of particles means large computational time. In order to had a

smooth probability representation and low computational time we suggested to sample particles in

a deterministic way. This sampling method was used for the experiments with the real robot. The

method consists on sampling for each position m particles with different contact force (Fik) within

a range [Fmin, Fmax].

Fik =

[
Fmin +

k · (Fmax − Fmin)

m

]
· n̂i, k = 1, ...,m (2.10)

Where n̂i is the normal to the surface at the position i.

In short, the algorithm compute the probability defined by equation 2.6 for all particles on

phase A. Consider ai the collision with higher probability and aj a collision with a probability

P (aj) > α · P (ai), with α ∈ (0, 1). When phase B is executed, only contacts that belong the

centroids ai and aj will be explored. The same process is done to perform phase C. Figure 2.3 shows

the result of this process. Positions explored at each phase appear with a green-red scale, where

green means high probability and red low probability. Small black balls show all the positions of

the surface of the robot. At the end, the algorithm can be faster because it has to compute the

probability of less particles and it may has a better performance because in phase B and C only

particles close to the solution are explored.
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Figure 2.3: High probable contacts in green, low probable contacts in red and robot surface in
black for phases A, B and C.

2.5 Robot Kuka LWR

The robot used for the experiments was Kuka LWR 4+. This robot arm has 7 degrees of freedom

(DoF) and it has one axis torque sensor integrated per joint which will make it suitable for this

project. Its outer structure is made of aluminum and its weight is about 14 kg so it is easy to move

and its shape is rounded, which makes it is perfect to be introduced in human environments.

Figure 2.4: Kuka LWR 4+
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Experiments

In chapter 2 we defined the problem we want to solve and a solution based on a probabilistic

representation of contacts on the robot’s surface using external torques. This chapter shows results

obtained with the suggested algorithm. It is divided into two main sections. In the first one,

the method is implemented in Matlab and Gazebo to test it on simulations. In the second one,

experiments are done with the real robot.

3.1 In simulation

We present results obtained with Matlab and Gazebo in this section. In each subsection we first

explain how the experiments are carried out and the way results are displayed. Afterwards, we

show and discuss them. We analyzed the performance of the algorithm for several collisions in each

experiment.

3.1.1 Matlab: Simple robot

A first version of the algorithm was tested with a simple robot shown in figure 3.1. It has 6 rotational

joints with a single-axis torque sensor in the direction of the red arrows. Each link has a length of 1

meter and they are unidimensional. The range of forces we consider in this first simulation was from

0 to 1.5 newtons. The algorithm computes the probability for 100000 particles. The way it samples

each particle is as follows:

1. Sample randomly the collision link.

11
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2. Sample randomly the collision position within the range [0, 1] along the link’s direction.

3. Sample randomly the collision force norm within the range [0, 1.5].

4. Sample randomly the collision force direction within the plane perpendicular to the link.

Once a particle is sampled, the probability to be the actual collision is computed using equation

2.6 with σi = 0.1,∀i = 1...6.

3

2

x(m)
1

00
y(m)

1

2

2.5

2

1.5

1

0.5

0

z
(m

)

Rotation axis
Collision 1
Collision 2

Figure 3.1: Simple robot structure in black, collision applied in green and blue arrows and rotation
axis in red arrows.

Figure 3.1 shows in blue and green arrows the two collisions applied to this robot. Table 3.1 has

the numerical values of the force (~F ) and position (~r) for each collision by components (x, y and z),

as well as the link. The measured external torques of each collision are presented in table 3.2.

Collision Fx Fy Fz rx ry rz Link

1 0.0 1.0 0.0 1.0 1.0 1.5 3
2 0.0 0.0 1.0 2.5 2.0 2.0 5

Table 3.1: Contact forces (Newtons) and locations (meters) for each experiment

Collision τ1 τ2 τ3 τ4 τ5 τ6
1 1.0 -0.5 0.0 0.0 0.0 0.0
2 0.0 2.0 -1.5 0.0 1.0 -0.5

Table 3.2: Measured external torques for each experiment expressed in N ·m.

Results are displayed on figure 3.2 and 3.3. Red dots in subplots 3.2(a) and 3.2(c) represent the

maximum probability of a particle on each link and blue bars represent sum of the probabilities for

all particles divided per link and then normalized. Subplots 3.2(b) and 3.2(d) show the Principal
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Component Analysis (PCA) applied over particles with a probability Pi > 0.9 max
j

(Pj), where Pi

and Pj are particle probabilities. This allows us to plot these particles on 3D projections.
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Figure 3.2: Results obtained with the simple robot using 100000 particles.

We clustered the most probable particles according to their link. Probable particles for collision

1 are labeled in Figure 3.3 as Col. 1 cluster 1, Col. 1 cluster 2, Col. 1 cluster 3 for links 2, 3 and 4

respectively. Probable particles for collision 2 are labeled as Col. 2 cluster 1. We define dispersion

on position (σr) on equation 3.1 and dispersion on force (σF ) on equation 3.2. As large this values

are, as spread the result is so a less concrete solution is found. Figure 3.3 shows these dispersion on

position (σr) and on force (σF ) of the particles of each cluster.
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σr =

√∑
i Pi · ||~ri − ~µr||2∑

i Pi
(3.1)

σF =

√√√√∑i Pi ·
∣∣∣∣∣∣~Fi − ~µF

∣∣∣∣∣∣2∑
i Pi

(3.2)

Where ~µr and ~µF are the mean on position and force of each cluster respectively. Pi is the

probability, ~ri is the contact location and ~Fi is then contact force of the particle i.

(a) Dispersion on position σr for each collision
and each cluster.

(b) Dispersion on force σF for each collision and
each cluster.

Figure 3.3: Dispersion on position and force for all clusters and collisions applied on the simple
robot using 100000 particles.

3.1.2 Matlab: Kuka LWR

In order to use the algorithm with the Kuka LWR robot, a description of the surface is required.

There is no mathematical expression to describe it. However, a first approximation could be obtained

using a mesh description. We have a description of the robot with 4605 points on the surface of the

robot and their respective normal vectors1. For the simulation described in this section, the robot

in the configuration with all angles equal to zero is shown in Figure 3.4.

Using the mesh description, the number of possible positions is finite and consequently less

particles are used. In this simulation just 20000 particles were used. We consider this number large

enough because since we have 4605 points on the surface, it allows to have about 5 different forces

per position on the surface of the robot. This fact is important so that the speed of the algorithm

can be improved. Moreover, particles are well spread on the robot’s surface so no area is omitted.

1Normal vectors are pointing inside the body of the robot because only pushing forces were considered.
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Figure 3.4: Surface mesh points and normal vectors for Kuka LWR 4+. Each link has a different
color.

In addition, they are distributed homogeneously, so by giving each particle the same probability,

we represent a uniform prior distribution. The experiments were done with the robot with the

configuration mentioned before with σi = 0.03, ∀i = 1...6. Notice that this value is lower than the

one used in the previous subsection. The reason why we choose a lower value is because the robot is

smaller with a singular shape and we need more precision. The module is included in the [0.5, 3.0]

newtons range. The minimum force is greater than zero because a collision with force zero has no

sense. The maximum force norm is 3N in order to see the performance of the algorithm for a larger

range of forces. Three different collisions were applied to the robot to compare the performance of

the algorithm using the robot of the previous section and the one used here. The values of the force

and position are shown by components (x, y and z) in table 3.3 as well as the link where the collision

takes place. The measured external torque for each joint and collision are presented in table 3.4.

Collision Fx(N) Fy(N) Fz(N) rx(cm) ry(cm) rz(cm) Link

1 -2.11 -0.09 -0.58 6.0 4.8 21.3 1
2 1.50 0.00 0.00 -6.0 0.0 39.2 2
3 -1.37 -0.85 0.33 4.6 9.8 58.2 4

Table 3.3: Collisions for each experiment

Collision τ1 τ2 τ3 τ4 τ5 τ6
1 9.6 0.0 0.0 0.0 0.0 0.0
2 0.0 28.7 0.0 0.0 0.0 0.0
3 9.5 -53.6 9.5 1.0 0.0 0.0

Table 3.4: Measured external torques for each experiment (N · cm)
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Results for collisions 1, 2 and 3 are displayed on figures 3.5, 3.6 and 3.7 respectively. Subplots

3.5(a), 3.6(a) and 3.7(a) show in red the probability of the most probable particle on each link and

blue bars represent sum of the probabilities for all particles divided per link and then normalized.

Subplots 3.5(b), 3.6(b) and 3.7(b) display particles with Pi>0.9 max
j

(Pj) projected on their three

principal components. Finally, subplots 3.5(c), 3.6(c) and 3.7(c) show with red dots all positions

with a probability Pi ≤ 0.9 max
j

(Pj) and black dots those with Pi>0.9 max
j

(Pj). In addition, a green

arrow is pointing to the actual contact location.
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Figure 3.5: Results for collision 1 using 20000 particles.
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Figure 3.6: Results for collision 2 using 20000 particles.
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Figure 3.7: Results for collision 3 using 20000 particles.

Similarly as in Subsection 3.1.1, we cluster the most probable particles using K-means. Figure 3.8

shows the dispersion on position (σr) and on force (σF ) defined in equations 3.1 and 3.2 respectively

for each cluster.

(a) Dispersion on position σr for each collision
and cluster.

(b) Dispersion on force σF for each collision and
cluster.

Figure 3.8: Dispersion on position and force for all collisions applied on the Kuka LWR robot.

We explained in chapter 2 that our approach allows us to determine multiple contacts that

produce the same torque sensor readings. In subfigure 3.2(a) one can see that there are contacts on

links 2, 3 and 4 are equally probable. As predicted, we observed in figures 3.3 and 3.8 that in general

contacts closer to the base of the robot are difficult to determine meaning that probable contacts

have large dispersion no matter the robot used. When contacts are applied closer to the end of the

robot, more torque information is available and this leads to better results for the estimation of the

contact’s position and force. Moreover, in figure 3.3 we can see that for more of the results there
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is a relation between force dispersion σF and position dispersion σr in a way that as lower is one,

lower is the other. In figure 3.8 we see that this rule does not work for all cases because the shape

of the robot is odd. For instance, cluster 1 of the second collision has a high dispersion on position

but more or less the same dispersion on force as the other contacts.

Thanks to Kuka LWR mesh information we could discretize the surface of the robot and build

a set of particles that represent a uniform distribution over the robot’s surface, for which the prior

probabilities are non-zero. This allowed us to find probable collisions with less particles, and thus

at a higher frequency. In addition, the shape of the surface also contributes to that improvement.

However, notice in figure 3.8 that we still have the problem that we are not able to find one unique

solution for contacts close to the base (i.e. collision 1 and 2) even though the robot’s shape helps

to reduce those cases. The first contact applied on Kuka LWR showed how two contact regions

with opposite forces are equally probable. Subplot 3.5(b) allowed us to distinguish graphically those

regions.

3.1.3 Gazebo

The engine used to solve the dynamics of the system was the Open Dynamics Engine (ODE). The

contact locations used in this section were the same ones as in Matlab (recall table 3.3) although

forces were 4 times bigger in order to be closer to the human range2. We used a personal computer

with 2.3 GHz Intel Xeon processor to do the experiments. In the simulations done with Gazebo, we

studied how different values of σ (standard deviation of equation 2.6) and N (number of particles)

affect the performance of the algorithm for each collision. Four simulations with the following

parameters were done for each collision:

• Simulation 1: N = 18000 and σ = 0.1

• Simulation 2: N = 30000 and σ = 0.1

• Simulation 3: N = 50000 and σ = 0.1

• Simulation 4: N = 30000 and σ = 0.2

Figures 3.9 to 3.16 are used for a qualitative appreciation of the algorithm. They show Rviz

displays for collision 1, 2 and 3. At each time-step the display is updated. In each figure you can see

spheres at each possible collision location. They are red-green scale colored where red means zero

probability and green maximum probability. We display probabilities according to positions because

2In the case of collision 1, probable particles can be grouped into two clusters. Results on figures 3.12, 3.13, 3.18
and 3.19 consider only the most probable particle of the cluster the actual collision belongs to.
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it is easy to see where the collision can take place. The probability assigned to each position is the

maximum probability of all particles on that position. This is because at each position there can

be several forces with same direction and different norm. Besides the display in Rviz, we also did a

quantitative evaluation of the performance of the algorithm. Each time the algorithm is executed,

we save in a file the contact force and location that have the highest probability. Afterwards, we

compute a weighted dispersion on position (σr) and force (σF ) of the contacts saved. Equations 3.3

and 3.4 show the way these dispersions are computed:

σr =

√∑
i Pi · ||~ri − ~µr||2∑

i Pi
(3.3)

σF =

√√√√∑i Pi ·
∣∣∣∣∣∣~Fi − ~µF

∣∣∣∣∣∣2∑
i Pi

(3.4)

Where ~µr and ~µF are the mean on position and force of each simulation. Pi is the probability,

~ri is the contact location and ~Fi is then contact force of the time-step i. As we know the collision

location (~ri) and force (~Fi) applied, we computed the error on position (εr) and force (εF ) as:

εr =
1

M
·
√∑

i

∣∣∣∣∣∣~ri − ~R
∣∣∣∣∣∣2 (3.5)

εr =
1

M
·
√∑

i

∣∣∣∣∣∣~Fi − ~F
∣∣∣∣∣∣2 (3.6)

Where M is the number of time-steps, ~ri and ~Fi are the contact location and force of the time-step

i. Figures 3.12 to 3.19 show these dispersions and errors for all collisions.

The execution time changes only when we change the number of particles and it does not affect

the results presented in this section. For simulations with N = 18000, it was about 0.22 seconds,

the one for N = 30000 was about 0.35 seconds and the one for N = 50000 was about 0.67 seconds.
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(a) N = 18000 (b) N = 30000 (c) N = 50000

Figure 3.9: Rviz display for collision 1 with σ = 0.1. The left view of the robot is represented on
the left side of each subplot and the right view on the right. Red spheres represent zero probability

contact locations and green spheres high probability locations.

(a) N = 18000 (b) N = 30000 (c) N = 50000

Figure 3.10: Rviz display for collision 2 with σ = 0.1. Red spheres represent zero probability
contact locations and green spheres high probability locations.

(a) N = 18000 (b) N = 30000 (c) N = 50000

Figure 3.11: Rviz display for collision 3 with σ = 0.1. Red spheres represent zero probability
contact locations and green spheres high probability locations.
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In figures 3.9 to 3.11 we can observe how the distribution of probable positions changes when

changing the number of particles N . For all these three cases, the larger the number of particles,

the more positions appear with high probability and the more uniform is the distribution. The

reason of this effect is that increasing N , more forces per position are sampled so more uniform is

the sampling. However, in figures 3.12 and 3.13 we can not observe an important change on the

numerical results that consider only the most probable particle at each time-step. The variation on

dispersion and error of each collision is not significant although it is remarkable comparing different

collisions. In general, as the collision takes places closer to the end effector, the solution is more

precise. This results agree with the ones obtained in Subsection 3.1.2.

(a) Dispersion on position σr in func-
tion of the number of particles.

(b) Error on position εr in function of
the number of particles.

Figure 3.12: σr and εr in function of the number of particles for collisions 1, 2 and 3.

(a) Dispersion on force σF in function
of the number of particles.

(b) Error on force εF in function of the
number of particles.

Figure 3.13: σF and εF in function of the number of particles for collisions 1, 2 and 3.

In figures 3.14 to 3.16 we can observe how the distribution of probable positions changes when

changing the value of σ. Like the simulations modifying N , simulations with larger σ have more

positions with high probability. Nevertheless, the reason for that effect in this case is different than

before. In here, we do not have a more uniform sampling but we consider a noisier distribution.

Consequently, for σ = 0.2 we can see that points far away from the solution have a remarkable
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(a) σ = 0.1 (b) σ = 0.2

Figure 3.14: Rviz display for collision 1 with N = 30000. Left view of the robot is shown on the
left side of each subfigure and right view on the right one. Red spheres represent zero probability

contact locations and green spheres high probability locations.

(a) σ = 0.1 (b) σ = 0.2

Figure 3.15: Rviz display for collision 2 with N = 30000. Red spheres represent zero probability
contact locations and green spheres high probability locations.

(a) σ = 0.1 (b) σ = 0.2

Figure 3.16: Rviz display for collision 3 with N = 30000. Red spheres represent zero probability
contact locations and green spheres high probability locations.
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probability, for example subfigure 3.15(b). For this reason, no simulations were done with σ>0.2.

The reason why we did not consider σ<0.1 either is a bit more complex. Recall that torque is the

cross product between ~r and ~F . Therefore, as the possible positions and forces are not continuous

because of the prior (2.5), the possible torques are not continuous either. In order not to have

a really low probability for torques different from the possible ones the Gaussian has to be wide

enough. Figure 3.17 represents that property in 1D. If the real torque (τr) is between two possible

torques (τ1 and τ2), then, the maximum probability for τ1 and τ2 to be the real torque is lower with

σ = a than σ = b if b>a. With the mesh used for simulations, a standard deviation greater or equal

than 0.1 is enough to have an homogeneous probability over the torque space. In other words, for

a standard deviation lower than 0.1 you may not find any solution, or you may find a solution with

very low probability.

(a) Gaussian distribution with mean τ1 for
τ2 and standard deviation σ = a.

(b) Gaussian distribution with mean τ1 for
τ2 and standard deviation σ = b.

Figure 3.17: Gaussian distributions with different standard deviations.

Figures 3.18 and 3.19 show results similar to the ones displayed on figures 3.12 and 3.13. The

conclusion is then the same: in general, the collision force and position errors (εF and εr) and

dispersions (σF and σr) decrease when the collision takes place closer to the end of the robot.

(a) Weighted dispersion on position σr in
function of σ.

(b) Error on position εr in function of σ.

Figure 3.18: σr and εr in function of σ for collisions 1, 2 and 3.
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(a) Weighted dispersion on force σF in
function of σ.

(b) Error on force εF in function of σ.

Figure 3.19: σF and εF in function of σ for collisions 1, 2 and 3.

3.2 On the robot

In this section, we present the results for the experiments done with the real robot. We studied the

performance of the algorithm for several contact positions and forces in different links and also in

some robot configurations.

We changed the value of σ to see how that affects the results. In this case, the values used were

0.2 and 0.5. The reason why values lower than 0.2 were not considered is the same one described

with figure 3.17 although this value is larger than the one used in section 3.1.3 because the number

of possible positions is lower and then distance between two possible torques larger. Values greater

than 0.5 were not considered either because they increased the probability of positions far away from

the solution. Due to the fact that the algorithm was running on three different phases, only the most

probable contact on phase C was considered because is the one with highest density of contacts. We

compared the measured force norm with the estimated force norm because we assumed that there

is no friction on the contact so measured force components and estimated force components should

be the same but expressed in different frames. The range of forces tested was between 3N and 30N

with a step of 0.7N. One difference between the simulations and the real robot was the way to know

the applied contact force intensity and direction. In simulations we just define it, but on the real

robot we measure the position with a ruler and the force with a six axis torque-force sensor.

Figures 3.20, 3.21 and 3.22 show all locations considered at each phase. These positions are

represented with red-green scale colored balls. Red correspond to low probability and green to high

probability. There are also small black balls to represent the surface of the robot. On figure 3.20 and

subplots 3.21(a) and 3.21(b) the robot is on the same configuration and we can clearly see that the

collisions close to the end of the robot have less probable particles. Collisions on subfigures 3.21(a),

3.21(a), 3.22(a) and 3.22(b) are applied on the same position on the surface but with different robot

configurations. One can observe that the probable particles in both cases have more or less the same
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distribution. In all the cases, when we increased σ the probability of the particles increased and,

consequently, more particles are displayed on these figures. Subfigures 3.21(c) and 3.21(d) are the

one where this effect is more apparent.

(a) σ = 0.2 (b) σ = 0.5 (c) σ = 0.2 (d) σ = 0.5

Figure 3.20: Contact location display on Rviz for the first collision (a) and (b) applied on the first
link and the second collision (c) and (d) applied on the fourth link.

(a) σ = 0.2 (b) σ = 0.5 (c) σ = 0.2 (d) σ = 0.5

Figure 3.21: Contact location display on Rviz for the third collision (a) and (b) applied on the
fifth link and the fourth collision (c) and (d) applied on the third link.
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(a) σ = 0.2 (b) σ = 0.5 (c) σ = 0.2 (d) σ = 0.5

Figure 3.22: Contact location display on Rviz for the fifth collision (a) and (b) applied on the fifth
link and the sixth collision (c) and (d) applied on the fourth link.

Like in section 3.1.3, numerical results were used to compare the performance of the algorithm.

Errors on collision force (εF ) and position (εr) are computed similarly to equations 3.6 and 3.5 and

dispersion on position (σr) is computed similarly to equation 3.3. The first two values help us to see

if the solution is close to the actual collision and the third one helps us to know if the solution is

disperse or not.

εF =

√√√√∑i P
i
max ·

(∣∣∣∣∣∣~Fapi

∣∣∣∣∣∣− ∣∣∣∣∣∣~Fesi

∣∣∣∣∣∣)2∑
i P

i
max

(3.7)

εr =

√∑
i P

i
max · ||~rap − ~resi ||

2∑
i P

i
max

(3.8)

σr =

√∑
i P

i
max · ||~resi − ~µr||

2∑
i P

i
max

(3.9)

Where P i
max is the probability of the most probable particle, ~Fapi is the applied force, ~Fesi is the

estimated force and ~resi is the estimated position at time-step i. ~rap is the position where the force is

applied and ~µr is the mean of all ~resi . This errors are shown in Figure 3.23. In this figure we can see

that the error on position (εr) and the position dispersion (σr) for collisions 1 and 5 are larger than

the rest. This result is coherent with the graphical representation on figure 3.20(a), 3.20(b), 3.21(c)

and 3.21(d), where there are a lot of particles with high probability. We can also see in figure 3.23

that results obtained for σ = 0.2 are better because the errors and dispersion are lower. However, for

most of the cases these results vary more when comparing different collisions than when comparing

different values of σ. This means that there is a strong relation between the probability to find a

good solution and the torque information we read on the sensors.



Chapter 3. Simulations 27

(a) Collision position error for all 6 collisions
applied to the robot for σ = 0.2 and σ = 0.5.

(b) Collision force norm error for all 6 collisions
applied to the robot for σ = 0.2 and σ = 0.5.

(c) Dispersion on position for all 6 collisions applied
to the robot for σ = 0.2 and σ = 0.5.

Figure 3.23: Errors on the estimation of collisions and dispersion on the estimation of the collision
position.

The results we present below belong to the measurements done with the force-torque sensor. In

each graph we plot in blue the estimated force norm and in red the force norm measured with the

sensor. Figure 3.24 show the results for σ = 0.2 and σ = 0.5 for the first collision. This collision was

applied on the first contact so only one measurement on torques was different from zero. For this

reason the estimated force norm is oscillating close to the real value. Figure 3.25 show the result for

the second collision. It was applied on the fourth link then more torque measurements were different

from zero. For this reason we can see that the oscillations are smaller. The same happens in figure

3.26 because the collision was applied on the fifth link.
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(a) σ = 0.2 (b) σ = 0.5

Figure 3.24: Force norms for collision 1.

(a) σ = 0.2 (b) σ = 0.5

Figure 3.25: Force norms for collision 2.

(a) σ = 0.2 (b) σ = 0.5

Figure 3.26: Force norms for collision 3.

In figures 3.24 and 3.25 we can not appreciate an improvement on the estimation of the force

norm changing σ. However, in figure 3.26 we can see that for really low forces and σ = 0.5 the

estimation of the force norm does not agree with the measured one. Low applied forces means low

measured torques. If we have a value of σ large enough, then particles with positions on the surface

of the robot that can not create torques increase their probability. Eventually, this probability can

be equal or higher than the probability of particles close to the actual collision.
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(a) σ = 0.2 (b) σ = 0.5

Figure 3.27: Force norms for collision 4.

(a) σ = 0.2 (b) σ = 0.5

Figure 3.28: Force norms for collision 5.

(a) σ = 0.2 (b) σ = 0.5

Figure 3.29: Force norms for collision 6.

Figure 3.27 show the fourth collision applied on the third link. Subfigure 3.27(b) has more

fluctuations on the results than subfigure 3.27(a). As we explained before, a large value of σ may

increase the probability of particles far away from the solution. Consequently, the force norm of the

most probable particle may fluctuate. Actually, we can see in subfigure 3.21(d) that there are a lot

of probable particles distributed over a large surface. Comparing figure 3.28 and 3.29 we can say

again that it is more important where the collision takes place than the value of σ to have good

results.
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Conclusions and future work

In conclusion, the developed method is able to obtain contacts with high probability in several

conditions although the problem is not bijective and the information used to determine collisions

is often insufficient. Moreover, the algorithm can find multiple regions were contacts are probable.

Different approaches can be used to reduce the number of regions and have more precise collisions.

One could increase the information used. The use of three axis torque sensor per joint may be the

simplest solution in that case, although it may be expensive and difficult to implement in practice.

The implementation of a control strategy may be also useful. In this way, robot could move and

distinguish between several contact areas. Furthermore, it could be used to explore environment

surfaces. The only problem would be the frequency at which the algorithm runs. One solution is

to split the computation of the particle probabilities on several processors running in parallel and

increase the speed of the algorithm.

We observed that the way of sampling particles is important when finding a solution. Random

sampling give a non homogeneous solutions while using the deterministic sampling suggested results

are more uniform. In addition, deterministic sampling allowed us to have an homogeneous represen-

tation of the probable contact area. We used the most probable particle at each time-step to know

where the contact was, although a weighted mean over the particles on the contact area could also

be good to know.

Finally, we expose some conclusions regarding σ, which was modified in the experiments to see

the performance of the algorithm. We can say that smaller values are better than larger values in

general because only contacts close to the actual one are probable. However, due to the fact that

possible contacts and possible torques are discrete there is a lower bound on σ. In addition, we

have observed on the experiments with the real robot that although the accuracy increases when

decreasing sigma, it depends more on where the contact takes place and the configuration of the

robot. Consequently, we can not determine a priory the accuracy with the parameter σ.

30
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Tables of results

Table A.1: Contact location dispersion (σr) and contact force dispersion (σF ) for each experiment
and cluster tested on the simple robot with Matlab.

Collision σr (cm) σF (N)

1 cluster 1 7.9 0.15
cluster 2 7.4 0.18
cluster 3 3.1 0.09

2 cluster 1 3.9 0.03

Table A.2: Contact location dispersion (σr) and contact force dispersion (σF ) for each experiment
and cluster tested on Kuka LWR with Matlab.

Collision σr(cm) σF (N)

1 cluster 1 4.6 1.4
cluster 2 2.4 1.3

2 cluster 1 9.6 1.4
cluster 2 2.5 0.4

3 cluster 1 3.9 1.2
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Table A.3: Contact location dispersion (σr), contact force dispersion (σF ), contact location esti-
mation error (εr) and contact force estimation error (εr) for each collision, number of particles (N)

and σ tested on Gazebo simulations.

Collision N σ σr (cm) σF (N) εr (cm) εF (N)

1 18000 0.1 5.3 6.9 6.6 7.7
30000 0.1 5.1 7.0 6.5 7.7
50000 0.1 5.0 6.9 6.3 7.3
30000 0.2 5.0 7.0 6.4 7.8

2 18000 0.1 4.4 7.4 11.3 13.9
30000 0.1 4.4 7.6 11.2 14.0
50000 0.1 4.4 7.5 11.2 13.9
30000 0.2 4.5 7.6 11.2 14.0

3 18000 0.1 3.4 4.3 5.0 5.7
30000 0.1 3.4 4.6 5.1 5.8
50000 0.1 3.2 4.2 4.8 5.4
30000 0.2 3.5 4.6 5.2 5.6

Table A.4: Contact force estimation error (εF ), contact location estimation error (εr), contact
location dispersion (σr) and algorithm frequency for each collision and each value of σ tested on the

real robot.

Collision σ εF (N) εr(cm) σr(cm) Frequency(Hz)

1 0.2 5.1 4.3 4.3 5
0.5 5.5 4.5 4.4 3

2 0.2 1.1 1.3 0.6 8
0.5 1.2 1.3 0.6 8

3 0.2 0.5 1.9 1.0 10
0.5 2.7 3.2 2.3 7

4 0.2 0.6 1.7 1.6 8
0.5 0.8 3.3 3.1 5

5 0.2 1.3 3.9 4.2 9
0.5 1.6 4.2 4.2 7

6 0.2 0.6 2.1 1.4 10
0.5 0.6 2.9 1.6 8
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