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José Miguel Giménez† and Marı́a Albina Puente‡

September 4, 2014

Abstract

We focus on generalized mixed modified semivalues, a family of mixed coalitional val-
ues. They apply to games with a coalition structure by combining a (induced) semivalue
in the quotient game, but share within each union the payoff so obtained by applying
different (induced) semivalues to a game that concerns only the players of that union. A
computation procedure in terms of the multilinear extension of the original game is also
provided and an application to the Catalan Parliament (legislature 2012–2016) is shown.
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1 Introduction
Introduced in 1974 by Aumann and Drèze [7], the notion of game with a coalition structure
gave a new impulsion to the development of value theory. These authors extended the Shapley
value to this new framework in such a manner that the game really splits into subgames played
by the unions isolatedly from each other, and every player receives the payoff allocated to him
by the Shapley value in the subgame he is playing within his union.

In 1977, a second approach was used by Owen [21], when introducing the first coalitional
value, called now the Owen value. The Owen value is the result of a two–step procedure: first,
the unions play a quotient game among themselves, and each one receives a payoff which, in
turn, is shared among its players in an internal game. Both payoffs, in the quotient game for
unions and within each union for its players, are given by the Shapley value.

In 1982, Owen [23] applied the same procedure to the Banzhaf value and obtained the
modified Banzhaf value or Owen–Banzhaf value. In this case the payoffs at both levels
(unions in the quotient game and players within each union) are given by the Banzhaf value.
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In 2002, Alonso and Fiestras [3] suggested to modify the two–step allocation scheme
and use the Banzhaf value for sharing in the quotient game and the Shapley value within
unions. This gave rise to the symmetric coalitional Banzhaf value or Alonso–Fiestras value.
That same year, Amer, Carreras and Giménez [6] considered a sort of “counterpart” of the
Alonso–Fiestras value where the Shapley value is used in the quotient game and the Banzhaf
value within unions.

Thus, the possibilities to define a coalitional value by combining the Shapley and Banzhaf
values were complete at that moment. In 2011, Carreras and Puente [12] extended the bino-
mial semivalues to games with a coalitional structure: they used these values in the quotient
game and the Shapley value within unions and obtained the symmetric coalitional binomial
semivalues, a family depending on one parameter q ∈ [0,1] (the Alonso–Fiestras value arises
for q = 1/2). In 2003, Amer and Giménez [5] considered coalitional values defined by using
a given semivalue in both steps of the procedure. In 2004 Albizuri and Zarzuelo [1] studied
coalitional values defined by any pair of semivalues (mixed modified semivalues), one in the
quotient game and the other within unions. Generalized mixed modified semivalues were in-
troduced by Albizuri [2] with the name of ‘generalized coalitional semivalues”. They apply a
semivalue in the quotient game that arises once the coalition structure is actually formed, but
share within each union the payoff so obtained by applying different semivalues to a game
that concerns only the players of that union.

In 1972, Owen [19] introduced the multilinear extension and applied it to the calculus of
the Shapley value. The computing technique based on the multilinear extension has been ap-
plied to many values: in 1975 to the Banzhaf value by Owen [20]; in 1992 to the Owen value
by Owen and Winter [24]; in 1994 to the Owen–Banzhaf value by Carreras and Magaña [9];
in 1997 to the quotient game by Carreras and Magaña [10]; in 2000 to binomial semivalues
and multinomial probabilistic indices by Puente [26]; in 2003 to coalitional semivalues by
Amer and Giménez [5]; in 2004 to the α–decisiveness and Banzhaf α–indices by Carreras
[8]; in 2005 to the Alonso–Fiestras value by Alonso, Carreras and Fiestras [4]; in 2011 to
symmetric coalitional binomial semivalues by Carreras and Puente [12]; in 2011 to semival-
ues by Carreras and Giménez in [11].

The present paper focus on giving a computational procedure for generalized mixed mod-
ified semivalues by means of the multilinear extension, generalizing the method obtained by
Carreras and Giménez in [11] to compute semivalues in cooperative games.

The organization of the paper is as follows. In Section 2, a minimum of preliminaries
is provided. Section 3 is devoted to define generalized mixed modified semivalues and give
a procedure to compute them. Section 4 contains the application of the generalized mixed
modified values to the analysis of the Catalan Parliament (legislature 2012–2016).

2 Preliminaries

2.1 Games and semivalues
Let N be a finite set of players and 2N be the set of its coalitions (subsets of N). A cooperative
game on N is a function v : 2N → R, that assigns a real number v(S) to each coalition S ⊆ N,
with v( /0) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever S ⊆ T ⊆ N and simple if,
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moreover, v(S) = 0 or 1 for every S ⊆ N. A player i ∈ N is a dummy in v if v(S∪{i}) =
v(S)+ v({i}) for all S ⊆ N\{i}, and null in v if, moreover, v({i}) = 0. Two players i, j ∈ N
are symmetric in v if v(S∪{i}) = v(S∪{ j}) for all S ⊆ N\{i, j}. Given a nonempty coalition
T ⊆ N, the restriction to T of a given game v on N is the game v|T on T that we will call a
subgame of v and is defined by v|T (S) = v(S) for all S ⊆ T .

Endowed with the natural operations for real–valued functions, i.e. v+ v′ and λv for all
λ ∈ R, the set of all cooperative games on N is a vector space GN . For every nonempty
coalition T ⊆ N, the unanimity game uT is defined by uT (S) = 1 if T ⊆ S and uT (S) = 0
otherwise, and it is easily checked that the set of all unanimity games is a basis for GN , so
that dim(GN) = 2n −1 if n = |N|. Each game v ∈ GN can then be uniquely written as a linear
combination of unanimity games, and its components are the Harsanyi dividends (Harsanyi
[18]):

v = ∑
T⊆N: T ̸= /0

αT uT , where αT = αT (v) = ∑
S⊆T

(−1)t−sv(S) (1)

and, as usual, t = |T | and s = |S|.
By a value on GN we will mean a map f : GN →RN , that assigns to every game v a vector

f [v] with components fi[v] for all i ∈ N.
Following Weber’s [28] axiomatic description, ψ : GN →RN is a semivalue iff it satisfies

the following properties:
(i) linearity: ψ[v+ v′] = ψ[v]+ψ[v′] (additivity) and ψ[λv] = λψ[v] for all v,v′ ∈ GN and

λ ∈ R;
(ii) anonymity: ψθi[θv] = ψi[v] for all permutation θ on N, i ∈ N, and v ∈ GN ;
(iii) positivity: if v is monotonic, then ψ[v]≥ 0;
(iv) dummy player property: if i ∈ N is a dummy in game v, then ψi[v] = v({i}).
There is an interesting characterization of semivalues, by means of weighting coefficients,

due to Dubey, Neyman and Weber [15]. Set n = |N|. Then: (a) for every weighting vector

{pk}n−1
k=0 such that

n−1
∑

k=0
pk
(n−1

k

)
= 1 and pk ≥ 0 for all k, the expression

ψi[v] = ∑
S⊆N\{i}

ps[v(S∪{i})− v(S)] for all i ∈ N and all v ∈ GN ,

where s = |S|, defines a semivalue ψ; (b) conversely, every semivalue can be obtained in this
way; (c) the correspondence given by {pk}n−1

k=0 7→ ψ is bijective.
Thus, the payoff that a semivalue allocates to every player in any game is a weighted sum

of his marginal contributions in the game. If pk is interpreted as the probability that a given
player i joins a coalition of size k, provided that all the coalitions of a common size have
the same probability of being joined, then ψi[v] is the expected marginal contribution of that
player to a random coalition he joins.

Well known examples of semivalues are the Shapley value φ (Shapley [27]), for which
pk = 1/n

(n−1
k

)
, and the Banzhaf value β (Owen [20]), for which pk = 21−n. The Shapley

value φ is the only efficient semivalue, in the sense that ∑
i∈N

φi[v] = v(N) for every v ∈ GN .

Notice that these values are defined for each N. The same happens with the binomial
semivalues, introduced by Puente [26] (see also Giménez [17] or Amer and Giménez [5])
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as follows. Let p ∈ [0,1] and pk = pk(1− p)n−k−1 for k = 0,1, . . . ,n− 1. Then {pk}n−1
k=0

is a weighting vector and defines a semivalue that will be denoted as ψp and called the p–
binomial semivalue. Using the convention that 00 = 1, the definition makes sense also for
p = 0 and p = 1, where we respectively get the dictatorial index ψ0 and the marginal index
ψ1, introduced by Owen [22] and such that ψ0

i [v] = v({i}) and ψ1
i [v] = v(N)− v(N\{i}) for

all i ∈ N and all v ∈ GN . Of course, p = 1/2 gives ψ1/2 = β —the Banzhaf value.
In fact, semivalues are defined on cardinalities rather than on specific player sets: this

means that a weighting vector {pk}n−1
k=0 defines a semivalue ψ on all N such that n = |N|.

When necessary, we shall write ψ(n) for a semivalue on cardinality n and pn
k for its weighting

coefficients. A semivalue ψ(n) induces semivalues ψ(t) for all cardinalities t < n, recurrently
defined by the Pascal triangle (inverse) formula given by Dragan [14]:

pt
k = pt+1

k + pt+1
k+1 for 0 ≤ k < t, (2)

A series ψ = {ψ(n)}∞
n=1 of semivalues, one for each cardinality, is a multisemivalue if it

satisfies Dragan’s recurrence formula. Thus, the Shapley and Banzhaf values and all binomial
semivalues are multisemivalues. By applying Eqs. (2) repeatedly, one gets the expression of
the weighting coefficients of any induced semivalue in terms of the coefficients of the original
semivalue, namely

pt
s =

n−t

∑
j=0

(
n− t

j

)
pn

s+ j for 1 ≤ s < t < n. (3)

The multilinear extension1 [19] of a game v ∈ GN is the real–valued function defined on
RN by

fv(XN) = ∑
S⊆N

∏
i∈S

xi ∏
j∈N\S

(1− x j)v(S). (4)

where XN denotes the set of variables xi for i ∈ N. The following properties directly derive
from the definition:

(i) If v,w ∈ GN and λ,µ ∈ R, then fλv+µw = λ fv +µ fw.

(ii) If /0 ̸= T ⊆ N, then fuT (XN) = ∏
i∈T

xi.

(iii) In general, if v = ∑
T⊆N: T ̸= /0

αT uT , then fv(XN) = ∑
T⊆N: T ̸= /0

αT ∏
i∈T

xi.

(iv) If v ∈ GN and /0 ̸= T ⊆ N, then fv|T (XT ) = fv(XT ,0N\T ), where (XT ,0N\T ) denotes the
set XN with xi = 0 for all i ∈ N\T , and v(T ) = fv(1T ,0N\T ), where 1T means xi = 1 for
all i ∈ T . Moreover,

∂ fv|T

∂xi
(1T ) = v(T )− v(T\{i}).

In particular,
∂ fv

∂xi
(1N) = v(N)− v(N\{i}) for each i ∈ N.

1The term “multilinear” means that, for each i ∈ N, the function is linear in xi, that is, of the form
fv(x1,x2, . . . ,xn) = gi(x1,x2, . . . ,

∧
xi, . . . ,xn)xi +hi(x1,x2, . . . ,

∧
xi, . . . ,xn).
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As is well known, both the Shapley and Banzhaf values of any game v can be easily
obtained from its multilinear extension. Indeed, φ[v] can be calculated by integrating the
partial derivatives of the multilinear extension of the game along the main diagonal x1 =
x2 = · · ·= xn of the cube [0,1]N (Owen [19]), while the partial derivatives of that multilinear
extension evaluated at point (1/2,1/2, . . . ,1/2) give β[v] (Owen [20]. This latter procedure
extends well to any p–binomial semivalue (see Puente [26], Freixas and Puente [16] or Amer
and Giménez [5]) by evaluating the derivatives at point (p, p, . . . , p).

2.2 Games with coalition structure
Given N = {1,2, . . . ,n}, we will denote by B(N) the set of all partitions of N. Each B ∈ B(N)
is called a coalition structure in N, and a union each member of B. The so–called trivial
coalition structures are Bn = {{1},{2}, . . . ,{n}} (individual coalitions) and BN = {N} (grand
coalition). A cooperative game with a coalition structure is a pair [v;B], where v ∈ GN and
B ∈ B(N) for a given N. Each partition B gives a pattern of cooperation among players. We
denote by G cs

N = GN ×B(N) the set of all cooperative games with a coalition structure and
player set N.

If [v;B] ∈ G cs
N and B = {B1,B2, . . . ,Bm}, the quotient game vB is the cooperative game

played by the unions or, rather, by the quotient set M = {1,2, . . . ,m} of their representatives,
as follows:

vB(R) = v(
∪
r∈R

Br) for all R ⊆ M.

By a coalitional value on G cs
N we will mean a map g : G cs

N → RN , which assigns to every
pair [v;B] a vector g[v;B] with components gi[v;B] for each i ∈ N.

If f is a value on GN and g is a coalitional value on G cs
N , it is said that g is a coalitional

value of f iff g[v;Bn] = f [v] for all v∈GN . For instance, the Owen value is a coalitional value
of the Shapley value φ in the sense that Φ[v;Bn] = φ[v] for all v ∈ GN . Besides, Φ[v;BN ] =
φ[v].

2.3 Mixed modified semivalues
Given two semivalues ψ and ϕ defined on games with n players (with possibly ϕ = ψ), Al-
bizuri and Zarzuelo [1] defined the concept of mixed modified semivalue for games with
coalition structure. They also proved that every mixed modified semivalue is a coalitional
semivalue and, reciprocally, every coalitional semivalue has this form.

If [v;B] ∈ G cs
N and B = {B1,B2, . . . ,Bm}, the modified quotient game vB j |K is defined as

follows:
vB j |K(L) = v(

∪
l∈L

Bl \K′) for all L ⊆ M,

where K′ = B j \K. This is the game played by the partition classes with the exception of B j,
that is replaced by the subset K. Given a semivalue ψ ∈ GN , since the game uB j |K is defined
on a set M with m players (1 ≤ m ≤ n), we can apply the induced semivalue ψ(m):

w j(K) = (ψ(m)) j[uB j |K ] ∀K ⊆ B j. (5)
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The value w j(K) shows the strategic position of the subset K ⊆ B j if this subset directly
negotiate with the other classes as players in the quotient game –according to the semivalue
induced by ψ– in absence of K′ = B j \K.

Next, since the game w j is defined on B j, a set with b j = |B j| players (1 ≤ b j ≤ n), we
can apply the induced semivalue ϕ(b j) and we define the mixed semivalue ψ/ϕ modified by
the coalition structure B as (

ψ/ϕ
)

i[v;B] = (ϕ(b j))i[w j] ∀i ∈ B j.

The mixed semivalue ψ/ϕ yields the result of a two–step bargaining procedure analogous
to that used in [21, 23] and also in [3, 12]. Indeed, here we first apply the semivalue induced
by ψ in the quotient game to get a payoff for each union; next, we use within union B j the
semivalue induced by ϕ to share the payoff by applying it to a reduced game played in this
union.

If ψ and ϕ are respectively defined by the weighting coefficients (qn
s )

n−1
s=0 and (pn

s )
n−1
s=0 ,

according to [1], the payoff given by the mixed modified ψ/ϕ semivalue to every player i in
B j ∈ B, is (

ψ/ϕ
)

i[v;B] = ∑
R⊆M\{ j}

qm
r ∑

S⊆B j\{i}
p

b j
s [v(Q∪S∪{i})− v(Q∪S)] (6)

where Q =
∪
r∈R

Br, b j = |B j|, and s = |S|.

3 Generalized mixed modified semivalues
Generalized mixed modified semivalues, from now on GMMS, were introduced by Albizuri
[2] with the name of ‘generalized coalitional semivalues”. They apply a (induced) semivalue
in the quotient game that arises once the coalition structure is actually formed, but share
within each union the payoff so obtained by applying different (induced) semivalues to a
game that concerns only the players of that union.

Definition 3.1 Let [v;B] ∈ G cs
N and B = {B1,B2, . . . ,Bm} a coalition structure in N. If ψ, φ1,

. . . ,φm are m+1 semivalues in GN , we define the GMMS ψ/φ1 · · ·φm by(
ψ/φ1 · · ·φm

)
i[v;B] =

(
ψ/φ j

)
i[v;B] ∀i ∈ B j ( j = 1, . . . ,m). (7)

From now on we will denote
(
ψ/φ1 · · ·φm

)
i[v;B] by Φi[v;B].

Lemma 3.2 Let [v;B]∈ G cs
N , B = {B1,B2, . . . ,Bm} a coalition structure in N and Φ a GMMS

defined by m+ 1 semivalues in GN . The allocations given by Φ to players belonging to a
union B j can be obtained as a linear combination of the allocations to unanimity games uT ,
where T =V ∪W, V ⊆ B j and W ∈ 2B\B j .
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.
Proof Each game v ∈ GN can be uniquely written as linear combination of unanimity games

v = ∑
T⊆N: T ̸= /0

αT uT , where αT = αT (v) = ∑
S⊆T

(−1)t−sv(S).

For all i ∈ B j, by linearity, Φi[v;B] = ∑T⊆N: T ̸= /0 αT Φi[uT ] and it suffices consider unanimity
games uT with

T =V ∪Ai1 ∪Ai2 ∪ . . .∪Aip , V ⊆ B j, {i1, i2, ..., ip} ⊆ M \{ j}, /0 ̸= Aiq ⊆ Biq , q = 1, ..., p.

According to Definition 3.1 and by using expression (6), it is easy to check that the allocations
to players in B j only depend on the allocations in the unanimity games defined on inside
coalitions in B j and entire unions outside B j. That is,

Φi[uT ;B] = Φi[uV∪Ai1∪Ai2∪...∪Aip
;B] = Φi[uV∪Bi1∪Bi2∪...∪Bip

;B]. �

Notice that the number of unanimity games of this form is (2b j − 1)2m with b j = |B j| and
m = |M|.

Proposition 3.3 Let B = {B1,B2, . . . ,Bm} be a coalition structure in N and Φ a GMMS
defined by m + 1 semivalues in GN , ψ, φ1, . . . ,φm. Fixed a union B j, the allocation to
a player i belonging to B j in a unanimity game uT , T = V ∪ Bi1 ∪ ·· · ∪ Bih , V ⊆ B j and
{i1, ..., ih} ⊆ M \{ j} is given by

Φi[uT ;B] =
(
ψ/φ j

)
i[uT ;B] =

 qh+1
h pv

v−1 i ∈ T

0 i /∈ T

where the weighting coefficients of the induced semivalues (qh+1
s )h

s=0 and (pv
s)

v−1
s=0 are ob-

tained following (2) from the weighting coefficients (qn
s )

n−1
s=0 and (pn

s )
n−1
s=0 of the semivalues ψ

and φ j respectively.

Proof For i ∈ T , according to (6) we have

Φi[uT ;B] = ∑
R⊆M\{ j}

qm
r ∑

S⊆B j\{i}
p

b j
s [uT (Q∪S∪{i})−uT (Q∪S)]

where Q =
∪
r∈R

Br, b j = |B j|, and s = |S|.

Only uT (Q∪S∪{i})−uT (Q∪S) does not vanish for coalitions R such that {i1, ..., ih} ⊆
R ⊆ M \{ j} and for coalitions S such that V \{i} ⊆ S ⊆ B j \{i}. Then, according to Eq.(3)
for induced weights, we have

Φi[uT ;B] =
m−1

∑
r=h

(
m−1−h

r−h

)
qm

r

b j−1

∑
s=v−1

(
b j − v

s− v+1

)
p

b j
s = qh+1

h pv
v−1

In case of i ̸∈ T , all marginal contributions uT (Q∪S∪{i})−uT (Q∪S) vanish. �
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Example 3.4 On the players set N = {1,2,3,4,5,6}, let B = {{1,2,3},{4,5},{6}} be a
coalition structure on N and Φ a GMMS defined by the semivalues in GN , ψ, φ1, φ2, and φ3,
where ψ=φ is the Shapley value and φ1 is defined by the weighting coefficients (p6

s )
6
s=0=(1/24,

3/80, 1/30, 7/240, 1/40, 1/48).
We will obtain the allocations to players i ∈ B1 according to Φ for the unanimity games

u{1,2,4,6} and u{1,2,4,5,6}. They are

Φi[u{1,2,4,6};B] = q3
2 p2

1 =
1
3

7
15

=
7

45
, for i = 1,2 and

Φ3[u{1,2,4,6};B] = 0,

where p2
1 =

4

∑
k=0

(
4
k

)
p6

1+k = 7/15 is the corresponding weighting coefficient of the in-

duced semivalue.
In a similar way and according to Lemma 3.2, for u{1,2,4,5,6} we obtain

Φi[u{1,2,4,5,6};B] = q3
2 p2

1 =
1
3

7
15

=
7
45

, for i = 1,2 and

Φ3[u{1,2,4,5,6};B] = 0,

Notice that the allocations in both games are the same because coalitions {1,2,4,6} and
{1,2,4,5,6} intersect the same unions B2 and B3.

For players in B1, their allocations does not depend on the remaining semivalues φ2 and
φ3.

The computing technique based on the multilinear extension has been applied to many
coalitional values: in 1992 to the Owen value by Owen and Winter [24]; in 1994 to the
Owen–Banzhaf value by Carreras and Magaña [9]; in 1997 to the quotient game by Carreras
and Magaña [10]; in 2003 to coalitional semivalues by Amer and Giménez [5]; in 2005 to the
Alonso–Fiestras value by Alonso, Carreras and Fiestras [4]; in 2011 to symmetric coalitional
binomial semivalues by Carreras and Puente [12]; and to coalitional multinomial probabilistic
values iby Carreras and Puente [13]. In next theorem we present a method to compute any
GMMS by means of the multilinear extension of the game.

Theorem 3.5 Let [v;B] ∈ G cs
N , B = {B1,B2, . . . ,Bm} a coalition structure in N and Φ a

GMMS defined by m+1 semivalues in GN , ψ, φ1, . . . ,φm with weighting coefficients (qn
s )

n−1
s=0

and (pr,n
s )n−1

s=0 , r = 1, ...,m, respectively.
Then the following steps lead to the GMMS value of any player i ∈ B j in [v;B].

1. Obtain the multilinear extension f (x1,x2, . . . ,xn) of game v.

2. For every r ̸= j and all h ∈ Br, replace the variable xh with yr. This yields a new
function of xk for k ∈ B j and yr for r ∈ M\{ j}.

3. In this new function, reduce to 1 all higher exponents, i.e. replace with yr each yq
r such

that q > 1. This gives a new multilinear function denoted as g j((xk)k∈B j , (yr)r∈M\{ j})
(The modified multilinear extension of union B j).
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4. After some calculus, the obtained modified multilinear extension reduces to

g j((xk)k∈B j , (yr)r∈M\{ j}) = ∑
V⊆B j

∑
W⊆M\{ j}

λV∪W ∏
k∈V

xk ∏
r∈W

yr

5. Multiply each product ∏k∈V xk by p j,v
v−1 and each product ∏r∈W yr by qw+1

w obtaining a
new multilinear function called g j.

6. Obtain the partial derivative of g j with respect to xi evaluated at point (1, . . . ,1) and

Φi[v;B] =
∂g j

∂xi
(1B j ,1M\{ j}).

Proof Steps 1–3 have been already used in [24, 9, 26, 16, 4, 12, 13] to obtain the modified
multilinear extension of union B j. Step 4 shows the modified multilinear extension as a linear
combination of multilinear extensions of unanimity games. Step 5 weights each unanimity
game according to Proposition 3.3 so that step 6 gives as usual the marginal contribution of
player i and his allocation Φi[v;B] is obtained. �

The following corollary shows as this procedure can be applied to compute semivalues
allocations from the MLE of a cooperative game, in a similar way given by Carreras and
Giménez [11].

Corollary 3.6 Let v ∈ GN and Ψ a semivalue defined in GN by the weighting coefficient pn
s ,

s = 0, ...,n−1. Then the following steps lead to the allocation of any player i ∈ N in game v.

1. Obtain the multilinear extension f (x1,x2, . . . ,xn) of game v as a sum of products

f (x1,x2, . . . ,xn) = ∑
S⊆N

αS ∏
k∈S

xk

2. Multiply each product ∏k∈V xk by pv
v−1 obtaining a new multilinear function called f .

3. Obtain the partial derivative of f with respect to xi evaluated at point (1, . . . ,1) and

Ψi[v] =
∂ f
∂xi

(1N).

Proof Considerer the coalition structure given by the grand coalition B = BN = {N}. In this
case, semivalue Ψ[v] coincides with the GMMS Φ[v;BN ]. Then, applying Theorem 3.5 and
taking into account that coefficient q1

0 = 1, we easily obtain Ψi[v] =
∂ f
∂xi

(1N). �

Example 3.7 Let v≡ [68;50,21,20,19,13,9,3] be the 7–person weighted majority game and
the coalition structure B= {{1},{2,3,5},{4},{6},{7}}. We will compute Φ[v;B], where the
GMMS Φ is defined by 6 semivalues in GN , ψ, φ1, . . . ,φ5 with weighting coefficients (q7

s )
6
s=0

and (pr,7
s )6

s=0, r = 1, ...,5, respectively.
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The set of minimal winning coalitions of the game is

W m(v) = {{1,2},{1,3},{1,4},{1,5,6}},

so that players 2, 3 and 4 on one hand, and 5 and 6 on the other, are symmetric in v. Moreover,
player 7 is null and the multilinear extension of v is

f (XN) =x1x2 + x1x3 + x1x4 − x1x2x3 − x1x2x4 − x1x3x4 + x1x5x6 + x1x2x3x4

− x1x2x5x6 − x1x3x5x6 − x1x4x5x6 + x2x3x4x5 + x2x3x4x6 − x1x2x3x4x5

− x1x2x3x4x6 + x1x2x3x5x6 + x1x2x4x5x6 + x1x3x4x5x6 − x2x3x4x5x6.

The coalition structure is B= {{1},{2,3,5},{4},{6},{7}} and steps 1–4 in Theorem 3.5
give the modified multilinear extension of each union B j, for j = 1,2,3,4 (notice that player
7 is null in v and it is not necessary to compute g5).

g1(x1,y2,y3,y4,y5) = x1y2 + x1y3 −2x1y2y3 + y2y3,

g2(x2,x3,x5,y1,y3,y4,y5) = x2y1 + x3y1 + y1y3 − x2x3y1 − x2y1y3 − x3y1y3 + x5y1y4 + x2x3y1y3

− x2x5y1y4 − x3x5y1y4 − x5y1y3y4 + x2x3x5y3 + x2x3y3y4 − x2x3x5y1y3

− x2x3y1y3y4 + x2x3x5y1y4 + x2x5y1y3y4 + x3x5y1y3y4 − x2x3x5y3y4,

g3(x4,y1,y2,y4,y5) = y1y2 + x4y1 + x4y2 −2x4y1y2,

g4(x6,y1,y2,y3,y5) = y1y2 + y1y3 + y2y3 −2y1y2y3.

Step 5 leads to g j for each j = 1,2,3,4.

g1(x1,y2,y3,y4,y5) = p1,1
0 q2

1x1y2 + p1,1
0 q2

1x1y3 −2p1,1
0 q3

2x1y2y3 +q3
2y2y3,

g2(x2,x3,x5,y1,y3,y4,y5) = p2,1
0 q2

1x2y1 + p2,1
0 q2

1x3y1 +q3
2y1y3 − p2,2

1 q2
1x2x3y1 − p2,1

0 q3
2x2y1y3

− p2,1
0 q3

2x3y1y3 + p2,1
0 q3

2x5y1y4 + p2,2
1 q3

2x2x3y1y3 − p2,2
1 q3

2x2x5y1y4 − p2,2
1 q3

2x3x5y1y4

− p2,1
0 q4

3x5y1y3y4 + p2,3
2 q2

1x2x3x5y3 + p2,2
1 q3

2x2x3y3y4 − p2,3
2 q3

2x2x3x5y1y3 − p2,2
1 q4

3x2x3y1y3y4

+ p2,3
2 q3

2x2x3x5y1y4 + p2,2
1 q4

3x2x5y1y3y4 + p2,2
1 q4

3x3x5y1y3y4 − p2,3
2 q3

2x2x3x5y3y4,

g3(x4,y1,y2,y4,y5) = q3
2y1y2 + p3,1

0 q2
1x4y1 + p3,1

0 q2
1x4y2 −2p3,1

0 q3
2x4y1y2,

g4(x6,y1,y2,y3,y5) = q3
2y1y2 +q3

2y1y3 +q3
2y2y3 −2q4

3y1y2y3.

Step 6 yields

Φ1[v;B] = 2p1,1
0 q2

1 −2p1,1
0 q3

2,

Φi[v;B] = p2,1
0 q2

1 − p2,2
1 q2

1 − p2,1
0 q3

2 + p2,2
1 q3

2 + p2,3
2 q2

1 − p2,3
2 q3

2, for i = 2,3,

Φ4[v;B] = 2p3,1
0 q2

1 −2p3,1
0 q3

2,

Φ5[v;B] = p2,1
0 q3

2 −2p2,2
1 q3

2 − p2,1
0 q4

3 + p2,3
2 q2

1 − p2,3
2 q3

2 +2p2,2
1 q4

3,

Φ6[v;B] = 0,
Φ7[v;B] = 0.
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4 The Catalan Parliament. Legislature 2012–2016
In this section we will revisit Example 3.7 and will complete, by applying different GMMS’s,
the study initiated there to an interesting political structure: the Catalan Parliament (Legisla-
ture 2012–2016). All allocations we will need have been computed using Theorem 3.5, most
of them in Example 3.7.

Seven parties elected members to the Catalonia Parliament (135 seats) in the elections
held on 25 November 2012. The seat distribution of the parties are as follows.

1: CiU (Convergència i Unió), Catalan nationalist middle–of–the–road coalition of two
federated parties: 50 seats.

2: ERC (Esquerra Republicana de Catalunya), Catalan nationalist left–wing party: 21
seats.

3: PSC (Partit dels Socialistes de Catalunya), moderate left–wing socialist party, federated
to the Partido Socialista Obrero Español: 20 seats.

4: PPC (Partit Popular de Catalunya), conservative party, Catalan delegation of the Partido
Popular: 19 seats.

5: ICV (Iniciativa per Catalunya–Verds), coalition of Catalan eurocommunist parties, fed-
erated to Izquierda Unida, and ecologist groups (“Verds”): 13 seats.

6: C’s (Ciutadans), Spanish nationalist liberal party: 9 seats.

7: CUP (Candidatura d’unitat popular), radical left–wing catalanist party organized by
assemblies: 3 seats.

Under the standard absolute majority rule, and assuming voting discipline within parties,
the structure of this parliamentary body can be represented by the weighted majority game

v ≡ [68;50,21,20,19,13,9,3].

Therefore, the strategic situation is given by

W m(v) = {{1,2},{1,3},{1,4},{1,5,6}},

so that players 2, 3 and 4 on one hand, and 5 and 6 on the other, are symmetric in v. Moreover,
player 7 is null.

The calculation of Ψ[v] for an arbitrary semivalue with weighting coefficients (p7
s )

6
s=0

derives from Corollary 3.6 considering the coalition structure given by the grand coalition
BN = {{1,2,3,4,5,6,7}}. We get:

Ψ1[v] = 3p2
1 −2p3

2 −2p4
3 + p5

4,

Ψi[v] = p2
1 −2p3

2 +2p4
3 − p5

4, for i = 2,3,4,

Ψi[v] = p3
2 −2p4

3 + p5
4, for i = 5,6,

Ψ7[v] = 0.
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We show in Table 1 the allocations for every player in game v according to the Shapley
(φ) and Banzhaf (β) values and the p–binomial value with p = 1/3 (ψ1/3). Notice that the

weighting coefficients ps
s−1 for these values are respectively ps

s−1 =
1
s

, ps
s−1 =

1
2s−1 and

ps
s−1 = ps−1.

Table 1. Initial power distribution in the Catalonia Parliament 2012–2016

Value 1. CiU 2. ERC 3. PSC 4. PPC 5. ICV 6. C’s 7. CUP

φi[v] 0.5333 0.1333 0.1333 0.1333 0.0333 0.0333 0.0000

βi[v] 0.8125 0.1875 0.1875 0.1875 0.0625 0.0625 0.0000

ψ1/3 0.7160 0.1728 0.1728 0.1728 0.0494 0.0494 0.0000

We will not attempt to give here a full description of the complexity of the Catalan politics,
a task more suitable for a political science article. We wish only to state that, in view of
all these components, the politically most likely coalitions to form, and the corresponding
coalition structures, are the following:

• ERC + PSC + ICV, the left alliance: BL = {{1},{2,3,5},{4},{6},{7}}.

• CiU + ERC, the Catalanist majority alliance: BC = {{1,2},{3},{4},{5},{6},{7}}.

In order to evaluate the strategic possibilities of each party we apply Φ[v;B] in cases
B = BL (see Example 3.7) and B = BC according to the Owen value, the Owen–Banhaf value,
the Alonso and Fiestras value, the symmetric coalitional binomial value Ωp with p = 1/3 and
the mixed semivalue µ defined by the coefficients

(q7
s )

6
s=0 =

(
6− s
192

)6

s=0
and (p7

s )
6
s=0 =

(
26−s

36

)6

s=0
.

Notice that the first coefficients refer to an arithmetic semivalue with increase −1/192 and
the second ones to the binomial semivalue with p = 1/3. Now the last weighting coefficients
for the induced arithmetic semivalue are:

q6
5 = 1/192, q5

4 = 1/48, q4
3 = 1/16, q3

2 = 1/6, q2
1 = 5/12 and q1

0 = 1.

In this case player 7 (CUP) is null in the quotient game and then Φ7[v;B] = 0. The results
obtained in case of the left alliance for the remaining players are given in Table 2.

Table 2. Different GMMS in the Catalonia Parliament 2012–2016 (the left–wing alliance)

Value 1. CiU 2. ERC 3. PSC 4. PPC 5. ICV 6. C’s

Owen 0.3333 0.1389 0.1389 0.3333 0.0556 0.0000

Owen–Banzhaf 0.5000 0.1875 0.1875 0.5000 0.0625 0.0000

Alonso–Fiestras 0.5000 0.2083 0.2083 0.5000 0.0833 0.0000

Sym. coalitional (p = 1/3) 0.4444 0.1852 0.1852 0.4444 0.0741 0.0000

Mixed semivalue µ 0.5000 0.1944 0.1944 0.5000 0.0625 0.0000
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In case B = BC players 3, 4, 5, 6 and 7 became null in the quotient game and then
Φi[v;B] = 0 for all of them. We only need to calculate the modified multilinear extension
g1.

g1(x1,x2,y2, ...,y6) =x1x2 + x1y2 + x1y3 − x1x2y2 − x1x2y3 − x1y2y3 + x1y4y5 + x1x2y2y3

− x1x2y4y5 − x1y2y4y5 − x1y3y4y5 + x2y2y3y4 + x2y2y3y5 − x1x2y2y3y4

− x1x2y2y3y5 + x1x2y2y4y5 + x1x2y3y4y5 + x1y2y3y4y5 − x2y2y3y4y5.

Following the same procedure as the previous alliance, the results obtained for the Cata-
lanist majority alliance for players 1 and 2 are given in Table 3.

Table 3. Different GMMS in the Catalonia Parliament 2012–2016 (the Catalanist majority alliance)

Value 1. CiU 2. ERC

Owen 0.7000 0.3000

Owen–Banzhaf 0.8125 0.1875

Alonso–Fiestras 0.8125 0.1875

Symmetric coalitional binomial (p = 1/3) 0.7716 0.2284

Mixed semivalue µ 0.7847 0.1597

In order to form a government coalition in the two last Legislatures (2003–2007 prema-
turely finished in 2006 and 2006–2010) the role of ERC was crucial. Thus, in both cases ERC
was faced to the dilemma of choosing among either a Catalanist majority coalition with CiU
or a left–wing majority coalition with PSC and ICV, which was finally formed in 2003 and
was repeated in 2006.

In the present Legislature, studied here, the politic scenario and parties’ strategic possi-
bilities have changed. Among the different possibilities, the two alliances above considered
have been the most commented in the Parliament and in the media. According to the left–
wing alliance and comparing the results obtained in Table 1 and Table 2, ERC does not get
a significant benefit regarding PSC. When considering the Catalanist majority alliance, the
outside parties are reduced to a null position and the power of ERC increases regarding the
initial power in v (see Table 1 and Table 3). However, ERC’s current decision has not been to
form a government coalition with CiU.

5 Concluding remarks
The present work is focussed on the calculus of generalized modified mixed semivalues.
More precisely, the computation of allocations to the players can be obtained from the mul-
tilinear extension by using a common procedure for all GMMS. As is well known, both the
Shapley and Banzhaf values of any game v can be easily obtained from its multilinear ex-
tension. This latter procedure extends well to any p–binomial semivalue (see Puente [26],
Freixas and Puente [16] or Amer and Giménez [5]).

In the context of games with a coalition structure, the multilinear extension technique
has been also applied to computing the Owen value (Owen and Winter [24]), as well as the
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Owen–Banzhaf value (Carreras and Magaña [9]), the symmetric coalitional Banzhaf value
(Alonso, Carreras and Fiestras [4]), the symmetric coalitional binomial semivalue (Carreras
and Puente [12]) and the multinomial coaltional probabilistic values (Carreras and Puente
[13]). In all these cases, (including the GMMS) the first three steps of the procedure are the
same.

Instead, the consideration of the modified MLE g j for the union B j obtained from the
initial one has changed the procedure: first, we weight the terms of g j multiplying each prod-
uct ∏k∈V xk by pv

v−1 and each product ∏r∈W yr by qw+1
w obtaining a new multilinear function

called g j. Second, we obtain players’ marginal contributions by partial differentiation of g j.
This new procedure has an advantage with respect to the traditional method: the allocations
given by any coalitional semivalue are available since the weighting coefficients pk−1

k and
qk+1

k can be always obtained.
Finally, the procedure presented here is a generalization of the method given by Carreras

and Giménez [11] to compute semivalues allocations from the MLE of a cooperative game.
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[5] Amer, R. and Giménez, J.M. [2003]: “Modification of semivalues for games with coali-
tion structures.” Theory and Decision 54, 185–205.
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