

Accepted Manuscript

Hybrid metaheuristics for the Accessibility Windows Assembly Line
Balancing Problem Level 2 (AWALBP-L2)

Gema Calleja , Albert Corominas , Alberto Garcı́a-Villoria ,
Rafael Pastor

PII: S0377-2217(15)00951-0
DOI: 10.1016/j.ejor.2015.10.025
Reference: EOR 13309

To appear in: European Journal of Operational Research

Received date: 29 September 2014
Revised date: 13 October 2015
Accepted date: 15 October 2015

Please cite this article as: Gema Calleja , Albert Corominas , Alberto Garcı́a-Villoria , Rafael Pastor ,
Hybrid metaheuristics for the Accessibility Windows Assembly Line Balancing Problem Level 2
(AWALBP-L2), European Journal of Operational Research (2015), doi: 10.1016/j.ejor.2015.10.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ejor.2015.10.025
http://dx.doi.org/10.1016/j.ejor.2015.10.025

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

Highlights

 An assembly line with workpieces larger than the width of the stations is tackled.

 Only restricted portions of the workpieces can be accessed from any workstation.

 Three hybrids of metaheuristics and mathematical programming are proposed.

 A novel procedure hybridizing tabu search and corridor method is provided.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

Hybrid metaheuristics for the Accessibility Windows

Assembly Line Balancing Problem Level 2 (AWALBP-L2)

Gema Calleja, Albert Corominas, Alberto García-Villoria, Rafael Pastor

 IOC Research Institute

Universitat Politècnica de Catalunya (UPC)

Av. Diagonal 647, 11th floor , 08028, Barcelona, Spain

{gema.calleja, albert.corominas, alberto.garcia-villoria, rafael.pastor}@upc.edu

Abstract

This paper addresses an assembly line balancing problem in which the length of the

workpieces is larger than the width of the workstations. The problem differs from

traditional variants of assembly line balancing in the sense that only a portion of the

workpiece, or portions of two consecutive workpieces, can be reached from any

workstation. Consequently, at any stationary stage of the cycle, each workstation can only

process a portion of the tasks, namely, those which are inside the area of a workpiece that

is reachable from the workstation. The objective is to find a (cyclic) movement scheme of

the workpieces along the line and a task assignment to stationary stages of the production

process, while minimizing the cycle time. We propose three hybrid approaches of

metaheuristics and mathematical programming - one based on simulated annealing and the

other two based on tabu search, relying on different neighborhood definitions. The two

former approaches make use of a classical neighborhood, obtained by applying local

changes to a current solution. The latter approach, in contrast, draws ideas from the

corridor method to define a corridor around the current solution, via the imposition of

exogenous constraints on the solution space of the problem. An extensive computational

experiment is carried out to test the performance of the proposed approaches, improving

the best results published to date.

Keywords: Assembly line balancing with accessibility windows, hybrid metaheuristics,

simulated annealing, tabu search, corridor method

1. Introduction

As global competition and technological change accelerates, manufacturers have

become increasingly interested in optimizing their production and assembly systems. In

this paper, we consider a special case of assembly system that widely arises in advanced

automated environments, especially in the assembly of electronic components: the

assembly line with accessibility windows. The line consists of a set of workstations

sequentially arranged along a transport system, which must process a number of

identical workpieces. Every workstation contains a feeder with several component types

and is equipped with a robot arm, which performs tasks on the workpieces. Each

workstation must process a specific set of tasks on each workpiece. The tasks

correspond to pick-and-place actions; picking a component type from the feeder inside

the workstation and placing it on a predefined position on the workpiece (see Fig. 1).

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

The workpieces are fed into the assembly line starting from a reference position x (see

Fig. 2), and are moved in forward steps, according to a pattern called movement scheme.

In every halt between two forward steps, the line stands motionless and the workstations

perform tasks on the workpieces. Such a halt is called a stationary stage. The forward

steps are cyclic: after S forward steps, there is an identical number of workpieces lying

exactly at the same positions as in the start of the cycle. The length of each forward step

must be a multiple of a distance  called elementary step, which depends on the

technology of the line. After each cycle, a new workpiece enters the line. At the same

time, a fully assembled workpiece leaves the line.

Fig. 2 illustrates an example of a cycle with three stationary stages (thus the fourth

stationary stage is identical to the first stage). Each line is a snapshot representing the

positions of the workpieces in the stationary stage. The initial position of the first

workpiece in the beginning of the cycle is defined by the distance x. The arrows on each

snapshot represent the forward steps. Note that, in this example, the lengths of the

forward steps are different.

Unlike common assembly lines, in this kind of line the length of the workpieces is

longer than the width of the workstations. Consequently, one workpiece may be

processed by several workstations at the same time, and one workstation may process

portions of either one or two consecutive workpieces at the same time (recall Fig. 1).

Therefore, a task can only be performed if it is situated inside the reachable interval

[,]i iL R (accessibility window) of the workstation i where it will be executed (see Fig.

2). This environment, where task positioning limits the access to restricted areas of the

workpiece, motivates the so-called accessibility windows assembly line balancing

problem (AWALBP) (Calleja et al., 2013).

Figure 1. An example of an assembly line with accessibility windows

Figure 2. Four snapshots of a cycle with three stationary stages

Movement direction

Robot arm Feeder (with component) Accessibility window

 L2 R2

Workstation 2

 L3 R3

Workstation 3

L4 R4

Workstation 4

L1 R1

Workstation 1

s = 1

s = 2

s = 3

s = 4 (1)

 x δ1

δ2

δ3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

A well-known classification of assembly line balancing problems is the one proposed by

Baybars (1986), which differentiates between two classic problems: the Simple

Assembly Line Balancing Problem (SALBP) and the General Assembly Line Balancing

Problem (GALBP). The SALBP has been extensively studied in the literature thus far

(Otto et al., 2013; Vilà and Pereira, 2013; Morrison et al. 2014; Pape, 2015) and is

characterized by a set of restrictive assumptions (Baybars, 1986). Recently, extensive

research has been done in order to address more generalized problems (GALBP), which

includes problems with specific real-world restrictions (see, for example, Becker and

Scholl, 2006; Capacho et al., 2009; Martino and Pastor, 2010; Corominas et al., 2011;

Battaïa and Dolgui, 2012; Battaïa and Dolgui, 2013; Tuncel and Topaloglu, 2013; and

Sternatz, 2014). The AWALBP is a variant of the GALBP. The optimization of AWALBP

involves the solution of several NP-hard subproblems (Gaudlitz, 2004). With regard to the

subproblems considered, the AWALBP can be tackled at four optimization levels (Calleja

et al., 2013): the assignment of each task to one compatible workstation and stationary

stage (AWALBP-L1); the initial position of the workpieces in the cycle, as well as the

number and the length of the forward steps (AWALBP-L2); the component type allocation

to feeders (AWALBP-L3); and the number and the type of workstations (AWALBP-L4).

The objective is to minimize the cycle time. Each level addresses the optimization of its

own level as well as its predecessors. For example, in AWALBP-L2 levels L1 and L2 are

to be solved when solutions of L3 and L4 are given. A detailed description of AWALBP

and its variants, along with a literature review has been presented in Calleja et al. (2013).

Tazari et al. (2006) studied a variant of the problem that matches an AWALBP-L1, where

for each task a subset of the workstations is compatible (instead of a single workstation).

Metaheuristics were applied for such variant and successful experiments on real-world

instances were reported.

This paper deals with the case of AWALBP-L2 defined in Müller-Hannemann and

Weihe (2006), where for each task exactly one machine is compatible. In that work, the

authors describe the problem and define the conditions that a solution must fulfill. An

iterative heuristic is proposed, but the corresponding enumeration procedure is not

detailed. At each iteration, the proposed heuristic reduces the original problem in two

steps: i) the movement scheme (which is obtained heuristically) is fixed, and ii) an

algorithm is applied (for the given movement scheme) to assign each task to exactly one

stationary stage of the cycle in which the location of this task on the workpiece is

accessible from the workstation of this task.

The algorithm reportedly provides provably near-optimal solutions under the following

assumptions: i) task lengths do not differ by orders of magnitude from each other, and

ii) the number of tasks is orders of magnitude larger than the number of workstations

and the number of forward steps. The authors suggest an enumeration procedure to find

solutions, but do not report on computational experiments.

In contrast to the heuristic approach of Müller-Hannemann and Weihe (2006), three

MILP-based approaches have been proposed in the literature. On the one hand, a variety

of mathematical programming models have been presented in order to find the optimal

solution. Corominas and Pastor (2009) formulated the optimization problem as a mixed-

integer linear programming (MILP) model, but they do not include computational

results. Based on such formulation, two enhanced MILP models were proposed by

Calleja et al. (2013). In order to allow further research, a set of realistic benchmark

instances was generated and uploaded online (https://www.ioc.upc.edu/EOLI/research/),

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

and instances up to a certain size were solved to optimality. On the other hand, a

different approach to the problem considers hybridizing heuristics and mathematical

programming to solve the instances that are out of reach of the former models, which is

presented in Calleja et al. (2014). In that work, a heuristic is used to compute good

initial solutions and to derive bounds. In a second step, the obtained bounds are

incorporated onto a MILP model, with the aim to reduce the model dimension and the

solution space. Contrarily to the collaborative combination between a heuristic and

MILP of Calleja et al. (2014), in this paper we propose integrative combinations

between metaheuristics and MILP, where the MILP model is a subordinated element

embedded inside the metaheuristic scheme.

What emerges from the computational results on AWALBP-L2 (Calleja et al., 2013,

2014) is that computing an optimal solution of the problem might become intractable

for large size instances. This may be expected since even the simplest version of the

problem, AWALBP-L1, is already NP-hard, as proven in Calleja et al. (2014). For this

reason, metaheuristic or hybrid solution methods could be envisioned to solve this

problem. In the last few years, so-called hybrid optimization approaches have become

increasingly popular for tackling complex optimization problems (Blum et al., 2011).

One of the latest trends of hybridization is the interoperation of metaheuristics with

mathematical programming techniques (Boschetti et al., 2009). In this line, the word

matheuristic has been coined to indicate those solution approaches that exploit the

complementary strengths of exact and (meta)heuristic components (Maniezzo et al.,

2009). Manifold possibilities of hybridization within a matheuristic arise. According to

their control strategy, such hybrids can be classified into integrative (coercive) and

collaborative (cooperative) combinations (Puchinger and Raidl, 2005). In integrative

combinations, one technique is considered as a subordinated, embedded component of

another technique, following a master-slave scheme. Collaborative algorithms, in

contrast, exchange information but are not part of each other.

In this paper, we propose three hybrid metaheuristics (or matheuristics, according to the

aforesaid definitions) in which mathematical programming models are used in a

metaheuristic frame - one based on simulated annealing (SA) and the other two based

on tabu search (TS). The proposed approaches differ in the way the neighborhood is

defined. More specifically, the two former methods utilize a classical move-based

neighborhood, whereas the latter one makes use of the corridor method (CM)

(Sniedovich and Voβ, 2006) to draw a corridor around the current solution via the

imposition of exogenous constraints on the problem formulation. Furthermore,

combined approaches of the aforementioned hybrids with a mathematical programming

model are proposed.

The remainder of the paper is organized as follows: In Sections 2 and 3, we describe the

AWALBP-L2 considered in this work and introduce the proposed hybrid

metaheuristics, respectively. In Sections 4, 5 and 6, we detail the proposed hybrids

based on SA, TS and TS with CM, respectively. In Section 7, we present combined

approaches of the aforementioned hybrids with a mathematical programming model.

Comparative experimental results of the proposed hybrid metaheuristics and the best in

the literature are shown in Section 8. Finally, Section 9 presents some concluding

remarks.

2. Problem specification

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

We consider the specific case of AWALBP-L2 described in Müller-Hannemann and

Weihe (2006). The considered case can be stated as follows. An assembly line is given

with a number m of workstations. Each workstation i has an accessibility window to the

workpieces delimited by the interval [,]i iL R of the assembly line such that
1 0L  and

1i i iR L R   for 2,...,i m . Therefore, the accessibility windows of the workstations

do not overlap. Each task can be executed only on one given workstation. On each

workstation i, a specified set of tasks Ji must be executed for each workpiece. The total

number of tasks is denoted by
1

m

i

i

N J


 . For each task j  1,...,j N the triple

(, ,)j j jp a m is known, where pj is the processing time of task j, aj is the distance from

the task position to the right border of the workpiece, and mj is the workstation that has

to execute this task. Then, the solution of the problem decomposes into:

i) a movement scheme 1 2: , ,..., Sx     , which consists of:

− the initial position x of the workpieces on the line.

− the number S of stationary stages (which coincides with the number S of

forward steps).

− the values δ1,…, δS of the length of the forward steps, where δs is the number

of elementary steps of the forward step s  1,...,s S .

ii) for each task, an assignment to one stationary stage of the cycle where the position

of the task is accessible for the station of this task.

To be feasible, a solution must hold the following conditions. First, the sum of all

forward steps in a cycle must be equal to the distance A between two right (left) borders

of two consecutive workpieces. Second, all forward steps must be a multiple of  (the

elementary step). Finally, the third condition is that each task must be assigned to a

stationary stage in which the task is accessible from its workstation.

The objective function (1) is the minimization of the cycle time (CT). Between two

stationary stages, there is a time T to take into account the acceleration and deceleration

of the line as well as the resetting of the robot arms. Then the total time of the cycle is

equal to the sum of i) the time T multiplied by the number of stationary stages S plus ii)

the time elapsed in the stationary stages constituting a cycle and iii) the time for

transporting a workpiece through the assembly line at steady speed (since the latter is a

constant it is not regarded for optimization purposes):

1

·


 
S

s

s

CT T S C (1)

where
1

S

s

s

C


 is the total processing time corresponding to all S stationary stages

constituting a cycle, and Cs is the completion time, for the whole line, corresponding to

the stationary stage s (1s ,...,S).

3. The proposed hybrid metaheuristics

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

We propose three hybrid metaheuristics that integrate mathematical programming

models into metaheuristic frameworks. The proposed hybrid metaheuristics can be seen

as integrative algorithms where the metaheuristic is used as the master mechanism that

guides the search process and a mathematical model acts as an embedded slave.

The two first hybrid metaheuristics proposed in this work, SA and TS, rely on a

mathematical programming model: the so-called Task model of Calleja et al. (2014).

The Task model computes, for a given movement scheme, the optimal assignment of

each task to one stationary stage of the cycle. This is, for a fixed movement scheme, the

Task model allows for the computation of an optimal solution. Despite the assignment

of tasks to stationary stages being an NP-hard problem (see proof in Calleja et al.

(2014)), the Task model solves the problem very fast. For this reason, we define

neighborhoods in the space of the movement schemes rather than around complete

solutions. More specifically, in the proposed hybrid SA and TS the neighborhood is

defined by applying local changes or moves to a current movement scheme.

The complete Task model is given next.

Data

m number of workstations (1,...,)i m

N number of tasks (1,...,)j N

J0 set of tasks  0(1,2,...,)J N

Ji set of tasks to be performed in workstation i, where
0 '

1,..,

 and i i i

i m

J J J J


 

 1, , ; ' 1,..., ; 'i m i m i i   

pj processing time of task j (1,...,)j N

S

number of forward steps in a cycle (therefore, also the number of stationary

stages)

Пj set of stationary stages where task j is accessible from the workstation where it

can be performed (1,...,)j N .

Variables

 0,1jsy  yjs = 1 iff task j is performed in stationary stage s (,.., ;)jj 1 N s П 

Cs completion time corresponding to the stationary stage s (1,...,)s S

Model

 (2)

 (3)

 (4)

1

[]
S

s

s

MIN z C




1 1,...,
j

js

s

y j N


 

1,..., ; 1,...,
i j

j js s

j J s

p y C i m s S
 

   

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

The objective (2) is the minimization of the completion time of the stationary stages.

Constraints (3) impose that each task is assigned to one, and only one, stationary stage,

and (4) ensure that the time corresponding to the stationary stages is not less than the

processing time at any workstation.

In the third proposed metaheuristic (TS-CM), in contrast, the neighborhood is defined

by building a corridor around a current movement scheme in order to iteratively solve

smaller portions of the target problem. More specifically, exogenous constraints are

imposed on the original formulation of the problem and, subsequently, the constrained

problem (denoted Solve-corridor model) is solved.

4. Hybrid simulated annealing metaheuristic

Simulated annealing (SA) is a probabilistic optimization method which since its first

introduction by Kirkpatrick et al. (1983), has been recognized as a simple yet powerful

metaheuristic that provides excellent solutions to a wide variety of hard combinatorial

optimization problems (Suman and Kumar, 2006).

Basically, SA is a local search procedure that tries to avoid being trapped in local

optima by allowing probabilistically moves to worse solutions. The algorithm starts

from an initial solution, which is initially the current solution y, and by initializing the

value of a parameter t called temperature. Then, at each iteration, a solution y’ from the

neighborhood of the current solution N(y) is randomly selected. If the neighbor is not

worse than the current solution, then the neighbor is accepted and replaces the current

solution. In the case that it is worse, the neighbor can also be accepted, with a

probability that depends on i) how much worse is the neighbor, and ii) the value of the

temperature t. Initially, the algorithm starts at a high temperature t (that is, the

probability of accepting deteriorating moves is high), which then gradually decreases

and approaches zero. The number of iterations for which the temperature remains

constant before being reduced is itt. The SA algorithm is presented in Fig. 3.

The proposed hybrid combines the general scheme of SA (Fig. 3) with the Task model.

As mentioned in Section 3, the search is performed in the space of the movement

schemes. In each iteration, the Task model is employed to compute the optimal cycle

time for the current neighbor movement scheme, which provides a complete current

solution for the problem. The obtained cycle time value determines whether the

candidate movement scheme (along with its optimal task assignment) will be accepted

or rejected as the new current solution in the SA local search.

 SA

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

 Let f(y) be the objective function to be minimized of the solution y

 Let N(y) be the neighborhood of the solution y

 Let A(t) be a new temperature value obtained from the temperature t

1. Initialize the parameters:

t0 (initial temperature)

itt (number of iterations during which the temperature remains constant)

2. t := t0

3. y:= Generation of the initial solution

4. while the stopping criterion is not satisfied do

5. for (i: = 0; i < itt; i := i +1):

6. y’:= randomly select y’ from N(y)

7. if f(y’) ≤ f(y) then y := y’

8. else y := y’ with a probability exp(-(f(y’)-f(y))/t)

9. end

10. end
11. t :=A(t)

12. end
13. return the best solution found

__

The efficiency of the general scheme of SA depends on some key decisions. Some of

these decisions are problem-specific, whereas some others are generic to SA. Specific

decisions for the AWALBP-L2 include the definition of neighborhood of a solution

(N(y)), and the generation of the initial solution. General decisions are the cooling

schedule to decrease the temperature A(t) and the stopping criterion of the algorithm. In

the following we outline such decisions.

4.1 Neighborhood of movement schemes

The proposed SA hybrid makes use of three neighborhood structures, N1, N2, and N3, as

follows. N1 consists in transferring one elementary step from a forward step to another

forward step. N2 consists in inserting a new forward step by transferring one elementary

step from an existing forward step to a new one. Finally, N3 considers the neighbors

obtained by varying the value of the initial position x in the interval

 1

1 min0 min ,x R a A    , where
1

1

min min j
j J

a a


 . Note that in the two first

neighborhood types, a forward step with only one elementary step may achieve length

zero if its only elementary step is transferred (and thus such forward step disappears

from the movement scheme). Therefore, the number of forward steps may vary. More

specifically, it can remain equal or decrease in N1, and it can remain equal or increase in

N2. Feasibility loss following transference or insertion of elementary steps can occur if

the resulting movement scheme contains some tasks whose position is not accessible at

any stationary stage. In any case, we consider only those neighbors which are feasible.

At each iteration of the SA algorithm, it is selected at random from which of the three

neighborhoods a neighbor of the current movement scheme will be obtained. The values

of the probabilities associated to the neighborhood selection are to be fine-tuned (see

Section 8).

4.2 Initial solution

Figure 3. General scheme of simulated annealing

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

An initial solution is obtained by using the Initial solution matheuristic proposed in

Calleja et al. (2014). It consists of i) an algorithm to generate, for a given value of x, a

feasible movement scheme and ii) a mathematical model (the Task model), to compute

the optimal assignment of tasks to stationary stages (for the generated movement

scheme). The initial solutions obtained with this procedure appear to be of good quality

and the necessary computational time is on average as small as a few milliseconds.

Among the obtained solutions, computed for all values of x multiples of , a solution

with the minimum cycle time is identified. In case of having several solutions with the

minimum cycle time, a solution with the minimum number of stationary stages is

selected. The information given by the obtained initial solution is used to compute a

lower bound on the value of the cycle time, LB1
CT

, which is used to certificate whether

a current solution is optimal (see Section 4.4). The bound LB1
CT

is computed as follows.

Since the Initial solution matheuristic has been proven to provide solutions with the

minimum number of stationary stages (see proof in Calleja et al. 2014), the solution

with the minimum number of stationary stages among all those obtained with the

mentioned matheuristic, Sol
S
, gives a lower bound on the number of stationary stages,

LB1
S
. Then, we derive a lower bound on the cycle time, LB1

CT
, by summing lower

bounds on the two terms that compose the objective function (see Eq. (1)): (i) 1ST LB

plus (ii) a lower bound on the completion time of the stationary stages, which we name

Wmax, corresponding to the processing time of the most loaded workstation on the line.

This is,
1,...,

max
i

max j
i m

j J

W p




  .

4.3 Cooling schedule

The cooling schedule specifies how the temperature of the SA algorithm is decreased as

the search progresses. We use geometric cooling, one of the most popular schedules

used in the literature, that is, A(t) = α∙ t, where 0 < α < 1 (Downsland and Adenso-Díaz,

2003, Henderson et al., 2003). The value of the α parameter, as well as the initial

temperature t0 and the number of iterations during the temperature remains constant, itt,

are to be fine-tuned, as explained in Section 8.

4.4 Stopping criterion

The algorithm stops when one of the following conditions is reached: i) a specified

maximum time has elapsed, or ii) the objective function value of a solution coincides

with LB1
CT

 and thus the solution is proven optimal.

5. Hybrid tabu search metaheuristic

Tabu search (TS) is a metaheuristic originally proposed by Glover (1986) that has been

successfully applied in many difficult combinatorial optimization problems (Glover,

1997, Lapierre et al., 2006, Pedersen et al., 2009). Like SA, TS can be seen as a local

search that allows non-improving moves. The innovative idea of TS is the explicit use

of memory structures, that record not only information about the current solution, but

also information about the recent search trajectory followed to reach the current

solution. Essentially, a TS algorithm moves at each iteration from a solution y to a

solution in its neighborhood N(y), and may accept worse neighbors than the current

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

solution. To prevent endless cycling and guide the search into unexplored areas, some

formerly visited solutions, or attributes of them, are temporarily declared tabu or

prohibited. The number of iterations that an attribute remains tabu is called its tabu

tenure. The tabu status of a solution, though, can be overridden if a specified aspiration

criterion is met; for example, if a tabu solution is better than the best solution found so

far. The general TS algorithm is presented in Fig. 4. For a thorough presentation of the

method, we refer the interested readers to Glover (1989, 1990) and Gendreau (2003).

 TS

1. Define the neighborhood N(y)

2. Let y be an initial solution and y*:=y

3. while the stopping criterion is not satisfied do

4. Let y’ be the best solution from N(y) which is allowed by aspiration or is not tabu

5. if y’ is better than y*, then y* := y’ end

6. Add the current move to the tabu list (removing its oldest move if it is full)

7. y := y’

8. end
9. return y*

__

The proposed hybrid TS relies on the general TS guidelines presented by Glover (1989,

1990), as shown in Fig. 4. As in the proposed SA-hybrid, we build the neighborhood

around the movement schemes. Subsequently, the Task model is used to find an optimal

assignment of tasks to stationary stages of the current movement scheme, which

provides a complete current solution. A similar approach embedding a LP model in a

probabilistic tabu search to solve a facility layout problem with unequal area

departments has been proposed in Kulturel-Konak (2012). As in our paper, a

mathematical programming model is used to evaluate the non-tabu solutions of the

neighborhood of the current solution with the difference that instead of evaluating each

and every element of the neighborhood, it considers only evaluating a random sample to

reduce computational effort.

In our approach we consider the same initial solution generation, neighborhood

structures and stopping criterion as in the proposed SA. The remainder elements of the

proposed TS-based hybrid, i.e., the tabu lists, tabu attributes and aspiration criterion, are

defined in the following subsections.

5.1 Tabu lists and tabu attributes

The tabu list is directly related to the neighborhood structure used to solve the problem.

We consider the three neighborhoods N1, N2, and N3 proposed in Section 4.1. In each

iteration, the best neighbor movement scheme is searched within the three

neighborhoods. Neighborhoods N1 and N2 are similar structures since they are both

generated by transferring one elementary step to an existing or a new forward step.

Neighborhood N3, though, is a different structure based on the value of the initial

position x. Therefore, we consider two different tabu lists, a first tabu list for the

neighbors selected from N1 or N2, and a second tabu list for those selected from N3, as

follows. We call transmitter forward step the forward step which transfers one

elementary step. Similarly, a receiver forward step is the one which receives an

elementary step. Then, the first tabu list, T1, contains attributes consisting of four

Figure 4. General scheme of tabu search

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

elements: i) initial position value, ii) the number S of forward steps iii) the transmitter

forward step s and its length δs, and iv) the receiver forward step s’ and its length δs’.

The second tabu list (T2), though, contains only the two first aforementioned elements.

A numerical example is shown in Table 1. Let 5: 2,3,6,2  be a current movement

scheme (column 1), with an initial position 5x  and four forward steps with 2, 3, 6 and

2 elementary steps, respectively. Column 2 states the neighborhood type from which a

neighbor will be generated. In the case of neighborhood N2, two subtypes are

distinguished: N2(a), where an elementary step is inserted between the forward steps of

the current movement scheme, and N2(b), where the elementary step is inserted after the

last forward step of the current movement scheme. Column 3 gives an example of a

neighbor movement scheme obtained from each neighborhood type. Column 4 indicates

in which tabu list, T1 or T2, the attribute will be recorded. Finally, Column 5 details the

attribute to be stored in the tabu list when the neighbor movement scheme is set tabu.

For example, if the best neighbor is < 5: 1, 4, 6, 2 >, which has been obtained from N1,

then the tabu attribute is
1 25, 4, 2, 3x S        and it is added to the T1 tabu list,.

In the case that the best neighbor belongs to N2, the same tabu attribute and tabu list are

considered. Note that, in N2(b), the receiver forward step does not exist in the current

movement scheme and thus the last element of the tabu attribute is considered as zero

 5 0  . Finally, if the best neighbor is the one obtained from N3 then the tabu attribute

is 5, 4x S    and it is added to the T2 tabu list.

Table 1. An example of the different neighbor movement schemes and their tabu attributes

Current

movement scheme
 Neighborhood

Neighbor

movement scheme

Tabu list

type
 Tabu attribute

< 5: 2, 3, 6, 2 >

 N1 < 5: 1, 4, 6, 2 > T1 < x = 5, S= 4, δ1 = 2, δ2 = 3 >

 N2(a) < 5: 2, 2, 1, 6, 2 > T1 < x = 5, S = 4, δ2 = 3, δ3 = 6 >

 N2(b) < 5: 2, 2, 6, 2, 1 > T1 < x = 5, S = 4, δ2 = 3, δ5 = 0 >

 N3 < 7: 2, 3, 6, 2 > T2 < x = 5, S = 4 >

The lengths of tabu lists are to be fine-tuned, as explained in Section 8.

5.2 Aspiration criterion

We use the most commonly used aspiration criterion in the TS literature (Gendreau and

Potvin, 2005) which allows a tabu move when it results in a solution better than the

current best-known solution.

6. Hybrid tabu search - corridor method metaheuristic

A hybrid approach combining TS and a Corridor Method (CM) is presented next. The

CM is a matheuristic introduced by Sniedovich and Voβ (2006), which intertwines

mathematical programming techniques with metaheuristic features. The central idea of

the CM relies on the iterative use of an exact method to solve optimally restricted

portions of the solution space of a given problem. Such portions of the original space

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

are defined by building a corridor around a current solution via the imposition of

exogenous constraints.

The proposed hybrid TS-CM follows the scheme of the TS metaheuristic proposed by

Glover (1989, 1990) (recall Fig. 4), as described in Section 5. However, the proposed

hybrid TS-CM differs from the aforementioned one in the sense that now the

neighborhoods are not defined via local changes or moves, but constructed by adding

exogenous constraints onto an embedded MILP model. Such MILP model is

subsequently used to solve the resulting portion of the problem space. Furthermore,

additional constraints are also imposed in order to model the tabu lists and the aspiration

criterion. An approach making use of TS as a master strategy and a branch and bound

solver as an embedded mechanism for solving relaxed instances of the generalized

assignment problem has been proposed by Woodcock and Wilson (2010). As in our

paper, the authors use mathematical programming techniques to move from a current

solution to a new one. However, to the best of our knowledge, we are not aware of any

work in the literature hybridizing TS with CM in the way presented here.

The proposed procedure starts from an initial solution obtained with the Initial solution

matheuristic of Calleja et al. (2014) and explores the neighboring solution space in

search of an improving solution.

At each iteration, the MILP model receives a current solution as input. Based on this

solution, bounds on the cycle time and the number of forward steps are computed and

incorporated to the model. Next, the constrained version of the problem defined by the

corridor is solved by using the MILP model within a limited computational time.

The overall algorithm terminates when one of the following criteria is reached: i) a

maximum running time, or ii) the problem is solved to proven optimality since a

solution is obtained whose objective function value coincides with the lower bound of

the cycle time, LB1
CT

.

6.1 Tabu list and aspiration criterion

A short-term memory structure is used as a tabu list, which stores the attributes of the

movement schemes recently visited. More specifically, we propose a composite

attribute for the tabu list, ,S xTabu Tabu  , where
STabu and

xTabu express,

respectively, the number Ŝ of stationary stages and the initial position x̂ of the

movement scheme of the current solution. Then, the set of tabu attributes in a tabu list is

defined by  , : 1,...,S x

h hTabu Tabu h TT   , where TT is the number of attributes

contained in the tabu list.

The proposed TS-CM uses the aspiration criterion described in Section 5.2, which

overrides the tabu status of a solution if its objective function is better than that of the

best-known solution so far.

6.2 The embedded corridor method

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

The basic elements of the CM are: a problem P generally belonging to the class of NP-

hard problems, a very large feasible solution space Y and an exact method M capable of

solving P to optimality if the size of the solution space is not too large. The CM

imposes exogenous constraints on the original formulation of the problem in such a way

that smaller manageable portions of the solution space are identified. These exogenous

constraints define a corridor, i.e., a set of solutions, around a given current solution

ŷ Y . The nature of the imposed constraints should be such that they are compatible

with both the structure of the problem P and the method M used to solve them.

Let us assume that method M is a MILP model. One way to identify smaller manageable

portions of the solution space to be explored with the model is to constrain the domains

of the variables that are present in a current solution. In the following we outline how a

CM can be applied to a MILP model. Let us suppose that we are given a current

solution ŷ with a number Ψ of decision variables  1 2
ˆ ˆ ˆ, ,...,y y y . In order to impose

constraints on the variable domains, we need to limit the distance between the value of a

variable yn and its current value ˆ
ny . Therefore, a neighborhood around a current

solution can be generated by drawing corridors as follows:

         1 2
ˆ ˆ ˆ: , ,..., : , 1,...,n n n n nN y y y y Y y R y y R n        (5)

where
nR  1,...,n   is a parameter used to define the corridor width.

Equation (5) limits the solution space only to those solutions whose distance from the

current solution, for each variable yn, is not greater than a given maximum value
nR .

Finally, in order to incorporate the neighborhood definition to the original MILP

formulation of the problem, the following constraints are imposed:

 ˆ (1,...,)n n ny y R n    (6)

ˆ (1,...,)n n ny y R n    (7)

At each iteration, constraints (6)-(7) are therefore imposed onto the original model,

which is introduced in Section 6.4, and the new constrained version is solved by

applying a suitable algorithm.

In the following we introduce the notation required to formulate a fitting model for the

CM. Let us consider the movement scheme of the current solution with an initial

position x̂ and Ŝ forward steps of lengths ˆ1 2
ˆ ˆ ˆ, ,...,

S
    . Let us suppose that we

generate a corridor of width R around each variable δs, such that

ˆ ˆ,s s sR R      
 

. As a result of the transference of elementary steps in the

generation of neighbor movement schemes, there either may be some forward steps

which become empty (i.e., their length is zero and thus disappear) or some whose length

is necessarily greater than zero (i.e., it is known a priori that they will exist in any

neighbor movement scheme). Therefore, the actual number of variables δs that a

neighbor solution will have is not known in advance. In order to model the number of

variables needed, we define the following additional data.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

Let US be the upper bound on the number of forward steps, empty or not, that may be

generated for the feasible solutions contained in the corridor, while respecting the

corridor width:

  
ˆ

s

1

ˆ ˆmin / , min ,
S

s

US A S R 


 
   

 
 (8)

In the proposed model, US is used to upper bound the number of variables δs, such that

1,...,s US .

By ES we denote the set of forward steps whose existence can be assured a priori in all

the feasible solutions of the space delimited by the corridor:

  ˆ ˆ1,...,S: 1sES s R    (9)

Let NES then be the set of forward steps whose existence cannot be assured a priori in

all the feasible solutions of the space delimited by the corridor:

 1,..., \NES US ES (10)

Finally, we derive an upper bound on the number of non-zero forward steps,
SUB , that a

neighbor movement scheme may have, by the sum of (i) the current number of forward

steps, (ii) the total number of elementary steps that can be transferred by the forward

steps of the current movement scheme whose values are greater than R , and (iii) the

total number of elementary steps that can be transferred by the forward steps of the

current movement scheme whose values are greater than one but equal to or smaller

than R :

  
ˆ ˆ1,...,

ˆ ˆ 1

s

S

s

s S R

UB S ES R







 

     (11)

Fig. 5 depicts a numerical example for the computation of UB
S
. Let us assume that

0:6,7,2,1  is the movement scheme of the current solution

 1 2 3 4
ˆ ˆ ˆ ˆ ˆˆ 0, 4, 6, 7, 2, 1x S          and that a corridor of width 3R  is built

around the values of the forward steps. The idea is to construct a neighbor movement

scheme in such a way that the maximum number of non-zero forward steps is obtained.

This can be done by transferring as many elementary steps as possible from each

forward step in such a way that the latter keeps at least one elementary step. In the

example of Fig. 5, such transfers generate a neighbor movement scheme with 11

forward steps, which gives the value for UB
S
.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

In order to further illustrate the required notation let us consider a numerical example of

a line with 1  and
ˆ

1

ˆ 5
S

s

s

A 


    (Table 2). Let us suppose that 0: 4,1  is the

movement scheme of the current solution  1 2
ˆ ˆ ˆˆ 0, 2, 4, 1x S      . Let us assume that

we build a corridor of width R =1 around the forward step values of the movement

scheme. The neighbor movement schemes admissible in this corridor are given in the

second column of Table 2. Then, the neighbor movement schemes that can be generated

inside a corridor of width R =1 around the current forward steps may contain at most

four forward steps (empty or not) and thus 4US  . As can be seen from the generated

neighbors, there may be some forward steps whose length is necessarily greater than

zero if the current length of the forward step is greater than the corridor width. In this

example, the set of non-zero forward steps is  1ES  . Conversely, the rest of forward

steps of a neighbor movement scheme may be of length zero and thus  2,3,4NES  .

Finally, the upper bound on non-zero forward steps is 3SUB  .

Table 2. A numerical example illustrating the values of parameters ES, NES, US and UB

S

Current movement scheme Neighbors within a corridor of width Rδ
 = 1 Data values

<0: 4, 1 >

 < 0: 5, 0, 0, 0 >

 

 

4

1

2,3,4

3S

US

ES

NES

UB









 < 0: 3, 2, 0, 0 >

 < 0: 3, 1, 1, 0 >

 < 0: 4, 0, 1, 0 >

 < 0: 4, 0, 0, 1 >

 < 0: 3, 0, 1, 1 >

 < 0: 3, 1, 0, 1 >

6.3 Definition of corridors

In order to apply a corridor around a current solution we need to select which variables

of the current solution will be restricted. The width of such corridor will allow only for

the exploration of those solutions that are at a maximum distance from a current one. More

specifically, we apply corridors to some of the variables that define the movement

6 7 2 1

3 4 1 1 1 1 1 1 1 1 1

Figure 5. Example of the computation of parameter UB
S

-3 -3 -1 -0 +3 +3 +1

Corridor width: R
δ
 = 3

Number of forward steps of the

current movement scheme

Upper bound on the number of
non-zero forward steps of a

neighbour movement scheme

 = 4 +2·3 +1 = 11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

scheme of a current solution. Several possibilities for the construction of corridors arise,

depending on which variables are selected. Specifically, we consider three alternate

corridors, denoted C1, C2 and C3, which are explained next.

6.3.1. Corridor C1

Given a current movement scheme, corridor C1 constructs a neighborhood around the

variable  1,...,S s US  by including all movement schemes whose forward steps have a

length within a distance R from the current lengths.

In the corridor, the number of forward steps is lower bounded by LB
S
 and thus the

maximum number of elementary steps that a forward step may achieve is given by the

expression  / 1SA LB  .

6.3.2 Corridor C2

The second type of corridor, C2, builds a neighborhood around  1,...,S s US  and

around the number of forward steps S .

An additional parameter,
SR , is added to express the corridor around the current number

of forward steps Ŝ . Consequently, the following data are modified:

  ˆmax , , 1S S SLB S R ES LB  (12)

  
ˆ ˆ1,...,

ˆ ˆ ˆmin , 1

s

S S

s

s S R

UB S R S ES R







 

 
      
 
 

 (13)

where (12)-(13) define the corridor and then the expression for US is modified as follows:

    
ˆ

1

ˆ ˆ ˆmin , min , min , 1
S

S

s

s

US A S S ES R R 


  
        

  
 (14)

6.3.3 Corridor C3

The third corridor structure considers the construction of a neighborhood around the

lengths of the forward steps
s , the number of forward steps S and the initial shift x.

Again, we consider an additional parameter, xR , to express the width corridor around

the variable x. The following parameters arise:

     1

1 min
ˆ mod min , 1xX x R R a A      (15)

     1

1 min
ˆ mod min , 1xX x R R a A      (16)

Once the values X  and X  have been defined, two cases may arise:

a) X X  . The corridor around x is defined as: X x X  

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

b) X X  . In this case, the corridor is a wrap-around interval where the values

admitted for the variable x are:

  1

1 min, 1, 2,...,min , ,1,2,...,x X X X R a A X        .

To define the corridor, we introduce the variable  0,1r and the following

constraints:

1

xx X MR r   (17)

 2 1xx X MR r    (18)

 where:

 1

xMR X 

  1

2 1 minmin ,xMR R a A X    

6.4 A MILP model for the corridor method

In this section we present a MILP model, denoted Solve-corridor, to be used at each

iteration of the proposed hybrid TS-CM. Such MILP model is used to define a

neighborhood (incorporating corridors), and to obtain the best neighbor that is not tabu

or fulfills the aspiration criterion. The model is inspired on the Solve model of Calleja et

al. (2014). The new contributions to the formulation correspond to the imposition of

exogenous constraints to define the corridor, and the addition of the tabu lists and the

aspiration criterion.

In the following, we present the Solve-corridor MILP model, which includes a corridor

of type C1 around the variables δs (1,...,)s US . The proposed model can be easily

adapted to include corridors of types C2 and C3, by incorporating the modifications

stated in sections 6.3.2 and 6.3.3, respectively.

Data

N number of tasks (1,...,)j N

m number of workstations (1,...,)i m

mj workstation where task j has to be executed (1,...,)j N

[Li, Ri] accessibility window of workstation i (1,...,)i m , where
1 0L  and

1i i iR L R   ,  2,...,i m

A0 workpiece’s length

A distance between the right borders of two successive workpieces of the assembly

line (A > A0)

T time to take into account acceleration and deceleration between two consecutive

stationary stages

 length of an elementary step

pj processing time of task j (1,...,)j N

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

aj (0 ≤ aj ≤ A0), distance to the right border of the workpiece corresponding to the task

j (1,...,)j N

J0 set of tasks  0(1,2,...,)J N

Ji set of tasks to be performed on workstation i,  0 :i jJ j J m i   , (1,...,)i m

 where 0

1,...,

i

i m

J J


 ,
' , , ’ 1, , | ’i iJ J i i m i i    

R corridor width

Ŝ number of stationary stages of the TS current solution

x̂ initial position of the workpiece with respect to the left limit of workstation 1 of

the TS current solution

ˆ
s number of elementary steps of the forward step s  ˆ1,...,s S of the TS current

solution

 
ˆ

1

ˆ ˆmin , min ,
S

s

s

US A S R 


 
   

 


 ˆ ˆ1,..., : 1sES s S R   

 1,..., \NES US ES

SLB lower bound on the number of stationary stages   max , 1S SLB ES LB ,

where is a lower bound obtained as described in Section 4.2

SUB upper bound on the number of forward steps

 
ˆ ˆ1.. |

ˆ ˆ 1

s

S

s

s S R

UB S ES R







 

    

CTLB lower bound on the cycle time  CT S

maxLB T LB W   , where

1,...,
max

i

max j
i m

j J

W p




 

CTUB upper bound on the cycle time,
1

N
CT S

j

j

UB T UB p


  

*CT cycle time of the best solution found so far within the TS

 tenure or size of the tabu list

 , 1,...,S x

h hTabu Tabu h TT define the list of tabu attributes (see Section 6.1):

 , : 1,...,S x

h hTabu Tabu h TT  

jkmin minimum number of times that a workpiece should be moved forward by A

elementary steps such that task j is accessible in its workstation  1,...,j N ,

1SLB

TT

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

where

1

1 minmin(,)
jm j

j

L a R a A A
kmin

A

      
  
  

, being
1

mina the closest

distance of a task position j  1j J to the right border of the workpiece

(
1

1

min min
j

j J

a a


)

jkmax maximum number of times that a workpiece should be moved forward by A

elementary steps such that task j is accessible in its workstation  1,...,j N ,

where ,
i j

i j

R a
i j J kmax

A

 
   

 

Variables

x  initial position of the workpiece with respect to the left limit of

workstation 1, where  1

1 min0 min ,x R a A   

s
 number of elementary steps of the forward step s  1,...,s US

 0, s 1  iff the forward step s exists, s NES

 0,1 jskb  iff task j is performed during stationary stage s after the

workpiece has been moved forward k times by A elementary steps,

(1,..., ; 1,..., ; ,...,)j jj N s US k kmin kmax  

Cs completion time, for the whole line, corresponding to the stationary stage

s (1,...,)s US , where
1

min
N

j s max
j

p C W


   s ES and

0 ,s maxC W s NES  

 0,1 hgy  auxiliary variables  1,..., ; 1,...,4h TT g  . If the solution has the h-th

tabu attribute in the tabu list, then the four variables 1 hy , ..., 4 hy take

value 1.

 0,1 w 1 iff the new solution fulfills the aspiration criterion

 1 2 1 2, , , 0,1 s su u v v  auxiliary variables that are used to remove the current TS solution

from the solution space  ˆ1,...,s S

Model

 
1

·
US

s s

s NES s

MIN z T ES C
 

 
   

 
  (19)

1

·
US

CT

s s

s NES s

LB T ES C
 

 
   

 
  (20)

S

s

s NES

LB ES 


   (21)

1s  

1jskb 

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

S

s

s NES

ES UB


  (22)

(a) movement scheme constraints

ˆ
s sR   ˆ1,...,s S (23)

 ˆmin , / 1S

s s R A LB     s ES (24)

 ˆmin , / 1S

s s sR A LB       ˆ1,..., :s S s NES  (25)

 min , / 1S

s sR A LB     ˆ 1,...,s S US  (26)

1

US

s

s

A


  (27)

s s  s NES (28)

(b) accessibility constraints

1

1

(1)
s

j l i js jsk

l

A k a x L M b




       

1,..., ; 1,..., ; ,...,j js US j N k kmin kmax   (29)

1
'

1

(1)
s

j l i js jsk

l

A k a x R M b




       

1,..., ; 1,..., ; ,...,j js US j N k kmin kmax   (30)

 ' 1

1 min

where :

(1)

1 min(,)

j

j

js m j j

js j m j

M L A kmin a s

M A kmax R a A R a

      

       

(c) task assignment constraints

1

1
j

j

kmaxUS

jsk

s k kmin

b
 

  1,...,j N (31)

j

i j

kmax

j jsk s

j J k kmin

p b C
 

   1,..., ; 1,...,i m s US  (32)

j

i j

kmax

jsk i s

j J k kmin

b J 
 

   1,..., ;i m s NES  (33)

1

j

j

kmaxN

jsk s

j k kmin

b 
 

  s NES (34)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

1

1
j

j

kmaxN

jsk

j k kmin

b
 

  s ES (35)

(d) TS constraints

1 11S

s h h h

s NES

ES Tabu M y


     1,...,h TT (36)

2 21S

s h h h

s NES

ES Tabu M y


     1,...,h TT (37)

3 31x

h h hx Tabu M y    1,...,h TT (38)

4 41x

h h hx Tabu M y    1,...,h TT (39)

4

1

3hg

g

y w


  1,...,h TT (40)

 *

1

1

· 1 1
US

A

s s

s NES s

T ES C CT M w
 

 
       

 
  (41)

*

2

1

·
US

A

s s

s NES s

T ES C CT M w
 

 
     

 
  (42)

 

1

2

min

3 1 1

4

1

*

2

where (1,...,) :

1

1

min , 1

1

1

S S

h h

S S

h h

x

h h

x

h h

A CT CT

A CT

h TT

M UB Tabu

M Tabu LB

M R a A Tabu

M Tabu

M UB LB

M CT LB



  

  

    

 

  

 

1 1
ˆ 1s s s sM v     ˆ1,...,s S (43)

2 2
ˆ 1s s s sM v     ˆ1,...,s S (44)

1 1
ˆ 1 xx x M u    (45)

2 2
ˆ 1 xx x M u    (46)

 
ˆ

1 2 1 2

1

ˆ2 1
S

s s

s

u u v v S


      (47)

  

 
 

1

2

1

1 1 min

2

ˆwhere (1,...,) :

ˆ ˆmin , / 1 1

ˆ ˆ1 max ,0

ˆmin , 1

ˆ 1

S

s s s

s s s

x

x

s S

M R A LB

M R

M R a A x

M x

 

 

 

 



      

   

    

 

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

The model captures the following features: The objective (19) is the minimization of the

cycle time. Constraint (20) introduces a lower bound on the value of the objective function;

(21) and (22) lower and upper bound, respectively, the number of the existing forward

steps; (23-26) define the corridor, (27) states that the distance covered in the forward steps

of a cycle corresponds to the distance between the right borders of two consecutive

workpieces on the line; (28) forbid null forward steps by imposing that, if the number of

elementary steps is zero, then the associated forward step s does not exist; constraints (29)-

(30) guarantee that each task is accessible from the only station that is able to perform it,

during the stationary stage in which the task will be executed; (31) impose that each task is

assigned to one, and only one, stationary stage; (32), that the time corresponding to the

stationary stages is not less than the processing time at any station; (33) avoid assigning a

task to a non-existing stationary stage; (34)-(35) force that at least one task has to be

assigned to each stationary stage; Constraints (36)-(40) represent the tabu constraints, in

such a way that if the current movement scheme has the h-th tabu attribute, all the

associated binary variables yhg will have value 1. Such constraints prevent moving to a

solution that is marked tabu and is not allowed by the aspiration level; (41)-(42) express

the aspiration criterion, so that the binary variable w has value 1 if and only if the solution

fulfills the aspiration criterion; finally, constraints (43)-(47) remove the current movement

scheme from the solution space of the mathematical model.

7. Combinations of hybrid metaheuristics and MILP

To further improve the quality of the solution of the AWALBP-L2, we propose

combining the use of the MILP Solve model of Calleja et al. (2014) with the afore-

presented hybrid metaheuristics. This model requires an initial solution in order to

compute bounds. We generate an initial solution by using the Initial solution

matheuristic, and next we search for an improving solution by combining the use of the

Solve model and the hybrid metaheuristic in two alternative ways: i) using the Solve

model with the initial solution obtained with the Initial solution matheuristic and then

trying to improve the solution obtained by the model using one of the proposed hybrids.

Or ii) executing one hybrid and then using the obtained solution as the initial solution

for the Solve model.

Table 3. Combinations of the proposed hybrids and MILP.

Initial solution

matheuristic

+

 900 s

Solve model 1800 s

 2700 s

+

SA-, TS-, or TS-CM- hybrid

SA-, TS-, or TS-CM- hybrid

+

 900 s

Solve model 1800 s

 2700 s

Table 3 illustrates the considered combinations of hybrids and MILP. The two rows

show, respectively, the two combinations types considered. In the first row MILP is

applied before the hybrid, whereas in the second row MILP is applied after. In each

combination type, we consider limiting the running time of the model to 900, 1800 or

Forward steps

of a current

movement

scheme

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

2700 s, whereas the Initial solution matheuristic and the hybrid are executed in the

remaining run time until a 3600 s total limit is reached. In any case, the proposed

combined approach stops before the limit time if a solution with an objective function

value equal to the lower bound on the cycle time, LB1
CT

, is found.

8. Computational results

We present comparative results for the proposed hybrid metaheuristics and the existing

results in the literature, namely the approach using the Initial solution matheuristic and

the Solve model of Calleja et al. (2014). We aim to examine, in particular, the

effectiveness of the proposed hybrids in finding high-quality solutions for large

instances of the problem.

The hybrid procedures were implemented in Java and the mathematical models were

solved using IBM ILOG CPLEX 12.2. The absolute optimality gap was set to 1-10
-6

since, without loss of generality, all data are integers and thus the objective function

value is also an integer. Experiments were performed in Intel Core 3.33 GHz

workstations with 4 GB of RAM operating under Windows-7 (64 bits).

The performance of the proposed hybrids was tested on the same set of 1200 problem

instances as in Calleja et al. (2013, 2014). These benchmarking instances can be

downloaded from https://www.ioc.upc.edu/EOLI/research/. The instances are based on

the features arising from industrial applications. According to the description of real-

world test cases given by Gaudlitz (2004) and Tazari (2006) and to the technical

specifications of this type of line (http://www.icco.ro/files/icco-emt/328.pdf), the

following features are commonly found. The workpiece length is usually up to 2.5 times

larger than the workstation, the number of workstations may range from 7 to 20 and the

number of tasks may vary from 100 to 940. In our set of instances the lengths of the

workpieces are from 1.1 to 4 times larger than the width of the workstations, the number

of workstations ranges from 5 to 40, and the number of tasks ranges from 50 to 1000.

With respect to the difficulty in solving the problem, the most influential parameters are

A0, m and N, where A0 is the workpiece length, m is the number of workstations in the

assembly line and N is the number of tasks. For this reason, in the considered instances

the mentioned parameters are distributed along the following ranges: A0={11-15, 16-20,

21-25, 26-30, 31-35, 36-40}, m = {5-10, 11-20, 21-30, 31-40} and N={50-200, 201-

400, 401-600, 601-800, 801-1000}. Additionally, the instances have the following

characteristics. The width of the accessibility windows is 10 length units (lu) and the

length of the elementary step  is 1 lu. The time T is 200 time units (tu). The processing

time of tasks was randomly generated between 100 and 150 tu. The positions of tasks

were also randomly generated along the workpiece length A0. The distance between two

consecutive workpieces in the line is 1 lu and thus A = A0 + 1.

In order to test the quality of the proposed approaches, we carried out the following

experiments. Firstly, each hybrid metaheuristic was tested alone. In the remaining of

this section, we denote by SA, TS and TS-CM the hybrid metaheuristics based on

simulated annealing, tabu search and tabu search with corridor method, respectively.

Secondly, the combinations of hybrids and the MILP Solve model were also tested. By

MILPtime+Hybrid we denote the combination type where the Solve model is executed

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25

before the hybrid, with MILPtime  {900, 1800, 2700} seconds and Hybrid  {SA, TS, TS-

CM}. Accordingly, Hybrid+MILPtime denotes the combination where the model is

executed after the hybrid. All experiments are compared with respect to be best existing

approach in the literature obtained in Calleja et al. (2014).

The values of the algorithmic parameters used in the implementation of the hybrids SA

and TS were set based on computational experiments applying CALIBRA (Adenso-Díaz

and Laguna, 2006), a systematic procedure used in the literature to find the best

parameter values associated with heuristic or metaheuristic algorithms. Since the small

to medium-size instances of AWALBP-L2 are not very sensitive to values of

algorithmic parameters, we generated a training set of 48 large to very large-scale

instances. The set was created by generating 2 instances for each of the 24 combinations

of the following ranges: A0 = {31-35, 36-40}, m = {5-10, 11-20, 21-30, 31-40}, and N=

{401-600, 601-800, 801-1000}. The obtained parameters values are the following. As

for SA, the values of the α, itt and t0 parameters are 0.9875, 1400 and 115, respectively,

and the probabilities associated to selection from neighborhoods N1, N2 and N3 are 0.75,

0.1 and 0.15, respectively. As for TS, the tabu tenures are 24 for the tabu list associated

to neighborhoods N1 or N2, and 8 for the tabu list associated to neighborhood N3.

A preliminary test was carried out to examine the influence of the parameters of TS-CM

on different instances sizes of the data set, being the very large instances the most

sensitive. Therefore, a set containing the 20 largest instances of the problem was used to

test the performance of the three corridor structures C1, C2 and C3 proposed in Section

6.4, for different values of the tabu tenure (5, 10, 20) and corridor widths

 1,3,5; 1,2; 1,2S xR R R    . Thus 9 combinations of values were tested for C1, 18

for C2 and 36 for C3, and C3 provided the best performance in terms of the

improvement of the objective function with respect to the initial solution. We therefore

select the combination of C3 that yielded the best results to be used in the TS-CM

hybrid. Such combination has the following parameters values: the tabu tenure is 5 and

the corridor widths around the forward steps, the number of stationary stages and the

initial shift are, respectively, 3R  , 1SR  and 1xR  . Finally, we set the run time

limit of a TS-CM iteration to 300 s.

Among the 1200 initial solutions obtained with the method proposed in Calleja et al.

(2014), 457 initial solutions (38.08%) yielded an objective function value coincident

with the computed lower bound on the cycle time, (LB1
CT

), and thus were certified as

optimal solutions. We therefore focus on the comparative results for the remaining 743

instances.

Table 4 displays comparative results for the proposed hybrids with respect to Calleja et

al. (2014) on the 743 instances considered. Among these 743 instances, we know 519

optimal solutions obtained with all the methods tested so far (including the ones

presented in this paper), which are used for optimality verification in the proposed

methods. In the table, the results are grouped in four main rows. The first row shows the

results corresponding to the best existing method of the literature (the Solve model of

Calleja et al. (2014)) and the remaining rows, the results for SA, TS, TS-CM and their

combinations with the Solve model. For each experiment, in the first column (%

optima/Method) we provide the percentage of instances that were certified optimal by

the method. The second column (% optima/Known optimal solutions) provides the

percentage of instances that were certified optimal by comparing the obtained solution

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26

with the known optimal solutions. Finally, the third column (% ave. GAP) gives the

average relative gap of the 743 instances considered, with respect to the best lower

bound available. The relative gap is defined to be   / 100BF BB BF  , where the

best found value BF is the objective function value of the solution found by the

procedure and the best bound value BB is the best bound known on the instance’s

solution. The value of BB is the maximum value among the following: i) the best bound

computed by CPLEX among the models of (Calleja et al. 2013, 2014), ii) the theoretical

lower bound on the cycle time, LB1
CT

, proposed in (Calleja et al. 2014) and iii) the best

bound computed by CPLEX among the Hybrid+MILPtime experiments.

What can easily be inferred from these results is that, in terms of percentage of optimal

solutions, a better performance is obtained when the proposed hybrids are combined

with MILP than when executed alone (in all cases for SA and TS, and in 10 out of 12

cases for TS-CM). Specifically, the overall best optimality percentage was found using

the combination TS+MILP2700 (67.03% for optima certified by the method itself) and

MILP2700+SA (69.45% for optima certified by comparison with the known optima). On

the other hand, a better relative gap percentage is obtained for six different procedures

(1.83%; among these three procedures MILP900+ TS-CM provided the best result -

69.31- in terms of % of optimal solutions).

Table 4. Average results for the proposed experiments.

 % optima
% ave. GAP

 Method
 Known optimal

solutions

Calleja et al. (2014) 63.66 65.68 2.56

SA 31.22 56.53 2.99

SA + MILP900 62.72 66.89 2.31

SA + MILP1800 64.47 67.70 2.25

SA + MILP2700 66.22 67.83 2.20

MILP900 + SA 61.78 68.37 2.12

MILP1800 + SA 63.80 68.64 2.05

MILP2700 + SA 65.41 69.45 1.99

TS 30.82 67.29 1.88

TS + MILP900 64.74 68.78 1.83

TS + MILP1800 65.81 68.78 1.83

TS + MILP2700 67.03 68.91 1.83

MILP900 + TS 61.78 68.78 1.87

MILP1800 + TS 63.93 69.04 1.88

MILP2700 + TS 65.01 68.78 1.92

TS-CM 30.96 68.78 1.83

TS-CM + MILP900 64.60 69.18 1.83

TS-CM + MILP1800 65.55 69.18 1.86

TS-CM + MILP2700 65.95 68.64 1.98

MILP900 + TS-CM 62.05 69.31 1.83

MILP1800 + TS-CM 63.93 68.91 1.88

MILP2700 + TS-CM 64.47 68.24 2.01

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27

We focus on the best results obtained in terms of percentage of optimal solutions

certified with known optima (MILP2700+SA) and average relative gap (MILP900+TS-

CM). Table 5 summarizes the most relevant results for MILP2700+SA (column 1) and for

MILP900+TS-CM (column 2) compared to the best existing results of Calleja et al.

(2014) (column 3). The first row (% equal CT) shows the percentage of solutions which

provided the same objective function value as in Calleja et al. (2014). Row 2 (%

improvement) shows the percentage of instances that outperform the solution of Calleja

et al. (2014). Rows 3 (ave.) and 4 (max.) show, respectively, the average and the

maximum improvement among such instances. Conversely, the percentage of solutions

that worsen the objective is given in row 5 (% decrease), and its average and maximum

worsening values are shown in rows 6 (ave.) and 7 (max.), respectively. In both

experiments, results show a high percentage of instances that equal (around 75%) or

improve (around 25%) the objective function value of Calleja et al. (2014), whereas the

percentage of instances that worsen the objective function value is kept low (between

0.67% and 1.07% for MILP2700+SA and for MILP900+TS-CM, respectively). In row 8 we

examine the average gap (% ave. GAP) of the 743 instances considered with respect to

the best lower bound available, which decreased from 2.56% to 1.99% in MILP2700+SA

and to 1.83% in MILP900+TS-CM. Additionally, in row 9 we examine the maximum gap

(% max. GAP), which remained equal in MILP2700+SA but decreased to 22.05% in

MILP900+TS-CM. Finally, the percentage of optimal solutions, obtained by comparison

with known optima (within the 743 instances considered) is shown in row 10 (% total

optima), which increased from 65.68% to 69.31% in MILP900+TS-CM and rose to

69.45% in MILP2700+SA.

Table 5. Computational results for MILP2700 +SA and MILP900+TS-CM with respect to Calleja et al.

(2014).

MILP2700 + SA

MILP900+TS-CM

Calleja et al. (2014)

% equal CT 76.18 73.76 -

% improvement 23.15 25.17 -

 ave. 2.69 3.15 -

max. 10.41 11.81 -

% decrease 0.67 1.07 -

ave. 1.87 1.39 -

max. 3.51 4.03 -

% ave. GAP 1.99 1.83 2.56

% max. GAP 23.12 22.05 23.12

% total optima 69.45 69.31 65.68

In order to assess the overall solution of the AWALBP-L2, we compare the results of the

complete set of 1200 instances with respect to those obtained in Calleja et al. (2014).

Specifically, the percentage of optimal solutions rose from 78.75% to 81.08% in

MILP2700+SA, and to 81.00% in MILP900+TS-CM.

If we consider the optima obtained among all the proposed methods to date, we obtain that,

the problem has been solved optimally for 81.33% of the instances.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28

Finally, we study the performance of the proposed metaheuristics over time. Fig. 6 depicts the

obtained values of the objective function for the proposed metaheuristics (SA, TS and TS-CM)

over increasing time-limit (900 s, 1800 s, 2700 s and 3600 s). Results show that all heuristics

converge very fast to a certain suboptimal value or, more precisely, that all heuristics improve

only by a negligible amount after 900 s. More specifically, the gap is reduced over time by

0.002, 0.06 and 0.12% for SA, TS and TS-CM, respectively. Consequently, it seems reasonable

to limit the computational time for the metaheuristic to a few minutes and dedicate the

remaining time to the MILP model.

9. Conclusions and perspectives

In this paper, we have presented three hybrid metaheuristics, based on simulated annealing,

tabu search and tabu search with corridor method, to solve the Accessibility Windows

Assembly Line Balancing Problem Level 2 (AWALBP-L2) for the case where each task

can only be performed in one workstation.

The proposed hybrids use a mathematical model in a metaheuristic frame. More precisely,

the proposed hybrids follow a metaheuristic mechanism to guide the search and iteratively

use an embedded mathematical model. While the hybrid SA and TS metaheuristics deploy

move-based neighborhoods, the hybrid TS-CM features neighborhoods that are

constructed within the mathematical model used to explore them. We have presented a

hybrid metaheuristic where a tabu search is used to guide a MILP model over reduced

portions of the original solution space. Borrowing the basic idea of the Corridor Method,

such portions are defined by building corridors around a current solution, via the

imposition of exogenous constraints. The resulting constrained version of the problem is

then solved with the MILP model. To the best of our knowledge, this is the first time in the

literature that such TS-CM hybridization is presented.

The performance of the proposed hybrids has been tested in an extensive computational

experiment. They have been tested alone and in combination with a bounded mathematical

programming model. The best result, in terms of percentage solutions certified with known

optima, was obtained for a combination where the model is executed first and then the

6,160

6,200

6,240

6,280

900s 1800s 2700s 3600s

Metaheuristic performance over time

SA

TS

TS-CM

Best Bound

Figure 6. Objective function values according to increasing computational time-limit

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

obtained solution is tried to be improved by a SA. Such alternative currently stands as the

best method proposed for the AWALBP-L2.

The fundamental ideas on which the proposed hybrids are inspired are open in nature and

extend interesting perspectives in combining mathematical programming with a

metaheuristic framework, either for improving the solutions of the problem presented here

or for tackling other combinatorial problems.

References

Adenso-Díaz, B, Laguna, M. (2006). Fine-tuning of algorithms using fractional

experimental designs and local search. Operations Research, 54 (1), 99-114.

Battaïa, O., Dolgui, A. (2012). Reduction approaches for a generalized assembly line

balancing problem. Computers and Operations Research, 39 (10), 2337-2345.

Battaïa, O., Dolgui, A. (2013). A taxonomy of line balancing problems and their solution

approaches. International Journal of Production Economics, 142 (2), 259-277.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing

problem. Management Science, 32 (8), 909-932.

Blum, C., Puchinger, J., Raidl, G., Roli, A. (2011). Hybrid metaheuristics in combinatorial

optimization: A survey. Applied Soft Computing, 11 (6), 4135-4151.

Becker, C., Scholl, A. (2006). A survey on problems and methods in generalized assembly

line balancing. European Journal of Operation Research, 168 (3), 694-715.

Boschetti, M., Maniezzo, V., Roffilli, M., Bolufé, A. (2009). Matheuristics: Optimization,

Simulation and Control. In: Lecture Notes in Computer Science, 5818, 171-177. Hybrid

Metaheuristics - 6th International Workshop, HM 2009, Proceedings.

Calleja, G., Corominas, A., García-Villoria, A., Pastor, R. (2013). A MILP model for the

Accessibility Windows Assembly Line Balancing Problem (AWALBP). International

Journal of Production Research, 51 (12), 3549-3560.

Calleja, G., Corominas, A., García-Villoria, A., Pastor, R. (2014). Combining

matheuristics and MILP for the Accessibility Windows Assembly Line Balancing Problem

Level 2 (AWALBP-L2). Computers and Operations Research, 48, 113-123.

Capacho, L., Pastor, R., Dolgui, A., Guschinskaya, O. (2009). An evaluation of

constructive heuristic methods for solving the alternative subgraphs assembly line

balancing problem. Journal of Heuristics, 1 (2), 109-132.

Corominas, A., Pastor, R. (2009). A MILP model for the Visibility Windows Assembly

Line Balancing Problem (VWALBP): the case of the Müller-Hannemann & Weihe

problem. Technical report. Universitat Politècnica de Catalunya. Available from:

http://upcommons.upc.edu/e-prints/bitstream/2117/7047/1/IOC-DT-P-2009-09.pdf.

Corominas, A., Ferrer, L., Pastor, R. (2011). Assembly line balancing: general resource-

constrained case. International Journal of Production Research, 49 (12), 3527-3542.

Downsland, K.A., Adenso-Díaz, B. (2003). Heuristic design and fundamentals of the

Simulated Annealing. Inteligencia Artificial, 19, 93-102.

Gaudlitz, R. (2004). Optimization algorithms for complex mounting machines in PC board

manufacturing. Technical University of Darmstadt, Germany. Diploma thesis.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

30

Gendreau, M. (2003). An introduction to Tabu Search. Chapter 2 in Handbook of

metaheuristics, Eds. Glover & Kochenberger, Kluwer Academic Publishers, 37-54.

Gendreau, M., Potvin, J. Y. (2005). Tabu Search. Chapter 6 in Search Methodologies.

Introductory Tutorials in Optimization and Decision Support Techniques. Eds. Burke and

Kendall, Kluwer Academic Publishers, 165-186.

Glover, F. (1986). Future paths for Integer Programming and Links to Artificial

Intelligence. Computers and Operations Research, 13 (5), 533-549.

Glover, F. (1989). Tabu Search – part I. ORSA Journal on Computing, 1 (3), 190-206.

Glover, F. (1990). Tabu search – part II. ORSA Journal on Computing, 2 (1), 4-32.

Glover, F. (1997). Tabu Search and Adaptive Memory Programming – Advances,

Applications and Challenges. Chapter 1 in Interfaces in Computer Science and Operations

Research. Eds. R.S.Barr, R.V.Helgason, and J.L. Kennington, Kluwer, 1-75.

Henderson, D., Jacobson, S.H., Johnson, A.W. (2003). The Theory and Practice od

Simulated Annealing. Chapter 10 in Handbook of Metaheuristics, Eds. Glover and

Kochenberger, Kluwer Academic Publishers, 287-319.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983). Optimization by Simulated Annealing.

Science, 220 (4598), 671-680.

Kulturel-Konak, S. (2012). A linear programming embedded probabilistic tabu search for

the unequal-area facility layout problem with flexible bays. European Journal of

Operational Research, 223 (3), 614-625.

Lapierre, S.D., Ruiz, A., Soriano, P. (2006). Balancing assembly lines with tabu search.

European Journal of Operational Research, 168 (3), 826-837.

Maniezzo, V., Stützle, T., Voβ, S. (2009). Matheuristics: Hybridizing metaheuristics and

mathematical programming. Annals of Information Systems, 10, Springer.

Martino, L., Pastor, R. (2010). Heuristic procedures for solving the general assembly line

balancing problem with setups. International Journal of Production Research, 48 (6),

1787-1804.

Morrison, D.R., Sewell, E.C., Jacobson, S.H. (2014). An application of the branch, bound,

and remember algorithm to a new simple assembly line balancing dataset. European

Journal of Operational Research, 236 (2), 403-409.

Müller-Hannemann, M., Weihe, K. (2006). Moving policies in cyclic assembly line

scheduling. Theoretical Computer Science, 351 (3), 425-436.

Otto, A., Otto, C., Scholl, A. (2013). Systematic data generation and test design for

solution algorithms on the example of SALBPGen for assembly line balancing. European

Journal of Operational Research, 228 (1), 33-45.

Pape T. (2015). Heuristics and lower bounds for the simple assembly line balancing

problem type 1: Overview, computational tests and improvements. European Journal of

Operational Research, 240 (1), 32-42.

Pedersen, M.B., Crainic, T.G., Madsen, O.B.G. (2009). Models and Tabu Search

Metaheuristics for Service Network Design with Asset-Balance Requirements.

Transportation Science, 43 (2), 158-177.

Puchinger, J., Raidl, G. (2005). Combining metaheuristics and exact algorithms in

combinatorial optimization: a survey and classification. Artificial Intelligence and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31

Knowledge Engineering Applications: A Bionspired Approach in Lecture Notes in

Computer Science, 3562, 41-53.

Sniedovich, M., Voβ, S. (2006). The corridor method: a dynamic programming inspired

metaheuristic. Control and Cybernetics, 35 (3), 551-578.

Sternatz, J. (2014). Enhanced multi-Hoffmann heuristic for efficiently solving real-world

assembly line balancing problems in automotive industry. European Journal of

Operational Research, 235 (3), 740-754.

Suman, B., Kumar, P. (2006). A survey of simulated annealing as a tool for single and

multiobjective optimization. Journal of the Operational Research Society, 57 (10), 1143-

1160.

Tazari, S., Müller-Hannemann, M., Weihe, K. (2006). Workload Balancing in Multi-stage

Production Processes, WEA 2006, LNCS 4007, 49-60, Springer.

Tuncel, G., Topaloglu, S. (2013). Assembly line balancing with positional constraints, task

assignment restrictions and station paralleling: A case in an electronics company.

Computers & Industrial Engineering, 64 (2), 602-609.

Vilà, M., Pereira, J. An enumeration procedure for the assembly line balancing problem

based on branching by non-decreasing idle time. European Journal of Operational

Research, 229 (1), 106-113, 2013.

Woodcock, A.J., Wilson, J.M. (2010). A hybrid tabu search/branch & bound approach to

solving the generalized assignment problem. European Journal of Operational Research,

207 (2), 566-578.

