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Abstract. A meso-scale model is used to model a masonry structure where bricks are
modelled using finite volume elements and mortar joints are modelled using finite interface
elements. A plasticity based cohesive zone model is used for the interfaces as cracks mainly
propagate at the mortar joints. To avoid numerical problems associated with snapbacks
observed in experiments on masonry walls, a dissipation based arc-length method is used
to trace the static equilibrium path. Finally, a numerical simulation of a shear test on a
2× 1.5 brick wall is performed.

1 INTRODUCTION

Vibration induced damage to structures due to sources of low to moderate amplitude,
such as road traffic and construction activities, is a common concern. Damage can be
classified as direct damage due to an excessive response of structural members in the case
of moderate amplitude vibrations, such as construction activities, or as damage due to
long term exposure to low amplitude vibrations, such as road traffic, which can result in
fatigue damage or foundation settlements. The versatility of damage mechanisms makes
it difficult to establish general limit values for vibration related damage and motivates a
numerical investigation of the mechanical behaviour of brittle construction materials.

For the modelling of the constitutive behaviour of masonry, a homogenized criterion is
often used [1], where the constitutive relations are described on the macro-scale. However,
for a non-linear orthotropic composite such as masonry, the representation of full dam-
age induced anisotropy remains complex and involves difficult parameter identification
procedures.

The limitations of homogenized models for masonry have motivated the development
of meso-scale models [2, 3], where more straightforward constitutive laws are formulated
on the mesoscopic scale. A popular approach is to use finite volume elements for the
bricks and finite interface elements for the joints [4]. As the possible crack locations are
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mainly located at the mortar joint, a plasticity based cohesive zone model is used for
the interface elements [4, 5]. To improve the efficiency, these meso-scale models can be
incorparated in a multi-scale approach [6].

Because of the brittle nature of masonry, special attention has to be paid to the global
solution strategy. Macorini et al. [4, 7] use a dynamic analysis to avoid numerical problems
associated with the sudden release of elastic energy when cracks propogate in the masonry.
The stability of these methods strongly depends the damping and mass matrices. In order
to assess the effect of soil settlement, a static solution method can be used. Therefore, an
arc-length method is often used [8]. However, for many materially non-linear problems the
global norms used in these methods are inappropriate and a different constraint equation
has to be used. Verhoosel et al. [9] proposed a dissipation based arc-length method. The
constraint equation is based on the rate of energy dissipation which is equal to the exerted
power minus the rate of elastic energy. This method is only applicable for dissipative parts
of the equilibrium path. A second alternative is an adaptive path following scheme [10]
where, for every load increment, a control region is identified where control parameters
in the constraint equation are evaluated. This region changes with the propagation of
damage.

In this paper, the meso-scale model for masonry proposed by Macorini et al. [4] is used.
In the first section the mesoscale model and the constitutive behaviour of the interface
element are covered in more detail. To obtain a global solution, a dissipation based arc-
length method is used [9]. In the last section, two numerical examples on a single interface
element and a direct shear test on a small brick assembly are performed.

2 MESOSCALE MODEL FOR MASONRY

The 3D meso-scale model proposed by Macorini et al. [4] is used. Bricks are mod-
elled using linear elastic finite volume elements and mortar joints are modelled with two-
dimensional interface elements. Additionally, interface elements are added in the vertical
mid-plane of the bricks to account for possible failure of the units (figure 1). Linear elastic
material behaviour is assumed for the solid elements, whereas the 2D interface elements
account for the material nonlinearity of masonry as cracks propogate most often in the
mortar joints [4, 7]. This methodology allows to model structural details at the meso-
scale, properly accounting for interaction of the masonry with other structural parts such
as lintels at windows and door openings.

2.1 Interface model

An interface element consists of two faces corresponding either to the faces of two
solid elements bound through a mortar layer or to adjacent faces of solid elements for a
single brick. Initially, the two faces are coincident. An elasto-plastic contact law based
on a Mohr-Coulomb criterion is used to model failure in tension and shear. The material
model is defined within the framework of plasticity [11], taking into account the softening
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Figure 1: Mesoscale model of masonry using solid elements and non-linear interface elements [4].

behaviour of masonry [11].
The local material model is formulated in terms of tractions and relative displacements

of the two faces of the interface element. A local frame of reference is defined where
the x- and y-axis lie in the plane of the interface element and the z-axis is normal to
the plane as shown in figure 2a. The traction vector and relative displacement vector are
t = {tx, ty, tz}T and ur = {ur

x, u
r
y, u

r
z}T. Once the interface starts yielding, the incremental

relative displacement vector can be decomposed into an elastic and a plastic part:

dur = due + dup (1)

(a)

x
y

z

(b)

tz

√
t2x + t2y

c

χ
tanφf = 0

Figure 2: (a) Local frame of reference and (b) hyperbolic yield surface for the interface element.

A hyperbolic yield surface is adopted (figure 2b) which has a smooth transition from
the Mohr-Coulomb criterium under compression to tension cut-off under pure tension
[12, 13], so that numerical problems associated with the Mohr-Coulomb cone are avoided.
The yield surface is defined by the tensile strength χ, cohesion c and friction angle φ of
the interface material:

f = −(c− tz tanφ) +
√

t2x + t2y + (c− χ tanφ)2 = 0 (2)
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The evolution of the yield surface is controlled by the history variable W p which is a
measure for the work done during the fracture process [3]. The increment of the history
variable is given by:

dW p =

�
tdup if tz ≥ 0 (tension)��

t2x + t2y + tz tanφ
��

(dup
x)

2
+ (dup

y)
2

if tz < 0 (compression)
(3)

In tension, all dissipated plastic work is used to form a tensile crack. In compression,
however, the total dissipated work also includes heat production due to friction which
does not contribute to crack formation. This is accounted for in W p by the second term
tz tanφ. The evolution of the tensile strength, cohesion and friction angle is respectively
given by [3]:

χ = χ0(1− ξI)
c = c0(1− ξII)

tanφ = tanφ0 − (tanφ0 + tanφr)ξII

(4)

where χ0, c0 and φ0 are initial values and φr is the residual friction angle. ξI and ξII are
two non-dimensional variables defined by:

ξi =

�
1
2
− 1

2
cos

�
πW p

Gi

f

�
, 0 ≤ W p ≤ Gi

f

1, W p > Gi
f

with i = I, II (5)

GI
f represents the fracture energy for mode I failure (tension) and GII

f represents the
fracture energy for mode II failure (shear).

2.2 Elasto-plastic relation

Starting from equation (1), a relation between incremental displacements and tractions
is derived. The elastic part of the displacement increment is obtained from:

dt =



kn 0 0
0 kt 0
0 0 kt


 = Kedue (6)

where the normal and tangential stiffness kn and kt depend on the elastic properties and
dimensions of the mortar joint. It is assumed that the normal and tangential stiffness are
decoupled [7].

The plastic displacement increment dup is derived from a plastic potential g:

dup = dλ
∂g

∂t
(7)

where dλ is an inelastic multiplier. For a brittle material like masonry, a non-associative
flow rule is used to account for the dilatancy of the fracture surface [3]. A hyperbolic
surface simular to the yield surface is used:

g = −(cg − tz tanφg) +
�
t2x + t2y + (cg − χ tanφg)2 = 0 (8)
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with different values cg and φg for the cohesion and friction angle, while the tensile strength
χ is the same as for the yield surface.

The traction increment can now be written as:

dt = Kedur − dλKe∂g

∂t
(9)

Plastic deformations can only occur as long as the traction point is located on the yield
surface which is imposed by the consistency condition [13]:

∂f

∂t
dt+

∂f

∂up
dup = 0 (10)

Substituting expression (9) and solving for dλ yields:

dλ =
∂f

∂t
Kedur

∂f

∂t
Ke ∂g

∂t
− ∂f

∂updup
(11)

Finally, the traction increment is obtained as:

dt =

(
Ke − Ke ∂f

∂t

∂g

∂t

Ke ∂g
∂t

∂g

∂t
− ∂f

∂updup

)
dur = Kepdur (12)

where Kep is the elasto-plastic stiffness matrix.
In a finite element context, a return mapping algorithm is used to obtain the traction

increment for a certain displacement increment since the elasto-plastic stiffness matrix
depends on the final traction state which is initially unknown [11]. At the end of the
iterative process, the consistent tangent stiffness matrix is obtained as the first derivative
of the tractions with respect to the relative displacements [3, 4]:

Kt =
∂t

∂ur
(13)

Furthermore, a substepping algorithm is adopted to improve accuracy and robustness of
the local iteration [4].

3 GLOBAL SOLUTION STRATEGY

The non-linear interface element is implemented in the finite element toolbox StaBIL
[14] in Matlab. Both static and dynamic solution strategies can be used to trace the
equilibrium path. However, when cracks propagate along the structure, the elastic energy
stored in the bulk material connected to a damaged interface has to be redistributed
into other elements, leading to possible snapbacks in the global solution and numerical
instabilities [4]. Therefore, a dissipation based arc-length method is employed [9, 15] where
the arc-length constraint is based on the energy release rate, which has the advantage that
it is directly related to the failure process.
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3.1 Dissipation based arc-length method

The dissispation based arc-length method presented by Verhoosel et al. [9] is used. The
basic equations of the method and constraint equation adapted for the interface element
are discussed below.

A body is in equilibrium if the internal forces are equal to the external forces:

fint (u) = fext = λf (14)

The internal forces fint are a function of the displacements u. The external forces fext can
be expressed as a unit force vector f multiplied by a load factor λ. A collection of points
(u, λ) that satisfy equation (14) form an equilibrium path. Given an initial equilibrium
point (u0, λ0), the next point on the equilibrium path can be found by solving the following
system of equations for the incremental displacement ∆u and the incremental load factor
∆λ:

fint(u0 +∆u) = (λ0 +∆λ)f (15)

This is a system of N equations with N +1 unknowns. An additional constraint equation
is defined as:

g(u0, λ0,∆u,∆λ, κ) = 0 (16)

where κ is a parameter that defines the step size. This results in an augmented system
of N + 1 equations and N + 1 unknowns:

[
fint
g

]
=

[
λf
0

]
(17)

which is solved with a Newton-Raphson iteration [9].
The constraint equation (16) is based on the rate of energy dissipation which is related

to the damage evolution in a body and is strictly increasing when damage occurs [15].
However, when damage is not evolving, the rate of energy dissipation is zero and an
alternative arc-length method has to be used. The rate of energy dissipation is equal to
the exerted power P minus the rate of elastic energy V̇ :

G = P − V̇ (18)

In a finite element context, the equilibrium equations (14) and constraint equation (16)
are written in terms of nodal displacements

¯
u. The exerted power is then given by:

P = fText ˙¯
u = λfT ˙

¯
u (19)

The elastic energy depends on the constitutive behaviour of the material and kinematic
formulation of the interface element. Unloading occurs along a path parallel to the elastic
tangent and the elastic energy is given by:

V =
1

2

∫

Σ

ueTtdΣ =
1

2

∫

Σ

tTKe−1tdΣ (20)
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from which the rate of elastic energy is derived as:

V̇ =

∫

Σ

ṫTKe−1tdΣ =

∫

Σ

u̇TKtTKe−1tdΣ = ˙
¯
uTf∗ (21)

with

f∗ =

∫

Σ

BTKtTKe−1tdΣ (22)

where the matrix B relates the nodal displacements
¯
u to the local relative displacements

ur:
ur = B

¯
u (23)

The energy release rate is rewritten as:

G = ˙
¯
uT(λf − f∗) (24)

The constraint equation for the arc-length method is obtained after a forward Euler time
discretization:

g = ∆
¯
uT(λ0f − f∗0 )− κ (25)

4 EXAMPLES

Three numerical examples are performed. First, a direct tensile test and direct shear
test are performed on a single interface element which are presented by Caballero et al.
[3]. Afterwards, a direct shear test is performed on a small brick assembly.

4.1 Direct tension test

A first test consists of a direct tensile test on a single interface element (figure 2a) [3].
A normal displacement is applied to the nodes of the top face of the interface element
while the bottom nodes are fixed. The normal and tangential elastic stiffness are kn =
kt = 1000 MPa/mm. The parameters defining the initial yield and potential surface are
listed in table 1.

Table 1: Interface parameters used in the direct tension test.

χ0 c0 tanφ0 tanφr cg0 tanφg0 tanφgr

[MPa] [MPa] [-] [-] [MPa] [-] [-]
3 14 0.8 0.2 45 0.04 0.04

The response of the interface is studied for different values of the fracture energy
GI

f = 0.01, 0.02, 0.03, 0.05, 0.10 N/mm, while GII
f = 0.10 N/mm. Figure 3 shows the

normal traction tz in function of the normal relative displacement ur
z for different fracture
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energy values GI
f . The interface behaves elastically until the initial tensile strength χ0 is

reached. The response curves are identical for the different values of GI
f up to the peak

stress level. Afterwards, the response reduces exponentially with asymptotically vanishing
normal traction. In case the fracture energy GI

f is low, the response reduces more rapidly
then in case of a high fracture energy value. It follows from equation (3) that, for a tensile
test, the area under the softening branch is equal to the fracture energy GI

f . When the
history value W p reaches the fracture energy GI

f , the tensile strength is zero and therefore,
the increment of the history value dW p in equation (3) is zero.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5

uz
r  [mm]

t z [M
P

a]

Figure 3: Normal traction tz in function of relative normal displacement u
r
z
for a fracture energy

G
I
f = 0.01 (solid line), 0.02 (dotted line), 0.03 (dashed-dotted line), 0.05 (dashed line), 0.10N/mm (thick

solid line).

4.2 Direct shear test

In a second example a direct shear test is performed on a single interface element for
different values of normal compression tz [3]. In a first loading step, the interface element is
loaded with a normal compressive stress tz. Next, a shear force in the x-direction is applied
at the top face while the bottom nodes remain fixed. The top nodes are kinematically
constrained so that the rotation of the top face is prohibited. The test is repeated for
different levels of constant normal traction (tz = −0.1, −2.0, −6.0, −10.0 MPa). The
normal and tangential elastic stiffness are kn = kt = 25000MPa/mm. The parameters for
the yield surface are listed in table 2. The fracture energy for mode I and mode II are
respectively GI

f = 0.03 N/mm and GII
f = 0.06 N/mm.

Figure 4a shows the shear traction tx in function of the relative tangential displacement
ur
x for different compressive stresses. After the initial elastic response, the shear traction

decreases for increasing shear displacement. Initially, in the steeper part of the softening
branch, all softening parameters decrease until W p reaches GI

f and the tensile capacity
χ of the interface element reduces to zero. Next, W p evolves to GII

f and the shear stress
reduces to the residual value τr = σz tanφr. The shear capacity of the interface increases
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Table 2: Interface parameters used in the direct shear test.

χ0 c0 tanφ0 tanφr cg0 tanφg0 tanφgr

[MPa] [MPa] [-] [-] [MPa] [-] [-]
3 4.5 0.8785 0.2 45 0.04 0.04

with increasing confinement. Figure 4b shows the relative normal displacement ur
z in

function of the relative tangential displacement ur
x. The dilatancy decreases for increasing

confinement. Asymptotically, as the friction angle evolves to the residual friction angle,
the dilatancy reduces and a smooth fracture surface is formed.

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12

14

ux
r  [mm]

t x [M
P

a]

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

0.05

0.06

ux
r  [mm]

u zr  [m
m

]

Figure 4: (a) Shear traction tx and (b) relative normal displacement u
r
z
in function of the relative

tangential displacement ur
x
for a normal traction tz = −0.1 (solid line), −2.0 (dotted line), −6.0 (dashed-

dotted line), −10.0MPa (dashed line).

4.3 2× 1.5 brick wall

A small brick assembly, two bricks high and one and a half brick in length, is considered
(figure 5a). Each brick measures 204 × 98 × 50 mm3. A shear test is performed on the
assembly; in a first loading step, a vertical pressure pv = 0.3 MPa is applied at the top
face of the assembly, next a horizontal load Fh is applied at the top edge. The bottom
face is fixed and the top face is kinematically constrained so that the rotations of the top
face are prohibited. For the bricks, an elastic modulus Eb = 16700 MPa and a Poisson’s
ratio νb = 0.25 are assumed. Tables 3 and 4 show the mechanical properties for brick and
brick-mortar interfaces used in the numerical analysis. These properties have also been
used by Macorini et al. [4] to compare results from experimental tests on a masonry wall
with numerical results obtained with a dynamic analysis.

The horizontal load Fh is applied in loading steps λFh. Figure 6a shows the load-
displacement curve where Fh is plotted in function of the horizontal displacement uh
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Table 3: Elastic properties interface elements.

kn [MPa/mm] kt [MPa/mm]
Mortar 82 36
Brick 10000 10000

Table 4: Mechanical properties interface elements.

χ0 c0 tanφ0 tanφr GI
f GII

f cg,0 tanφg0 tanφgr

[MPa] [MPa] [-] [-] ]N/mm] [N/mm] [MPa] [-] [-]
Mortar 0.25 0.375 0.75 0.75 0.018 0.125 37.5 0.001 0.0001
Brick 2.0 2.8 1.0 1.0 0.08 0.5 2.8 1.0 1.0

of the top face of the segment. Initially, the segment behaves linearly and a standard
arc-length procedure is used to obtain equilibrium. Before the peak load is reached, the
central horizontal interface element starts yielding and the solution method switches to
the dissipation based arc-length method. At the peak load, all horizontal interfaces are
yielding and the softening behaviour of the interfaces is visible in the load displacement
curve. The history variableW p further increases for the three horizontal interface elements
and reaches the fracture energy GI

f . A bend in the load-displacement curve is observed at
this point and the tensile strength of the interface elements reduces to zero (figure 6b).
Figure 5b shows that a single horizontal crack is formed. The horizontal load further
decreases and the yield surface of the horizontal interfaces evolves to a standard Mohr-
Coulomb criterium with a tensile strength χ = 0 MPa, cohesion c = 0 MPa and friction
angle tanφ = 0.75.

(a)

uh

pvFh

(b)

Figure 5: (a) 2 × 1.5 brick wall and (b) undeformed (dotted lines) and deformed mesh (solid lines) at
the last loading step.
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Figure 6: (a) Load-displacement curve and (b) initial (dotted line) and final yield surface (solid line).

5 CONCLUSION

A meso-scale model is used where masonry bricks are modelled using solid elements
and the mortar layers are modelled using interface elements. It is assumed that cracks
mainly propragate at the mortar joints and, therefore, a non-linear constitutive behaviour
is presented for the interface element. An elasto-plastic contact law that follows a Mohr-
Coulomb criterion is used to model failure in tension and shear.

The possible occurence of snapbacks during masonry cracking, that causes a sudden
release of elastic energy, may result in numerical instabilities. Therefore, a dissipation
based arc-length method is presented in which the constraint equation is based on the
rate of energy dissipation which can be related to the propagation of damage in the
structure.

A numerical test on a 2× 1.5 brick wall indicates that the meso-scale model is suitable
to model a small brick assembly, correctly capturing the failure process. However, when
performing numerical tests on larger samples, the dissipation based arc-length method is
not able to reach convergence after a number of loading steps. Currently, further research
is in progress to enhance the dissipation based arc-length method with an efficient step
size adjustment. Alternatively, an adaptive path following technique [10] and dynamic
solution strategies are also considered.
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