
Parallelization of BiCGMisR method with Cache-Cache Elements preconditioning

XIII International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XIII

E. Oñate, D.R.J. Owen, D. Peric & M. Chiumenti (Eds)

PARALLELIZATION OF BICGMISR METHOD WITH
CACHE-CACHE ELEMENTS PRECONDITIONING

K. Iwasato∗ and S. Fujino†

∗ Graduate School of Information Science and Electrical Engineering, Kyushu University
6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan

e-mail: onigili9@gmail.com

†Research Institute for Information Technology, Kyushu University
6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan

e-mail: fujino@cc.kyushu-u.ac.jp

Key words: Parallel Computing, Synchronization, BiCGMisR method

Abstract. We consider Krylov subspace methods for solving a linear system of equations
on parallel computer with distributed memory. For speed-up of parallel computation, it
is necessary to shorten the communication time among processors. However, in paral-
lelized Krylov subspace methods, global synchronization points for inner products cause
increment of communication time. Thus, we created the strategy for reduction of synchro-
nization points of parallel Krylov subspace methods. We transform the computation of
parameter βk to reduce the number of synchronization points of various Krylov subspace
methods per one iteration. In this paper, we apply this strategy to three-term recurrence
and propose parallel BiCGMisR method as the effective solver suited to parallel computer
with distributed memory. Furthermore, through several numerical experiments, we make
clear that parallel BiCGMisR method outperforms other methods from the viewpoints of
both elapsed time and speed-up on parallel computer with distributed memory.

1 Introduction

We consider Krylov subspace methods for solving a linear system of equations Ax = b
where A ∈ RN×N is a given non-symmetric matrix. Vectors x and b are a solution
vector and a right-hand side vector, respectively. For speed-up of parallel computation,
it is necessary to shorten the communication time between processors. However, global
synchronization for inner products causes great increment of communication time in par-
allelized Krylov subspace methods.

Among many Krylov subspace methods, product-type of Krylov subspace methods,
e.g., BiCGStab and GPBiCG[5] methods are often used for the purpose of solution for

1087

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

K. Iwasato and S. Fujino

realistic problems. GPBiCG method, however, needs three times for synchronizations per
one iteration.

BiCGSafe (with safety convergence) method[2] using the strategy of associate residual
was proposed in 2005. This strategy leads to reduce the number of synchronization from
three to two times per one iteration. Furthermore, the variants of GPBiCG method[1]
improved GPBiCG itself by using the three-term recurrence which is similar to the one
for the Lanczos polynomials. These variants of GPBiCG method reduced the number of
synchronization points to two times from three times per one iteration.

Then, we propose BiCGMisR(Minimization with safety Residual) method as the ef-
fective solver suited to parallel computer with distributed memory. BiCGMisR method
applies the strategy of minimization using safety residual and three-term recurrence as
stabilized polynomial. BiCGMisR method reduced the number of synchronization points
to single one from two times per one iteration. Therefore, we can expect that BiCGMisR
method outperforms other methods in parallel computing.

In this paper, we evaluate performance of parallel computing of BiCGMisR method.
Through several numerical experiments, we make clear that BiCGMisR method outper-
forms other methods from the viewpoints of both elapsed time and speed-up on parallel
computer with distributed memory.

This paper is organized as follows: In section 2, we describe a basic idea of GPBiCG
method and its variants. In section 3,4, we describe also a basic idea of BiCGSafe method,
and present an algorithm of BiCGMisR method. In section 5, we show diagram of Flat
MPI parallelization. In section 6, results of several parallelized Krylov subspace methods
will be shown, and it will be made clear that the parallelized BiCGMisR method outper-
forms other methods on parallel computer with distributed memory. Finally, in section
7, we have concluding remarks.

2 GPBiCG method and its variants

2.1 Basic idea of GPBiCG

The Lanczos polynomial Rk(λ) and the auxiliary polynomial Pk(λ) satisfy the following
two-term recurrence relation as

R0(λ) = 1, P0(λ) = 1, (1)

Rk(λ) = Rk−1(λ)− αk−1λPk−1(λ), (2)

Pk(λ) = Rk(λ) + βk−1Pk−1(λ), k = 1, 2, · · · , (3)

according to the notation used in Ref.[1]. Here, λ means an eigenvalue of a matrix. We
introduce the two parameters ζk and ηk. The stabilized polynomial Hk(λ) satisfies the
three-term recurrence relation as

H0(λ) = 1, H1(λ) = (1− ζ0λ)H0(λ), (4)

Hk+1(λ) = (1 + ηk − ζkλ)Hk(λ)− ηkHk−1(λ), k = 1, 2, · · · . (5)

1088

K. Iwasato and S. Fujino

The polynomial Hk+1(λ) which is produced by eqns.(4)-(5) satisfies Hk+1(0) = 1 and the
relation as Hk+1(0)−Hk(0) = 0 for all k. We set an auxiliary polynomial Gk(λ) as

Gk(λ) = −(Hk+1(λ)−Hk(λ))/λ. (6)

As a result, we have the following coupled two-term recurrence of the form as

H0(λ) = 1, G0(λ) = ζ0, (7)

Hk(λ) = Hk−1(λ)− λGk−1(λ), (8)

Gk(λ) = ζkHk(λ) + ηkGk−1(λ), k = 1, 2, · · · . (9)

We introduce the residual vector rk as rk := Hk(λ)Rk(λ)r0. Here, the vector r0 is the
initial residual vector. The recurrence parameters ζk, ηk are decided from local minimiza-
tion of the residual vector of 2-norm ||rk+1||2. The Lanczos parameters αk, βk are decided
from the following equations.

αk = (r̃0, rk)/(r̃0, Apk), (10)

βk = − (r̃0, Atk)

(r̃0, Apk)
=

αk(r̃0, rk+1)

ζk(r̃0, rk)
. (11)

2.2 Variants of GPBiCG method

We indicate the variant[1] of GPBiCG method. We apply eqns.(4)-(5) as stabilized
polynomials. Here, we can compute the Lanczos coefficients αk and βk according to the
same computation shown as eqns.(10)-(11). The recurrence parameters ζk and ηk are
decided from local minimization of the residual vector of 2-norm.

3 Basic idea of BiCGMisR method

We apply eqns.(1)-(3), (7)-(9) to devise of BiCGMisR method. The coefficients αk,
βk can be gained according to the same computation shown as eqns.(10)-(11). It is
known that two parameters ζk and ηk are determined by solving the two-dimensional
local minimization of the norm of product-type residual rk+1 in GPBiCG method. The
residual vector rk+1, however, does not involve both parameters ζk, ηk in the update of
residual vector. Appearance of another idea needs for overcoming this issue. Therefore,
the key idea is to focus on a safety residual vector defined by the next recurrence. The
safety residual vector s rk is defined as below.

s rk := rk − ζkArk − ηkyk. (12)

Note that the recurrence (12) is not computed in the iterative loop as it is. We utilize the
recurrence (12) only for the recurrence parameters ζk and ηk. We call this idea strategy
of minimization of a safety residual.

1089

K. Iwasato and S. Fujino

4 Algorithm of BiCGMisR method

We derive BiCGMisR method from eqns. (1)-(3) and (4)-(5). The coefficient βk can
be gained as

βk =
(ATr̃0, rk − αkApk)

(r̃0, Apk)
=

(ATr̃0, rk)− αk(A
Tr̃0, Apk)

(r̃0, Apk)
. (13)

The coefficient αk can be computed as well as eqn.(10). Then, we show the algorithm
of BiCGMisR method as below.

Algorithm 1: BiCGMisR method

1. Let x0 be an initial guess, Compute r0 = b−Ax0,

2. Choose r̃0 such that (r̃0, r0) ̸= 0

3. Compute Ar0, ATr̃0, p0 = r0, Ap0 = Ar0,

4. u−1 = q−1 = v−1 = 0

5. for k = 0, 1, . . . do

6. yk = uk−1 − rk

7. if ||rk||/||r0|| ≤ ϵ stop

8. αk = (r̃0, rk)/(r̃0, Apk)

9. βk =
(ATr̃0, rk)− αk(A

Tr̃0, Apk)

(r̃0, Apk)

10. ζk =
(yk,yk)(Ark, rk)− (Ark,yk)(yk, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)

11. ηk =
(Ark, Ark)(yk, rk)− (Ark,yk)(Ark, rk)

(Ark, Ark)(yk,yk)− (Ark,yk)(yk, Ark)

(if k = 0 then ζk = (Ark, rk)/(Ark, Ark), ηk = 0)

12. s rk = (1 + ηk)rk − ζkArk − ηkuk−1

13. tk = (1 + ηk)xk + ζkrk − ηkvk−1

14. wk = (1 + ηk)pk − ζkApk − ηkqk−1

15. Compute Awk

16. uk = rk − αkApk

17. vk = xk + αkpk

18. rk+1 = s rk − αkAwk

19. xk+1 = tk + αkwk

20. Compute Ark+1

21. qk = uk − βkpk

22. pk+1 = rk+1 − βkwk

23. Apk+1 = Ark+1 − βkAwk

24. end do

1090

K. Iwasato and S. Fujino

Figure 1: Diagram of Flat MPI parallelization

5 Flat MPI parallelization

In this section, we describe briefly Flat MPI (Message Passing Interface) paralleliza-
tion. Fig.1 shows diagram of Flat MPI parallelization. The blue blocks in dotted line
mean processors of P0, P1, P2 and P3. The orange blocks in thick line mean local mem-
ory of processors. Flat MPI parallelization is well known as parallelization on distributed
memory architectures. Each processor has own local memory and CPU. However, each
processor can’t access local memory in other processors. Therefore, it needs communica-
tion to refer data on local memory in other processors.

6 Numerical Examinations

6.1 Parallel computational environment and conditions

All computations were done in double precision floating point arithmetic of Fortran90,
and performed on Fujitsu PRIMERGY CX400 (CPU: Intel Xeon E5-2680, main memory:
128Gbytes, OS: Red Hat Linux Enterprise, total nodes: 1476 nodes, cores: 16cores/1node).
Intel compiler optimum option “-O3” were used. Process parallelization was done by MPI
library. Stopping criterion of iterative methods is less than 10−8 of the relative residual
2-norm ||rk+1||2/||b− Ax0||2. In all cases the iteration was started with the initial guess
solution x0 = (0, 0, . . . , 0)T. We adopted uniform random numbers as the initial shadow
residual r̃0. Measurement of the elapsed time was done by system function of gettime-
ofday. All test matrices were normalized with diagonal scaling. Maximum iteration was

1091

K. Iwasato and S. Fujino

fixed as 100,000. Number of process varied as 1, 16, 32, 64, 128 and 256. Measurements
of the elapsed time per each matrix were done at five times.

6.2 Numerical results

Test matrices are derived from Florida Sparse Matrix Collection[4]. Characteristics of
test matrices for parallelization are exhibited in Table 1. In Table 1, “nnz” means number
of nonzero entries, and “ave. nnz” means average number of nonzero entries per one row.

Table 1: Characteristics of test matrices.

matrix dimension nnz ave. nnz
Freescale1 3,428,755 18,920,347 5.5
air-cfl5 1,536,000 19,435,428 12.7
atmosmodd 1,270,432 8,814,880 6.9
tmt unsym 917,825 4,584,801 5.0
epb3 84,617 463,625 5.5

We present parallel performance of Hybrid-version GPBiCG, GPBiCG v1, GPBiCG v2,
BiCGSafe and BiCGMisR method for matrix atmosmodd in Table 2. “TRR(True Relative
Residual)” for the approximated solutions xk+1 means log10(||b − Axk+1||/||b − Ax0||).
The bold figures means the least time.

• “np”, “Mv”, “Mv-t.” and “itr-t.” mean the number of processors, the number
of Matrix-vector multiplications, elapsed time of Matrix-vector multiplication. and
elapsed time of iteration part except for Matrix-vector multiplication, respectively.

• “ratio”, “sp-up ratio1” and “sp-up ratio2” indicate the ratio of “itr-t.” to that of
GPBiCG, speed-up ratio based on total elapsed time and speed-up ratio based on
average elapsed time per one iteration, respectively.

• “percentage” indicates percentage [%] of “itr-t.” time in total elapsed time.

From Table 2, we see that the speed-up based on average elapsed time of BiCGMisR
method shows around 124. times. Furthermore, BiCGMisR method converged the fastest
among several methods. BiCGMisR method outperforms other iterative methods from
the viewpoints of both the speed-up and average elapsed time.

In Fig.2, we present comparison of speed-up ratio of several methods for matrix at-
mosmodd in view of “sp-up ratio2” as shown in Table 2. From Fig.2, we see that BiCG-
MisR method has the highest speed-up ratio at 256 processors for matrix atmosmodd as
well as the highest at single processor.

1092

K. Iwasato and S. Fujino

Table 2: Parallel performance of Flat-version of several Krylov subspace methods for matrix atmosmodd.

method np Mv Mv-t. itr-t. ratio tot-t. sp-up ave-t. sp-up percen- TRR
[s.] [s.] [s.] ratio1 [ms.] ratio2 tage[%]

GPBiCG 1 506 - - - 17.915 1.00 35.405 1.00 - -8.11
8 470 1.225 0.581 1.00 1.807 9.91 3.845 9.21 32.17 -8.15
16 500 0.675 0.327 1.00 1.002 17.88 2.004 17.67 32.66 -8.10
32 480 0.381 0.149 1.00 0.529 33.87 1.102 32.13 28.09 -8.15
64 494 0.288 0.207 1.00 0.495 36.19 1.002 35.33 41.78 -8.05

128 502 0.148 0.120 1.00 0.267 67.10 0.532 66.57 44.69 -8.18
256 496 0.072 0.076 1.00 0.148 121.05 0.298 118.66 51.34 -8.01

GPBiCG v1 1 506 - - - 16.894 1.00 33.387 1.00 - -8.08
8 500 1.249 0.748 1.29 1.997 8.46 3.994 8.36 37.48 -8.34
16 496 0.653 0.375 1.15 1.029 16.42 2.075 16.09 36.49 -8.15
32 478 0.371 0.172 1.15 0.543 31.11 1.136 29.39 31.61 -8.02
64 494 0.283 0.220 1.06 0.502 33.65 1.016 32.86 43.71 -8.03

128 496 0.167 0.100 0.83 0.266 63.51 0.536 62.26 37.40 -8.04
256 500 0.142 0.052 0.68 0.194 87.08 0.388 86.05 26.80 -8.35

GPBiCG v2 1 492 - - - 16.844 1.00 34.236 1.00 - -8.02
8 502 1.218 0.773 1.33 1.991 8.46 3.966 8.63 38.80 -8.06
16 524 0.682 0.393 1.20 1.076 15.65 2.053 16.67 36.57 -8.16
32 500 0.381 0.176 1.18 0.556 30.29 1.112 30.79 31.61 -8.18
64 504 0.289 0.216 1.04 0.505 33.35 1.002 34.17 42.74 -8.32

128 470 0.155 0.099 0.83 0.255 66.05 0.543 63.10 38.87 -8.13
256 504 0.140 0.054 0.71 0.194 86.82 0.385 88.94 27.95 -8.29

BiCGSafe 1 500 - - - 14.588 1.00 29.176 1.00 - -8.37
8 476 1.245 0.411 0.71 1.656 8.81 3.479 8.39 24.84 -8.05
16 500 0.691 0.241 0.74 0.932 15.65 1.864 15.65 25.85 -8.48
32 528 0.422 0.114 0.77 0.537 27.17 1.017 28.69 21.30 -8.28
64 498 0.290 0.179 0.86 0.470 31.04 0.944 30.91 38.18 -8.07

128 494 0.143 0.096 0.80 0.240 60.78 0.486 60.05 40.14 -8.05
256 504 0.074 0.054 0.71 0.128 113.97 0.254 114.88 42.38 -8.08

BiCGMisR 1 478 - - - 14.241 1.00 29.793 1.00 - -8.05
8 480 1.571 0.323 0.56 1.895 7.52 3.948 7.55 17.07 -8.05
16 494 0.804 0.178 0.54 0.982 14.50 1.988 14.99 18.11 -8.01
32 518 0.479 0.084 0.56 0.564 25.25 1.089 27.36 15.00 -8.05
64 506 0.337 0.136 0.66 0.473 30.11 0.935 31.87 28.74 -8.18

128 496 0.167 0.068 0.57 0.235 60.60 0.474 62.88 29.06 -8.07
256 500 0.078 0.041 0.54 0.120 118.68 0.240 124.14 34.63 -8.22

1093

K. Iwasato and S. Fujino

Figure 2: Comparison of speed-up ratio of several methods for matrix atmosmodd.

7 Conclusions and Future work

In this paper, we proposed parallel BiCGMisR method based on two strategies. One of
them adopts three-term recurrences as stabilized polynomials, and another of them adopts
a minimization technique of a safety residual vector of 2-norm for computing parameters
ζk and ηk. Through numerical experiments, we demonstrated that BiCGMisR method
outperforms other methods in view of computational times in parallel computing. Near
future work is that we will derive parallel BiCGMisR method with the CCE (Cache-
Cache Elements)[3] preconditioning and examine performance of parallel BiCGMisR with
the CCE preconditioning.

REFERENCES

[1] Abe, K., Sleijpen, G.L.G.: Solving linear equations with a stabilized GPBiCG
mehtod, Appl. Numer. Math., doi:10.1016/j.apnum.2011.06.010, 2011.

[2] Fujino, S., Fujiwara, M., Yoshida, M.: A proposal of preconditioned BiCGSafe
method with safe convergence, Proc. of The 17th IMACSWorld Congress on Sci-
entific Computation, Appl. Math. Simul., CD-ROM, Paris, France, 2005.

[3] Fujino, S., Itou, C., Iwasato, K., Cache-Cache balancing technique for Eisenstat
type of preconditioning for parallelism, PMAA14, Universita della Svizzera italiana,
Lugano, Switzerland, July 2-4, 2014.

[4] Spares Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices/index.html

[5] Zhang, S.: GPBiCG: Generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems, SIAM J. Sci. Comput., Vol.18, pp.537-551, 1997.

1094

