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Abstract

In [2], a study of the existence and uniqueness of solution of partial overdetermined boundary value
problems for finite networks was performed. These problems involve Schrödinger operators and
the novel feature is that no data are prescribed on part of the boundary, whereas both the values
of the function and of its normal derivative are given on another part of the boundary. In the
present work, we study the resolvent kernels associated with overdetermined partial boundary value
problems on finite network and we express them in terms of the well–known Green operator and the
Dirichlet–to–Robin map. Moreover, we analyze their main properties and we compute them in the
case of a generalized cylinder. The obtained expression involve polynomials that can be seen as a
generalization of Chebyshev polynomias, and indeed when the conductances along axes are constant
the expressions for the overdetermined partial resolvent kernels are given in terms of second kind
Chebyshev polynomials.

Keywords: Overdetermined partial boundary value problems, Dirichlet–to–Neumann map,
Inverse problem, resolvent Kernels

1. Preliminaries

A discrete inverse boundary value problem consists in recovering the conductances of a network
with boundary using only boundary measurements and global equilibrium conditions. In general,
inverse problems are exponentially ill–posed, since they are highly sensitive to changes in the bound-
ary data, see [11]. On the other hand, discrete inverse problems appears naturally when discretizing
continuous inverse problems, see for instance [5]. Although the discrete inverse problem has been
completely characterized in the case of the combinatorial laplacian for planar critical networks, see
[7, 9], few works have been done for general networks, where the inverse problem remains open.
In [12], an extension of the cited works have been developed for networks embedded in a cylindric
surface.

This work is the third in a series on various aspects of the discrete inverse problem. It develops
the study corresponding to resolvent kernels associated with overdetermined partial boundary value
problems for Schrödinger operators on networks. The appropriate theoretical framework to address
the discrete inverse problem is the study of overdetermined partial boundary value problems, while
the fundamental tool is the Dirichlet-to-Robin map; which measures the difference of voltages be-
tween boundary vertices when electrical currents are applied to them. The theoretical foundations
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of this class of problems have been established in [2]. The results in this framework are of poten-
tial application among others, in electrical impedance tomography which is currently one of the
non-invasive methods of clinical diagnosis with more development opportunities; see [6]. The data
for an inverse problem on a network is the Dirichlet–to–Robin map, since it contains the boundary
information, so we worried for their properties, which were analyzed in [3]. The matrix associated
with the Dirichlet–to–Robin map is known as the response matrix of the network and it is the Schur
complement of a certain submatrix of the Schrödinger matrix. The consideration of Schrödinger
operators allowed us to consider a wide class of matrices, not necessarily singular nor weakly diag-
onally dominant, as response matrices. Therefore, our results represented a generalization of those
obtained in [7, 8].

In the study of classical boundary value problems one of the main tools, both for solving
as for studying fundamental properties, are the resolvent kernels such as Green, Poisson or Robin
kernels. So, once we have established the overdetermined partial boundary value problem, we raise
the problem of defining what is a resolvent kernel and what are its main properties. In order to do
this, we first obtain an equivalent condition for the existence and uniqueness of solution of these
type of problems that can be read directly from a submatrix of the Schrödinger operator. Then,
we give expressions of these kernels in terms of the classical Green kernel and the Dirichlet–to–
Robin map. In the last section, we obtain the resolvent kernels for a generalized cylinder, which are
defined as the product of a path with an arbitrary network. The expressions are given in terms of
a generalization of Chebyshev polynomials for higher dimensions, that when the conductances are
constant are precisely Chebyshev polynomials of second kind.

Let Γ = (V, c) be a finite network, i.e., a finite connected graph without loops nor multiple
edges, and with the vertex set V . Let E be the set of edges of the network Γ. Each edge (x, y)
is assigned a conductance c(x, y), where c : V × V −→ [0,+∞). Moreover, c(x, y) = c(y, x) and
c(x, y) = 0 if (x, y) /∈ E. Then, x, y ∈ V are adjacent, x ∼ y, iff c(x, y) > 0. We denote by V (S)
the set of neighbours of S ⊂ V ; that is, the set of vertices of V \ S adjacent to any vertex x ∈ S.

The set of functions on a subset F ⊆ V , denoted by C(F ), and the set of nonnegative functions
on F , C+(F ), are naturally identified with R|F | and the nonnegative cone of R|F |, respectively. We

denote by
∫
F
u(x)dx the value

∑
x∈F

u(x). Moreover, if F is a non empty subset of V , its characteristic

function is denoted by χF . When F = {x}, its characteristic function will be denoted by εx. If
u ∈ C(V ), we define the support of u as supp(u) = {x ∈ V : u(x) 6= 0}. Clearly, C(F ) can be
identified with the subspace {u ∈ C(V ) : supp(u) ⊂ F}.

If we consider a proper subset F ⊂ V , then its boundary δ(F ) is given by the vertices of V \F
that are adjacent to at least one vertex of F . The vertices of δ(F ) are called boundary vertices
and when a boundary vertex x ∈ δ(F ) has a unique neighbor in F we call the edge joining them
a boundary spike. It is easy to prove that F̄ = F ∪ δ(F ) is connected when F is. Any function

ω ∈ C+(F̄ ) such that supp(ω) = F̄ and
∫
F̄
ω2(x) dx = 1 is called weight on F̄ . The set of weights is

denoted by Ω(F̄ ). We denote κF ∈ C(δ(F )) as the function κF (x) =
∑
y∈F

c(x, y).

We define the normal derivative of u ∈ C(F̄ ) on F as the function in C(δ(F )) given by(
∂u

∂nF

)
(x) =

∫
F
c(x, y)

(
u(x)− u(y)

)
dy, for any x ∈ δ(F ).
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If H,F are non–empty subsets of V , any function K ∈ C(H × F ) will be called a kernel.
The integral operator associated with K is the endomorphism K : C(F ) −→ C(H) that assigns

to each f ∈ C(F ), the function K (f)(x) =

∫
F
K(x, y) f(y) dy for all x ∈ H. Conversely, given

an endomorphism K : C(F ) −→ C(H), the associated kernel is given by K(x, y) = K (εy)(x).
Clearly, kernels and operators can be identified with matrices, after giving a label on the vertex
set. In addition, a function u ∈ C(F ) can be identified with the kernel, K ∈ C(F × F ), defined as
K(x, x) = u(x) and K(x, y) = 0 otherwise, and hence with a diagonal matrix that will be denoted
by Du. As usual, Kx = K(x, ·) and Ky = K(·, y). Along the paper we use the convention that
operators and their associated matrices, and functions and their associated vectors, are denoted
with the same letter, operators in calligraphic font and matrices and vectors in sans serif font.

Given a matrix M and A,B sets of vertices, M(A;B) denote the matrix obtained from M with
rows indexed by the vertices of A and columns indexed by the vertices of B. Also, given a vector
v and a set of vertices A, v(A) denotes the entries of v indexed by the vertices of A. Moreover, we
denoted by C the matrix

(
c(x, y)

)
x,y∈V .

The combinatorial Laplacian of Γ is the linear operator L : C(V ) −→ C(V ) that assigns to each
u ∈ C(V ) the function defined for all x ∈ V as

L(u)(x) =

∫
V
c(x, y)

(
u(x)− u(y)

)
dy.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear operator Lq :
C(V ) −→ C(V ) that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu. Since q is real, it is
well–known that any Schrödinger operator is self–adjoint. For any weight σ ∈ Ω(F̄ ), the so–called

potential associated with σ is the function in C(F̄ ) defined as qσ = −σ−1L(σ) on F , qσ = −σ−1 ∂σ

∂nF
on δ(F ). These authors proved in [3] that Lq is positive semi–definite on C(F̄ ) if there exist λ ≥ 0
and σ ∈ Ω(F̄ ) such that q = qσ+λχ

δ(F )
. In this case, it is positive definite iff λ > 0. So, throughout

this paper, we will suppose that the above condition q = qσ + λχ
δ(F )

holds with σ ∈ Ω(F̄ ) and
λ ≥ 0. Therefore, for any f ∈ C(F ) and g ∈ C(δ(F )) the following Dirichlet problem

Lq(u) = f on F and u = g on δ(F ), (1)

has a unique solution. In particular, taking g = 0 we get that the operator Lq is invertible on C(F )
and its inverse is called the Green operator for F and it is denoted by Gq. On the other hand, the
operator that assigns to any g ∈ C(δ(F )), the unique solution of Problem (1) when f = 0, is called
Poisson operator for F and denoted by Pq. The relation between the kernels associated with the
above operators is given by the following identity that was proved in [4]

Pq(x, y) = εx(y)−
∂Gxq
∂nF

(y).

The map Λq : C(δ(F )) −→ C(δ(F )) that assigns to any function g ∈ C(δ(F )) the function

Λq(g) =
∂Pq(g)

∂nF
+qg is called Dirichlet–to–Robin map. In [3], the authors proved that the Dirichlet–

to–Robin map, Λq, is a self–adjoint and positive semi–definite operator. Moreover, λ is the lowest
eigenvalue of Λq and its associated eigenfunctions are multiple of σ. In addition, if Nq ∈ C(δ(F )×
δ(F )) is the kernel of Λq, its associated matrix Nq is an irreducible and symmetric M–matrix.
Usually Nq is called the response matrix of the network.
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2. Overdetermined Partial resolvent kernels

In this section we define the resolvent kernels associated with the overdetermined partial
boundary value problems, that where introduced by the authors in [2]. Then, we analyze the main
properties of the above mentioned kernels. To begin with we summarize some of the more relevant
properties of overdetermined partial boundary value problems that help us to obtain the mentioned
results. The proofs of these results can be found in [2].

We fix a proper and connected subset F ⊂ V and A,B ⊂ δ(F ) non–empty subsets such that
A∩B = ∅. Moreover we denote by R the set R = δ(F )\ (A∪B), so δ(F ) = A∪B∪R is a partition
of δ(F ). We remark that R can be an empty set. In [2], we introduced a new type of boundary
value problems in which the values of the functions and their normal derivatives are known at the
same part of the boundary, which represents an overdetermined problem, and there exists another
part of the boundary where no data is known. The limit case when B = R = ∅, the value of the
function on the boundary is null and the value of the normal derivative is constant, can be seen as
an extension of the so–called discrete Serrin’s Problem; see [1].

For any f ∈ C(F ), g ∈ C(A∪R) and h ∈ C(A), the overdetermined partial Dirichlet–Neumann
boundary value problem on F with data f, g, h consists in finding u ∈ C(F̄ ) such that

Lq(u) = f on F,
∂u

∂n
F

= h on A and u = g on A ∪R. (2)

Notice that as the values of u are known in A, the boundary condition
∂u

∂n
F

+ q u = ĥ is equivalent

to the boundary condition
∂u

∂n
F

= h, where h = ĥ− qg and that Problem (2) is not self–adjoint. So,

we consider the adjoint problem of the overdetermined partial Dirichlet–Neumann boundary value
problem (2) on F given by

Lq(v) = 0 on F,
∂v

∂n
F

= v = 0 on B and v = 0 on R. (3)

Problems (2) and (3) are mutually adjoint since∫
F
v(x)Lq(u)(x) dx =

∫
F
u(x)Lq(v)(x) dx,

for any u, v ∈ C(F̄ ) such that
∂u

∂n
F

= u = 0 on A,
∂v

∂n
F

= v = 0 on B and u = v = 0 on R.

In order to analyze the existence and uniqueness of solution for Problem (2), we consider the
partial Dirichlet–to–Neumann map as the linear operator ΛA,B : C(A) −→ C(B), that assigns to any
v ∈ C(A) the function

ΛA,B (v) =
∂Pq(v)

∂nF
χB .

In [2] we proved that ΛB,A = Λ∗
A,B

and that Problem (2), has a unique solution iff |A| = |B| and
ΛA,B is non–singular or equivalently iff ΛB,A is non–singular. Moreover,

Nq(A;B) = −C(A;F )Gq(F ;F )C(F ;B). (4)



5

In this study we have obtained an equivalent condition for the existence and uniqueness of solution
that can be read directly from a submatrix of the Schrödinger operator. For that, let Kq : C(F̄ ) −→
C(F̄ ) the operator defined as

Kq(u) =


∂u

∂nF
on δ(F ),

Lq(u) on F.

Theorem 2.1. The overdetermined partial boundary value problem (2) has a unique solution for
any data iff the matrix Kq(A ∪ F ;F ∪B) is invertible. Moreover,

rankC(A;V (A)) = rankC(B;V (B)) = |A|,

which implies that |A| ≤ min{|V (A)|, |V (B)|}.

Proof. First observe that Problem (2) is equivalent to the overdetermined partial semi–homegeneous
boundary value problem

Lq(v) = f − Lq(g) on F, v = 0 on A ∪R and
∂v

∂nF
= h− ∂g

∂nF
on A, (5)

in the sense that u is the solution of Problem (2) iff u = v + g. Therefore, we can restrict ourselves
to the study of solution of overdetermined partial semi–homegeneous boundary value problem

Lq(v) = f on F, v = 0 on A ∪R and
∂v

∂nF
= h on A. (6)

The matrix expression of this problem is

Kq(A ∪ F ;F ∪B)

[
u(F )
u(B)

]
=

[
−C(A;F ) 0
Lq(F ;F ) −C(F ;B)

] [
u(F )
u(B)

]
=

[
h
f

]
.

Hence, Problem (6) has solution for any data iff Kq(A ∪ F ;F ∪B) is invertible. In particular,

|A| = rankC(A;F ) = rankC(A;V (A)) ≤ |V (A)|.

From now on we assume that Kq(A∪F ;F ∪B) is invertible. Recall that this fact is equivalent
to de invertibility of ΛA,B . The fact that the Problem (2) has a unique solution, implies that the
value of u on B is determined by the data, as the following result shows; see [2] for the case f = 0.

Proposition 2.2. Let u be the solution of Problem (2), then the values of u on B are determined
by the identity

u = Λ−1
B,A

(h)− Λ−1
B,A

(
ΛA∪R,A(g)

)
− Λ−1

B,A

(
∂Gq(f)

∂n
F

χA

)
.

Proof. If ψ = uχB and ϕ = ψ + g, then u is the unique solution of the Dirichlet problem

Lq(u) = f on F and u = ϕ on δ(F ).
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Moreover, from the superposition principle u = Gq(f) + Pq(ψ) + Pq(g) and hence

∂u

∂n
F

=
∂Gq(f)

∂n
F

+
∂Pq(ψ)

∂n
F

+
∂Pq(g)

∂n
F

.

Therefore,

h =
∂u

∂n
F

χA =
∂Gq(f)

∂n
F

χA + ΛB,A(u) + ΛA∪R,A(g)

and the result follows from the invertibility of ΛB,A .
Associated with overdetermined partial Dirichlet–Neumann boundary value problems we can

define the resolvent operators and their corresponding kernels. For this we consider the following
semi–homogeneous overdetermined partial boundary value problems:

Lq(vf ) = f on F, vf = 0 on A ∪R and
∂vf
∂nF

= 0 on A, (7)

Lq(vg) = 0 on F, vg = g on A ∪R and
∂vg
∂nF

= 0 on A, (8)

Lq(vh) = 0 on F, vh = 0 on A ∪R and
∂vh
∂nF

= h on A. (9)

As all of them have a unique solution for any data, we define the partial Green, Poisson and Robin
operators as

G̃A,B : C(F ) −→ C(F ∪B), where G̃A,B (f) = vf for all f ∈ C(F ), (10)

P̃A,B : C(A ∪R) −→ C(F̄ ), where P̃A,B (g) = vg for all g ∈ C(A ∪R), (11)

R̃A,B : C(A) −→ C(F ∪B), where R̃A,B (h) = vh for all h ∈ C(A), (12)

respectively. With these definitions the unique solution of the overdetermined partial Dirichlet–
Neumann boundary value problem (2) can be written as

u = G̃A,B (f) + P̃A,B (g) + R̃A,B (h).

We can define analogously the resolvent kernels for the adjoint problem

G̃B,A : C(F ) −→ C(F ∪A), where G̃B,A(f) = vf for all f ∈ C(F ) (13)

P̃B,A : C(B ∪R) −→ C(F̄ ), where P̃B,A(g) = vg for all g ∈ C(B ∪R) (14)

R̃B,A : C(B) −→ C(F ∪A), where R̃B,A(h) = vh for all h ∈ C(B). (15)

The following relations between the overdetermined partial operators are a straightforward conse-
quence of the second Green’s identity, see [4].

Proposition 2.3. The overdetermined partial Green and Poisson operators, satisfy:∫
F

G̃A,B (f)g =

∫
F

G̃B,A(g)f, f, g ∈ C(F ),∫
B∪R

∂P̃A,B (f)

∂nF
g =

∫
A∪R

∂P̃B,A(g)

∂nF
f, f ∈ C(A ∪R), g ∈ C(B ∪R),∫

B
R̃A,B (f)g =

∫
A
R̃B,A(g)f, f ∈ C(A), g ∈ C(B).
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Our next aim is to express the kernels of the above operators in terms of the Green kernel Gq
and the Dirichlet–to–Robin map Λq, for whom we already know important attributes.

Let G̃A,B : (F ∪B)× F −→ R, P̃A,B : F̄ × (A ∪R) −→ R and R̃A,B : (F ∪B)×A −→ R be
the partial Green, Poisson and Robin kernels, respectively. We denote by G̃A,B ∈ M|F∪B|×|F |(R),
P̃A,B ∈M|F̄ |×|A∪R|(R) and R̃A,B ∈M|F∪B|×|A|(R) their associated matrices.

It will be useful to define the following bilinear form BB,A : C(B)× C(A) −→ R, given by

BB,A(f, g) = 〈f,Λ−1
B,A

(g)〉, f ∈ C(A), g ∈ C(B).

Proposition 2.4. The partial Green kernel G̃A,B can be expressed in terms of the Green kernel and
its normal derivatives and the partial Dirichlet–to–Robin map as

G̃A,B (x, y) = Gq(x, y)− Λ−1
B,A

(
∂Gyq
∂nF

χA

)
(x) + BB,A

(∂Gxq
∂nF

χB ,
∂Gyq
∂nF

χA

)
.

Proof. Let y ∈ F and let v = G̃A,B (εy) ∈ C(F ∪B) be the unique solution of Problem (7) for f = εy
and consider vB = vχB ∈ C(B). Then, v is the unique solution of

Lq(v) = εy on F and v = vB on δ(F ) (16)

and it satisfies the additional condition
∂v

∂nF
= 0 on A. Thus, v = Gq(εy) + Pq(vB ) on F̄ and from

Proposition 2.2 we obtain that

vB = −Λ−1
B,A

(
∂Gyq
∂nF

χA

)
.

On the other hand, for all x ∈ F̄ ,

G̃A,B (x, y) = Gq(x, y)− Λ−1
B,A

(
∂Gyq
∂nF

χA

)
(x) + BB,A

(∂Gxq
∂nF

χB ,
∂Gyq
∂nF

χA

)
.

Corollary 2.5. The blocks of the overdetermined partial Green matrix G̃A,B can be expressed in
terms of the conductances, the Green and the partial Dirichlet–to–Robin matrices as

G̃A,B (F ;F ) = Gq(F ;F ) + Gq(F ;F ) · C(F ;B) · Nq(A;B)−1 · C(A;F ) · Gq(F ;F ),

G̃A,B (B;F ) = Nq(A;B)−1 · C(A;F ) · Gq(F ;F ).

Moreover, G̃B,A(F ;F ) = G̃A,B (F ;F )>.

The next propositions show analogous results for the overdetermined partial Poisson and Robin
operators. The proofs are analogous to the last one, so we let them to the reader.

Proposition 2.6. The overdetermined partial Poisson kernel P̃A,B is expressed as

P̃A,B (x, y) = Pq(x, y)−BB,A

(
P xq χB , N

y
q (A;A ∪R)

)
.
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Corollary 2.7. The overdetermined partial Poisson matrix P̃A,B is expressed in blocks as

P̃A,B (F ;A ∪R) = Gq(F ;F ) · C(F ;A ∪R)− Gq(F ;F ) · C(F ;B) · Nq(A;B)−1 · Nq(A;A ∪R)

P̃A,B (B;A ∪R) = −Nq(A;B)−1 · Nq(A;A ∪R)

P̃A,B (A ∪R;A ∪R) = I(A ∪R;A ∪R)

in terms of the conductances, the Green and the partial Dirichlet–to–Robin matrices.

Proposition 2.8. The overdetermined partial Robin kernel R̃A,B is given by

R̃A,B (x, y) = BB,A

(
P xq χB , εy

)
.

Corollary 2.9. The overdetermined partial Robin matrix R̃A,B is given by the blocks

R̃A,B (F ;A) = Gq(F ;F ) · C(F ;B) · Nq(A;B)−1

R̃A,B (B;A) = Nq(A;B)−1

all in terms of the conductances, the Green and the partial Dirichlet–to–Robin matrices.

Hence, the last results provide the matrix expression of the solution of the partial Dirichlet–
Neumann boundary value problem (3) in terms of the classical Green and the Dirichlet–to–Robin
matrices.

Corollary 2.10. The unique solution u ∈ C(F̄ ) of the overdetermined partial Dirichlet–Neumann
boundary value problem (3) is given by the matrix equations

u(A ∪R) = g(A ∪R)

u(B) = Nq(A;B)−1 ·
(
C(A;F ) · Gq(F ;F ) · f(F )− Nq(A;A ∪R) · g(A ∪R) + h(A)

)
,

u(F ) = Gq(F ;F ) ·
(
f(F ) + C(F ;B) · u(B) + C(F ;A ∪R) · g(A ∪R)

)
.

The next result displays the values of the first blocks of the overdetermined partial resolvent
kernels under when a geometrical hypothesis fulfills.

Corollary 2.11. If |A| = |V (A)|, then C(A, V (A)) is invertible and

G̃A,B (V (A);F ) = 0,

P̃A,B (V (A);R) = 0,

P̃A,B (V (A);A) = C(A, V (A))−1Dk
F
,

R̃A,B (V (A);A) = −C(A, V (A))−1.

Proof. Under the assumption |A| = |V (A)|, from Theorem 2.1, the matrix C(A;V (A)) is invertible.
Suppose that t ∈ F and denote by vt = G̃A,B (·, t). Then,
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0 = χA
∂vt
∂nF

= −C(A, V (A))vt(V (A))

and hence the result follows. The proof of the second equality is analogue. Moreover, if z ∈ A and
we denote by uz = P̃A,B (·, z) and vz = R̃A,B (·, z), then

0 = χA
∂uz
∂nF

= kF (z)εz − C(A, V (A))uz(V (A)) and εz = χA
∂vz
∂nF

= −C(A, V (A))vz(V (A))

and hence the result follows.
Now we can obtain the inverse of the matrix Kq(A∪F ;F ∪B) in terms of the overdetermined

partial resolvent kernels.

Proposition 2.12. The inverse of Kq(A ∪ F ;F ∪B) is

Kq(A ∪ F ;F ∪B)−1 =

[
R̃A,B (F ;A) G̃A,B (F ;F )

R̃A,B (B;A) G̃A,B (B;F )

]
.

Proof. Let

M =

[
R̃A,B (F ;A) G̃A,B (F ;F )

R̃A,B (B;A) G̃A,B (B;F )

]
∈M|A∪F |(R),

then the product Kq(A ∪ F ;F ∪B) ·M is given by the matrix −C(A;F ) · R̃A,B (F ;A) −C(A;F ) · G̃A,B (F ;F )

−C(F ;B) · R̃A,B (B;A) + Lq(F ;F ) · R̃A,B (F ;A) −C(F ;B) · G̃A,B (B;F ) + Lq(F ;F ) · G̃A,B (F ;F )

 .
From Equation (4) and Corollaries 2.5 and 2.9 we get that

−C(A;F ) · R̃A,B (F ;A) = I(A;A),

−C(F ;B) · R̃A,B (B;A) + Lq(F ;F ) · R̃A,B (F ;A) = 0,

−C(A;F ) · G̃A,B (F ;F ) = 0,

−C(F ;B) · G̃
A,B

(B;F) + Lq(F ;F ) · G̃A,B (F ;F ) = I(F ;F ),

and hence M is the inverse of Kq(A ∪ F ;B ∪ F ).

3. Generalized cylinders

In this section we give an explicit expression for the overdetermined partial resolvent kernels
on generalized cylinder. To begin with and starting from a network, we can define a network with
boundary as Γ = (H ∪ δ(H), cH ) where H is a proper subset and cH = c · 1

(H̄×H̄)\(δ(H)×δ(H))
. From

now on we will work with networks with boundary and for sake of simplicity we denote cH = c.
Given a network with boundary Γ = (H ∪ δ(H), c) with a weight σ ∈ Ω(H ∪ δ(H)) and a path

P with vertex set {x0, . . . , x`+1} and conductance cj = c(xj−1, xj) > 0, for all j = 1, . . . , `+ 1. We
define the generalized cylinder, with base Γ as the network with boundary whose vertex set is(

{xj}`+1
j=0 ×H

)
∪
(
{xj}`j=1 × δ(H)

)
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and whose conductance is given by

c
(
(xj , y), (xj , z)

)
= c(y, z), j = 1, . . . , `, y, z ∈ H ∪ δ(H),

c
(
(xi−1, y), (xi, y)

)
= ci, i = 1, . . . , `+ 1, y ∈ H,

c
(
(xi, y), (xj , z)

)
= 0, otherwise.

Moreover, we consider the weight ω(xi, y) = (`+ 2||σH ||2)−
1
2σ(y).

If F = {xj}`j=1 ×H, then δ(F ) = A ∪ B ∪ R, where the sets that provide this partition are
defined as A = {x0} × H, B = {x`+1} × H and R = {xj}`j=1 × δ(H). On account of simplicity,
we also define the sets Ak = {xk} × H, k = 0, . . . , ` + 1 and Rk = {xk} × δ(H), k = 1, . . . , `.
In particular, A0 = A, A1 = V (A), A` = V (B) and A`+1 = B, see Figure 1 for an illustration
of a generalized cylinder. From now on, whenever an ordering in F ∪ B is needed we consider

A A1 A2 A` B

R

Figure 1: Graphical representation of a generalized cylinder.

{A1; . . . ;A`;B}.
In what follows we consider q = qω + λχ

δ(F )
, where λ ≥ 0.

Proposition 3.1. The Schrödinger operator on F with respect ω and λ for a generalized cylinder
is given by

Lqω = LΓ
qσ + LP ,

where LΓ
qσ is the Schrödinger operator with respect σ and λ for the network Γ and LP is the combi-

natorial laplacian for the path.

Proof. Observe that L = LΓ + LP , where LPu(xi, y) = LPuy(xi) = ci(u
y(xi) − uy(xi−1)) +

ci+1(uy(xi)− uy(xi+1)) and LΓu(xi, y) = LΓuxi(y), for any i = 1, . . . , ` and y ∈ H. Therefore,

qω(xi, y) = −Lω
ω

(xi, y) = −L
Γσ(y)

σ(y)
− L

Pωy(xi)

ωy(xi)
= qσ(y)

and hence
Lqω = LΓ

qσ + LP .
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Corollary 3.2. The submatrix Kq(A ∪ F ;F ∪B) has the following block structure

Kq(A ∪ F ;F ∪B) =



−c1I 0 0 · · · 0 0
Q1 −c2I 0 · · · 0 0
−c2I Q2 −c3I · · · 0 0
...

. . . . . . . . .
...

...
0 · · · −c`−1I Q`−1 −c`I 0

0 · · · · · · −c`I Q` −c`+1I


,

where Qi = LΓ
qσ(H;H) + (ci + ci+1)I. Therefore, ΛA,B is an isomorphism.

Now we study the overdetermined partial resolvent kernels associated with the overdetermined
partial boundary value problem.

Theorem 3.3. Let G̃ij = G̃A,B (Ai;Aj), for all i = 1, . . . , ` + 1 and j = 1, . . . , `. Then, for any
j = 1, . . . , `, it is satisfied that

G̃ij = 0, 1 ≤ i ≤ j,

G̃j+1j = − 1

cj+1
I,

ci+2G̃i+2j − Qi+1G̃i+1j + ci+1G̃ij = 0, j ≤ i ≤ `− 1.

Proof. Since Lq(F ;F ∪B)G̃A,B (F ∪B;F ) = I, it is satisfied

Q1G̃1j − c2G̃2j = εj(1)I, j = 1, . . . , `,

ciG̃i−1j − QiG̃ij + ci+1G̃i+1j = −εj(i)I, i = 2, . . . , `, j = 1, . . . , `.

Let us prove by induction that for any j = 1, . . . , `, 1 ≤ i ≤ j, G̃ij = 0 and G̃j+1j = − 1

cj+1
I. The

case i = 1 follows from Corollary 2.11 and hence from the first equation of the above system we

have that G̃2j = 0 for any j = 2, . . . , ` and when j = 1, G̃21 = − 1

c2
I. Suppose that G̃kj = 0 for any

1 ≤ k ≤ i. From the above system of equations, we have that

ciG̃i−1j − QiG̃ij + ci+1G̃i+1j = −εj(i)I

and hence for i+ 1 ≤ j, G̃i+1j = 0 and for i = j, G̃j+1j = − 1

cj+1
I.

Similar techniques allow us to obtain the overdetermined partial Poisson and Robin kernels
associated with the overdetermined partial boundary value problem.

Theorem 3.4. For all i = 1 . . . , ` + 1 and j = 1, . . . , ` let P̃ij+1 = P̃A,B (Ai;Rj) and P̃i1 =

P̃A,B (Ai;A) be the blocks of P̃A,B . Then, defining P̃01 = I and P̃0j+1 = 0, for any j = 1, . . . , `, it is
satisfied that

P̃ij+1 = 0, 1 ≤ i ≤ j,

P̃11 = I, P̃j+1j+1 = − 1

cj+1
C,

ci+1P̃i+1j − QiP̃ij + ciP̃i−1j = 0, j ≤ i ≤ `.
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Proof. Since Kq(F ;F ∪B)P̃A,B (F ∪B;A ∪R) = −Kq(F ;A ∪R), it is satisfied

c2P̃21 − Q1P̃11 = −c1I,

c2P̃2j+1 − Q1P̃1j+1 = −εj+1(2)C, j = 1, . . . , `,

ci+1P̃i+1j+1 − QiP̃ij+1 + ciP̃i−1j+1 = −εj+1(i+ 1)C, i = 2, . . . , `, j = 0, . . . , `.

Therefore, defining P̃01 = I and P̃0j+1 = 0, for all j = 1, . . . , `, the above system becomes

ci+1P̃i+1j+1 − QiP̃ij+1 + ciP̃i−1j+1 = −εj+1(i+ 1)C, i = 1, . . . , `, j = 0, . . . , `.

Let us prove by induction that for any i = 1, . . . , ` and 1 ≤ i ≤ j, P̃ij+1 = 0 and P̃j+1j+1 = − 1

cj+1
C.

From Corollary 2.11 we know that P̃1j+1 = 0 and that P̃11 = I. Moreover,

c2P̃2j+1 − Q1P̃1j+1 + c1P̃0j+1 = −εj+1(2)C, j = 0, . . . , `

and hence for j = 1, P̃22 = − 1

c2
C and for j = 2, . . . , `, P̃2j+1 = 0. Suppose that P̃kj+1 = 0 for any

1 ≤ k ≤ i ≤ j − 1. From the above system of equations, we have that

ci+1P̃i+1j+1 − QiP̃ij+1 + ciP̃i−1j+1 = −εj+1(i+ 1)C

and hence for i+ 1 ≤ j, P̃i+1j+1 = 0 and for i = j, P̃j+1j+1 = − 1

cj+1
C.

Theorem 3.5. For all i = 1, . . . , ` + 1, let R̃i = R̃A,B (Ai;A) be the blocks of R̃A,B . Then, it is
satisfied that

ci+1R̃i+1 − QiR̃i + ciR̃i−1 = 0, 1 ≤ i ≤ `, R̃0 = 0, R̃1 = − 1

c1
I.

Proof. Since Kq(F ;F ∪B)R̃A,B (F ∪B;A) = 0, it is satisfied

c2R̃2 − Q1R̃1 = 0,

ci+1R̃i+1 − QiR̃i + ciR̃i−1 = 0, i = 2, . . . , `.

Moreover, from Corollary 2.11 we get that R̃1 = − 1

c1
I and hence, defining R̃0 = 0, the result

follows.
Note that from the above theorem the blocks of the partial kernels that are not yet determined

can be obtained from the solution of a initial value problem for a linear second order difference
equation over the matrix ring. This class of equations was studied in a more general context by
some of the authors in [10]. For the sake of completeness we introduce here the basic notation to
give the solution of the initial value problem and to prove directly the claim.

A binary multi–index of length p ∈ N∗ is a p–tupla α = (α1, . . . , αp) ∈ {0, 1}p and its strength

is |α| =
p∑
j=1

αj . The set of multi–indices of length p is denoted by `p and we have that #`p = 2p,
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for any p ∈ N∗. Given p ∈ N∗ and α ∈ `p, then 0 ≤ |α| ≤ p. Moreover, if |α| = m ≥ 1, we denote
by i1, . . . , im the indices such that 1 ≤ i1 < · · · < im ≤ p and αij = 1, j = 1, . . . ,m.

For any p ∈ N∗, we are interested in considering only some binary multi–index of length p
whose strength is bp2c at most. Next, we define the following sets:

(i) For p ∈ N∗, `0p =
{
α ∈ `p : |α| = 0

}
=
{

(0, . . . , 0)
}
.

(ii) For p ≥ 2, `1p =
{
α ∈ `p : αp = 0 and |α| = 1

}
.

(iii) For p ≥ 4 and m = 2, . . . , bp2c,

`mp =
{
α ∈ `p : αp = 0, |α| = m and ij+1 − ij ≥ 2, j = 1, . . . ,m− 1

}
.

Clearly, #`0p = 1 for any p ∈ N∗ and #`1p = p− 1 for any p ≥ 2. On the other hand, if p ≥ 4, since
choosing m locations for the ones in α ∈ `mp , m = 2, . . . , bp2c, implies fixing other m − 1 locations
with zeroes between i1 an im, we can choose m locations among p − 1 − (m − 1) available, which
implies that #`mp =

(
p−m
m

)
. Moreover, this formula also works for #`0p, p ∈ N∗, and for #`1p, p ≥ 2.

Given p ∈ N∗ and m = 0, . . . , bp2c, for any α ∈ `
m
p , its complementary is ᾱ = (ᾱ1, . . . , ᾱp) ∈ `p,

the binary multi–index of length p defined as

ᾱij = ᾱij+1 = 0, j = 1, . . . ,m and ᾱi = 1, i = 1, . . . , p, i 6= ij , ij + 1, j = 1, . . . ,m.

It is clear that |ᾱ| = p− 2m. In particular, if α ∈ `0p, p ∈ N∗, then ᾱ = (1, . . . , 1).

Given r, s ∈ N∗, a0, . . . , ar ∈ R∗ and B1, . . . ,Br ∈Ms(R), whereMs(R) is the space of square
matrices of order s and real coefficients, we define the sequence of matrices inMs(R)

K0(a0, . . . , ar;B1, . . . ,Br) = I,

K1(a0, . . . , ar;B1, . . . ,Br) = 0,

K2(a0, . . . , ar;B1, . . . ,Br) = −a0

a1
I,

Kn(a0, . . . , ar;B1, . . . ,Br) = −a0

( n−1∏
i=1

ai

)−1
bn−2

2
c∑

m=0

(−1)m
∑

α∈`mn−2

a2α1
2 · · · a2αn−2

n−1 B
ᾱn−2

n−1 · · ·B
ᾱ1
2 ,

(17)

for any n = 3, . . . , r + 1, and the sequence of matrices inMs(R)

M0(a0, . . . , ar;B1, . . . ,Br) = 0,

M1(a0, . . . , ar;B1, . . . ,Br) = I,

Mn(a0, . . . , ar;B1, . . . ,Br) =
( n−1∏
i=1

ai

)−1
bn−1

2
c∑

m=0

(−1)m
∑

α∈`mn−1

a2α1
1 · · · a2αn−1

n−1 B
ᾱn−1

n−1 · · ·B
ᾱ1
1 ,

(18)

for any n = 2, . . . , r + 1. We omit the reference to a0, . . . , ar and to B1, . . . ,Br in the above
expressions when it does not lead to confussion.
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The following result displays an explicit formula for the solution of initial value problems for
second order difference equations, see [10] for its proof.

Proposition 3.6. Given r, s ∈ N∗, a0, . . . , ar ∈ R∗ and B1, . . . ,Br ∈Ms(R), then for any X0,X1 ∈
Ms(R), the unique solution of the initial value problem

anZn+1 − BnZn + an−1Zn−1 = 0, n = 1, . . . , r, Z0 = X0, Z1 = X1

is
Zn = Kn(a0, . . . , ar;B1, . . . ,Br)X0 + Mn(a0, . . . , ar;B1, . . . ,Br)X1, n = 0, . . . , r + 1.

The following result refers to the case in which the coefficients of the difference equation are
constant, where we use the Chebyshev polynomials of second kind that are defined as

U−2(x) = −1, U−1(x) = −0 and Un(x) =

bn
2
c∑

m=0

(−1)m
(
n−m
m

)
(2x)n−2m, n ∈ N,

see [13].

Corollary 3.7. Given r, s ∈ N∗, a 6= 0 and B ∈ Ms(R) defining P =
1

2a
B then, for any X0,X1 ∈

Ms(R), the unique solution of the initial value problem

aZn+1 − BZn + aZn−1 = 0, n = 1, . . . , r, Z0 = X0, Z1 = X1

is
Zn = Un−1(P)X1 − Un−2(P)X0, n = 0, . . . , r + 1.

Proof. From the above Proposition it suffices to prove that for any n = 0, . . . , r + 1 we have that

Kn(a, . . . , a;B, . . . ,B) = −Un−2(P) and Mn(a, . . . , a;B, . . . ,B) = Un−1(P).

From identities (17) and (18) we have that K0 = I = −U−2(P), K1 = M0 = 0 = U−1(P) and
K2 = −I = −U0(P).

On the other hand, since γn = a−n and #`mn =
(
n−m
m

)
, then for many n = 3, . . . , r+ 1 we have

Kn = −aa−(n−1)

bn−2
2
c∑

m=0

(−1)m
(
n− 2−m

m

)
a2mBn−2−2m

= −
bn−2

2
c∑

m=0

(−1)m
(
n− 2−m

m

)
(2P)n−2−2m = −Un−2(P),

and moreover, for any n = 2, . . . , r + 1,

Mn = a−(n−1)

bn−1
2
c∑

m=0

(−1)m
(
n− 1−m

m

)
a2mBn−1−2m

=

bn−1
2
c∑

m=0

(−1)m
(
n− 1−m

m

)
(2P)n−1−2m = Un−1(P).
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Theorem 3.8. The non–null blocks for the overdetermined partial resolvent kernels are given by
the following expressions.

(i) For all j = 1, . . . , `− 1 and n = 0, . . . , `+ 1− j, it is satisfied that

G̃j+n j = − 1

cj+1
Mn(cj+1, . . . , c`+1;Qj+1, . . . ,Q`)

and moreover, G̃` ` = 0 and G̃`+1 ` = − 1

c`+1
I.

(ii) For all n = 0, . . . , `+ 1, it is satisfied that

P̃n 1 = Kn(c1, . . . , c`+1;Q1, . . . ,Q`) + Mn(c1, . . . , c`+1;Q1, . . . ,Q`)

whereas for all j = 2, . . . , ` and n = 0, . . . , `+ 2− j, it holds

P̃j−1+n j = − 1

cj
Mn(cj , . . . , c`+1;Qj , . . . ,Q`)C,

and moreover P̃` `+1 = 0 and P̃`+1 `+1 = − 1

c`+1
C.

(iii) For all n = 1, . . . , `+ 1, it is satisfied that

R̃n = − 1

c1
Mn(c1, . . . , c`+1;Q1, . . . ,Q`), n = 1, . . . , `+ 1.

Proof. In all cases the claimed expression for the corresponding resolvent kernel follows applying
Proposition 3.6 to a suitable initial value problem that we describe explicitly below.

(i) Fixed j = 1, . . . , `−1, we consider ak = cj+1+k, Zk = G̃j+k,j and Bk = Qj+k, k = 0, . . . , `−j,
then {Zk}`+1−j

k=0 is the unique solution of the initial value problem

akZk+1 − BkZk + ak−1Zk−1 = 0, k = 1, . . . , `− j, Z0 = 0, Z1 = − 1

cj+1
I.

(ii) Fixed j = 2, . . . , `, we consider ak = cj+k, Zk = P̃j−1+k,j and Bk = Qj+k−1 k = 1, . . . , `+

1− j, then {Zk}`+2−j
k=0 is the unique solution of the initial value problem

akZk+1 − BkZk + ak−1Zk−1 = 0, k = 1, . . . , `+ 1− j, Z0 = 0, Z1 = − 1

cj
C.

(iii) We consider ak = ck+1, k = 0, . . . , `, Z0 = R̃0, Zk = R̃k and Bk = Qk, k = 1, . . . , `, then
{Zk}`k=0 is the unique solution of the initial value problem

akZk+1 − BkZk + ak−1Zk−1 = 0, k = 1, . . . , `, Z0 = 0, Z1 = − 1

c1
I.

Corollary 3.9. When the path has constant conductances; i.e., ci = a > 0 for all i = 1, . . . , `+ 1,

then Qi = Lqω(H;H) + 2aI, i = 1, . . . , `. Moreover, defining P =
1

2a
Lqω(H;H) + I it is satisfied that
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(i) For all j = 1, . . . , ` and n = 0, . . . , `+ 1− j,

G̃j+n j = −1

a
Un−1(P).

(ii) For all j = 1, . . . , `+ 1 and n = 0, . . . , `+ 2− j,

when j = 1, P̃n 1 = Un−1(P)− Un−2(P) and when j ≥ 2, P̃j−1+n j = −1

a
Un−1(P)C.

(iii) For all n = 1, . . . , `+ 1,

R̃n = −1

a
Un−1(P).
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