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Abstract. This document presents a parallelized implementation of a FEM formulation
concerning both the upper and lower bound limit analysis theorems. By applying these
methods to evaluate the stability of a vertical cut (i.e. vertical slope) in drained and
undrained conditions, it is possible to discuss the efficiency of this strategy.

1 INTRODUCTION

The prediction of the maximum load that can be supported by a structure, known as
collapse load, is a fundamental problem in civil engineering. For the analysis of mechani-
cal structures subject to noncyclic loading and presenting a perfect plastic behaviour, the
limit analysis theorems have proven to give good results and to be an efficient and compet-
itive strategy comparing with other methods. The static and kinematical limit analysis
theorems allow the computation of both the lower and upper bounds for the collapse
loads of these mechanical structures. Nowadays, and in spite of the remarkable evolu-
tion of computers performance, the determination of accurate collapse load estimates can
still represent a significant computational effort. In fact, when strict high quality bounds
solutions are searched, it is required a high degree refinement of the mesh, and thus sub-
stantial CPU and RAM resources, particularly for 3D problems. The alternating direction
method of multipliers (ADMM) technique has been used by the authors to solve these
problems, due to its iterative solution scheme based on an operator splitting algorithm,
which is not only easy to implement but also suitable to efficiently solve large-scale vari-
ational problems with parallel processing. In this work, after a brief description of these
numerical formulations, the results of its application to evaluating the stability of vertical
cut are presented and some conclusions are drawn.
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2 NUMERICAL FORMULATION

As it is usual in limit analysis, an optimization problem is formulated. In this paper,
two complementary finite element analysis problems based on the kinematical and the
static theorems are presented in order to determine an upper and a lower bound of the
true collapse load multiplier of a mechanical structure, respectively. These problems have
a significant number of decision variables and constraints. To obtain its solutions the
ADMM algorithm has been used by the authors, because it is a very versatile and robust
(practically never fails to converge) technique and is also inherently parallelizable [1].
This algorithm has an iterative solution scheme based on an operator splitting algorithm
leading to two subproblems. The first results in a quadratic unconstrained problem,
easily solvable through a linear system of equations. Conveniently, the governing system
matrix remains unaltered during the entire iterative process. In fact, all the modifications
appearing during the iterative process affect only the right hand side term. Therefore,
a single matrix factorization procedure is needed throughout the whole iterative process.
The second subproblem collects all the nonlinear parts of the original problem and consists
in a sum of small independent optimization problems. In most cases of practical interest,
using nonsmooth techniques to deal with not everywhere differentiable function, it is
possible to derive closed-form solutions. Otherwise, special-purposed algorithms can be
applied efficiently. In summary, the first subproblem (global minimization) takes into
account the contribution of all finite elements simultaneously, while the second subproblem
(local minimization) is carried out at element level, meaning that it is solved independently
for each element [2].

2.1 Kinematical limit analysis theorem

Based on the kinematical theorem, the search for an upper bound (UB) of the collapse
load multiplier, λ (λ ∈ R

+), of a mechanical structure can be formulated as the following
mathematical minimization problem:

minimize λ(u̇, ε̇) =

∫

Ω

D(ε̇) dΩ− Π̃(u̇)

subject to u = 0 in Γu

ε̇ = Bu̇ in Ω

ε̇ ∈ Cc

Πλ(u̇) =

∫

Ω

bTλ u̇ dΩ+

∫

Γσ

tTλ u̇ dΓσ = 1

(1)

where u denotes the displacement field, u̇ the velocity field, ε̇ the plastic strain rate,
B the differential compatibility operator and D the plastic energy dissipation rate per
unit volume (expressed in terms of kinematic fields only [3]). The structure is submitted
to a given distribution of a set of constant loads: body loads, b on the domain Ω and
external surface forces, t on the static boundary Γσ. These loads are divided in constant
loads (defined with the overline “∼” symbol) and the loads affected by the load multiplier
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(defined with the subscript “λ” symbol). The first two equations from the problem (Eq.
1) establish, respectively, the compatibility conditions in the kinematic boundary, Γu, and
on the domain. The next equation, enforces the normality plastic flow rule by defining Cc

as the space formed by all plastically admissible strain states (orthogonal to the yielding
surface in at least one point [3]). Finally, the last constraint scales the external work rate
for the variable loads, Πλ(u̇).

For each finite element i (of the total number of finite elements, nE), two independent
and simultaneous approximations are adopted for the velocity field and for the plastic
strain rate (Eq .2). For the velocity field approximation (d(i)), quadratic nodal shape
functions (Q(i)) are adopted, using 10-node tetrahedral elements. For the plastic strain
field approximation (e(i)), linear nodal shape functions (L(i)) using 4-node tetrahedral
elements are adopted [4].

u̇(i) = Q(i)d(i) ; ε̇(i) = L(i)e(i) (2)

The ADMM algorithm [1] is used to find the optimal solution of the problem expressed
by equation 1. This scheme, as shown in Table 1, is a cyclic k iteration with a two steps
minimization procedure followed by a third stage where the Lagrange multiplier, µ, is
updated.

In Table 1, µλ represent the Lagrange multiplier (of the equation that scales the external
work rate), r denotes the penalty parameter and A0 is an diagonal matrix where the entries
are equal to 1 except those affecting the shear strain components with a value equal to
1
2
. The assemblage procedure of A, f(ek, µk) and Fλ (nodal force vector) follows the

procedure normally applied to the finite element method (FEM),

f(ek, µk) = F̃ +

nE∑

i=1

∫

Ω(i)

(BQ(i))TA0(re
(i)
k − µ

(i)
k ) dΩ

A =

nE∑

i=1

∫

Ω(i)

(BQ(i))TA0(BQ(i)) dΩ

Fλ =

nE∑

i=1

∫

Ω(i)

(Q(i))T b
(i)
λ dΩ+

∫

Γ
(i)
σ

(Q(i))T t
(i)
λ dΓσ

(3)

The local minimization process for each point j of the total number of points of the
finite element mesh, np, starts by computing the principal axes of s(j) (that are coincident
with the principal axes of the tensor e(j) [5]) using an eigenvalue decomposition. In
the principal space the stationary point of the objective function without constraints
is computed. If the solution belongs to the feasible domain (if it complies with the
nonlinear constraint), it matches the optimal solution, otherwise it is necessary to project
the stationary solution onto the feasible domain. In [6, 7] it can be found the description
in detail of this projection and the assemblage process of all the operators presented in
table 1.
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Table 1: ADMM solution scheme for kinematical theorem

Global minimization

minimize LG(dk, µλk) = µλk(1− F T
λ dk)− f(ek, µk)

Tdk +
r

2
dTkAdk

solution:

[
rA Fλ

F T
λ 0

] [
dk
µλk

]
=

[
f(ek, µk)

−1

]

Local minimization

minimize LL(e
(j)
k ) = D(e

(j)
k )− s

(j)
k

T
A0e

(j)
k +

r

2
e
(j)
k

T
A0e

(j)
k

subject to s
(j)
k = µ

(j)
k + rBQ(j)d

(j)
k

e
(j)
k ∈ Cc

Update Lagrange multiplier

µ
(j)
k = µ

(j)
k−1 + r(BQ(j)d

(j)
k − e

(j)
k )

2.2 Static limit analysis theorem

Based on the static theorem, the search for a lower bound (LB) of the collapse load
multiplier, can also be formulated as a mathematical maximization problem with three
constraints. Two equations establish the equilibrium conditions on the domain and in the
static boundary and one inequality enforces the yield condition. Like in the kinematic
theorem, for each finite element i two independent and simultaneous approximations are
adopted. The ADMM algorithm [1] finds the optimal solution of this problem through
a cyclic k iteration scheme defined with a two step minimization procedure followed by
a third stage where the Lagrange multiplier is updated. The local minimization process
follows the same scheme presented earlier, but in this case the minimization is performed
in order to the stresses and the feasible domain is defined by f(σ) ≤ 0.

2.3 Parallelization technique

The parallelization of the solution schemes (table 1) have been implemented as follows:

- Local minimization and update lagrange multiplier: both these stages of the algo-
rithm are entirely suitable for parallelization, as mentioned previously. In short,
these processes are performed independently for each element, meaning that each
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Figure 2: Undrained vertical cut problem: Comparison with previous results

visible) and symmetric faces. For the lower bound analsysis, the applied stress (normal σn

and shear τ) boundary condition are given. The figure 1 presents a coarse finite element
partition. The volume is divided in an orthogonal grid where each division is discretized
by 24 tetrahedrons. In the present work, tetrahedra with ten nodes define the mesh for
the kinematic theorem and for the static theorem the mesh is composed by tetrahedra
with four nodes.

4 RESULTS

The calculations presented in this work were performed in a cluster of 48 nodes, with
a maximum 4Gb of RAM per node. The available resources were used at their maximum
capacity in all the calculations. This implies that the size of the mesh elements depends
on the dimensions of the model treated, meaning that, as the value of L grows, the meshes
get coarser. The discretization is similar for the UB and LB cases, the difference residing
in the fact that the UB calculation use ten nodes tetrahedra and the LB use four node
tetrahedra. The results obtained are presented in figures 2 and 3. In these figures are
also presented the results from UB and LB approaches of other authors ([9] and [10]) and
the results issuing from a UB approach obtained previously by some of the authors of the
present work [8].

As referred previously, two types of calculations, as the behaviour of the soil is con-
cerned, were performed: undrained conditions and drained conditions. The stability of the
undrained vertical cut problem is represented in figure 2. As expected the UB obtained
are very close to the previously obtained by [8]. They represent a clear improvement
regarding the UB results of [9] and [10]. Concerning the results of the LB approach there
is also an improvement of the best result known in the literature. However this improve-
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Figure 3: Drained vertical cut problem with φ′ = 30◦: Comparison with previous results

ment is, in this case, a small one. The results obtained allow to say that, for practical
purpose from an engineering point of view, the stability number is known. In fact, the
error of the calculations is at most equal to 2% which encloses the collapse solution with
great accuracy.

The calculations for the drained conditions consider a friction angle of 30◦ and a c′

equal to 1 KPa. The results obtained are presented in figure 3. It can be observed that
the UB result of the present work improves considerably the best result known in the
literature, except for L

H
= 5. As in the undrained case, the UB and LB results are almost

coincident, but in this case the variation is less than 4% which also correspond to a good
accuracy. In both cases (undrained and drained conditions) the stability number γH

c
will

reduce with increasing L/H ratio.
For the undrained problem, the meshes for L/H=1 and L/H=5 cases are shown in

figures 4 and 5, respectively. For the drained case analyzed, the meshes for L/H=1 and
L/H=5 cases are shown in figures 6 and 7, respectively. The meshes resulting from the UB
computations are represented in its deformed shape and include the plastic dissipation
pattern. For the static theorem, the figures present the yield function pattern. From
these figures it can be seen that:

- The deformed mesh shows that the mechanism is formed by three zones: The first
zone the soil rest in place with no dissipation, the second zone is defined by a
high plastic dissipation (shear surface), and finally the third zone the soil has no
dissipation but move out of the soil mass like a rigid body;

- The shear surface (failure surface) has the shape of a curvilinear cone [11];
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(a) Deformed mesh and plastic dissipation (UB) (b) Yield function (LB)

Figure 4: Undrained vertical cut problem with L/H=1

(a) Deformed mesh and plastic dissipation (UB) (b) Yield function (LB)

Figure 5: Undrained vertical cut problem with L/H=5

- For the same L/H, the plastic dissipation (UB) and the yield function (LB) are very
similar;

- As expected, the UB meshes results of the purely cohesive soil (figures 4a and 5a)
coincide with the graphical results reported previously by our team [8];

- A slope with frictional soil have a more vertical sliding surface than a slope with
cohesive soil, so the mobilized mechanism is smaller.

Collecting both information, it can be concluded that the appearance of the slipe
surface (second zone of the mechanism) influence significantly the stability number. With
the increasing of the L/H ratio the influence of the proximity of the end surface decreases,
so the contribution of the two curved ends relative to the straight slip surface will decrease,
leading to more unstable slopes.
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(a) Deformed mesh and plastic dissipation (UB) (b) Yield function (LB)

Figure 6: Drained vertical cut problem with L/H=1

(a) Deformed mesh and plastic dissipation (UB) (b) Yield function (LB)

Figure 7: Drained vertical cut problem with L/H=5

5 CONCLUSIONS

In this document, the fundamentals of the numerical parallel implementation of a FEM
formulation concerning both the upper and lower bound limit analysis theorems were
briefly presented. The vertical slope in drained (with φ′ = 30◦) and undrained condition
examples were analyzed. Due to the small gap between the upper and lower bound limits
a good estimate of the exact solution can be inferred. The graphical representation for
both theorems also shows a great agreement between the plasticity zone obtained by the
two approaches. These results confirm the effectiveness of the parallel limit analysis strat-
egy advocated in this work and encourage its use in the study of further geomechanical
problems.
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