
Linked Data and Linked apis:
Similarities, Differences, and Challenges?

Ruben Verborgh1, Thomas Steiner2, Rik Van de Walle1, and Joaquim Gabarro2

1 Ghent University – ibbt, elis – Multimedia Lab
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

{ruben.verborgh,rik.vandewalle}@ugent.be
2 Universitat Politècnica de Catalunya – Department lsi

08034 Barcelona, Spain
{tsteiner,gabarro}@lsi.upc.edu

Abstract. In an often retweeted Twitter post, entrepreneur and soft-
ware architect Inge Henriksen described the relation of Web 1.0 to Web 3.0
as: “Web 1.0 connected humans with machines. Web 2.0 connected hu-
mans with humans. Web 3.0 connects machines with machines.” On the
one hand, an incredible amount of valuable data is described by billions of
triples, machine-accessible and interconnected thanks to the promises of
Linked Data. On the other hand, rest is a scalable, resource-oriented ar-
chitectural style that, like the Linked Data vision, recognizes the impor-
tance of links between resources. Hypermedia apis are resources, too—
albeit dynamic ones—and unfortunately, neither Linked Data principles,
nor the rest-implied self-descriptiveness of hypermedia apis sufficiently
describe them to allow for long-envisioned realizations like automatic ser-
vice discovery and composition. We argue that describing inter-resource
links—similarly to what the Linked Data movement has done for data—
is the key to machine-driven consumption of apis. In this paper, we
explain how the description format restdesc captures the functional-
ity of apis by explaining the effect of dynamic interactions, effectively
complementing the Linked Data vision.

1 Introduction

1.1 The Web api simplification movement

The number of Web apis has increased at a tremendous rate during the past few
years. ProgrammableWeb, a major catalog of Web apis and services, consisted
of 6,000 entries as of May 2012 [13], twice the amount compared to the year
before [12]. More than 4,000 of those entries carry the label “rest”, meaning they
are light-weight Web apis, also called http interfaces, as opposed to the more
heavy-weight rpc-style Web services, often using soap. While there are certainly
different viewpoints to take into account—especially when comparing enterprise
? This paper is an extended version of the Linked apis for the Semantic Web (lapis)
workshop paper titled “The Missing Links” [34].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

soa architects and mash-up developers—Web developers in general welcome this
simplification movement on the dynamic side of the Web. It is common practice
to intermix Web apis from different sources and, in the sense of emergence,
create something new (commonly called mashup applications), where the whole
is greater than the sum of its parts. If Web application development today was
compared to the world of toys, the lego figures would ride the Playmobil horses
and fight with Star Wars collectibles swords. However, a lot of manual plumbing
is required to make this work: while Web apis bare the potential to be composed
straightforwardly, they lack the semantics to do this in an automated way [26].

In the past, we have introduced the Web api description method restdesc [35],
which aims to provide the semantics necessary to enable automated api con-
sumption and composition, in the same way that ontologies provide the seman-
tics to static data. In this paper, we want to look at Web apis from a Semantic
Web perspective: investigating how apis differ from data, what they have in
common, and how they could work together on the Web. An important piece
of the puzzle is to realize that the resource-oriented way of looking at apis is
similar to the Linked Data vision on data.

1.2 Linked Data explains the static side, restdesc the dynamic side

To clarify what we mean with this statement, we need to take a step back and
think about the Web in its most abstract form. What we see are resources,
with an unparalleled variety, and an ever increasing number of links between
them [10]. Resources and their representations make up the essence of the Web [16],
while the Linked Data vision made us all realize again the crucial role that links
play therein. Indeed, links have been the catalysts of the success of the human
Web, and they continue to prove their strengths on the Semantic Web [8]. The
representations of resources—and therefore data—are given meaning by links,
corresponding to well-defined rdf predicates.

Given the importance of links, one can wonder why they seem absent on the
service-side of the Web, where interactions are mostly driven by static controls
such as message templates and uri construction rules. These controls have to
be known in advance, unlike Linked Data controls (i.e., the links between re-
sources), which are consumed at runtime. When Fielding redesigned the http
specification [15], he had a resource-oriented model in mind where hypermedia
drives Web applications: Representational State Transfer (rest, [16]). He later
clarified that the hypermedia constraint imposed by rest demands that repre-
sentations of a resource should contain controls that guide hypermedia consumers
to possible next steps or resources [14]. Consequently, modeling Web apis the
rest way leads to the same resources-and-links paradigm that is at the core of
the human Web, which has html links and forms, and the Semantic Web, which
has rdf links between resources.

In all fairness, rest apis—as defined by Fielding—are scarce. While many
apis carry the “rest” label, few actually obey the hypermedia constraint, and,
even worse, some of them do not correctly adhere to the defined http seman-
tics [26]. Hypermedia-driven apis are vastly outnumbered by plain http and rpc

Linked Data and Linked apis: Similarities, Differences, and Challenges 3

Book Store Book 443 Review 7
hasBook hasReview

Static actions (e.g., following links)
The Linked Data principles tell agents
what happens if they GET /books/443.
They indeed receive a representation of the
resource identified by that URI, in this case a book.
This process, called “dereferencing”, is driven by the
typed links (hasBook, hasReview) between resources.

Dynamic actions (e.g., submitting forms)
However, while humans might predict what happens
when they POST to /books/443, machines cannot.
Therefore, the goal of RESTdesc is to explain the
effect of a state-changing operation on a resource,

in this case creating a new review for the book.
This process is also driven by the same typed links.

Fig. 1. restdesc complements Linked Data by explaining a hyperlink’s dynamic
functionality in machine-readable form. For instance, we can express with restdesc
what happens when agents use POST on a linked resource instead of GET.

interfaces. However, this can be compared to the larger presence of unstructured
and unlinked data on the Web compared to Linked Data. Therefore, the scarce-
ness doesn’t change the status of resource- and link-orientedness as well-suited
model for automated agents to perform static and dynamic interactions.

Currently, the main obstacle for automated agents that want to consume
Web apis is that they cannot predict what effect a state-changing operation
will have. Linked Data gives the answer for information-retrieving operations,
known as dereferencing. Performing a GET operation on a resource’s uri will
provide the agent with information about that resource. But what happens when
the agent performs a POST operation on the same resource? [35] Since Fielding
suggests the controls (e.g., links and forms) should point to possible next steps or
resources, it is obvious how the state change happens. However, what this state
change will bring might be obvious to humans, but is still unknown to machines.
Therefore, in this paper, we zoom in on how the description format restdesc
explains to agents what will happen if state-changing operations are performed
on a resource, complementary to the Linked Data principles that explain the
same for static operations.

This complementary nature is illustrated in Fig. 1, which positions Linked
Data and restdesc. The example shows a book store that offers several books,
each of which can have several reviews. The resources might be available on the
Web for human visitors as html representations with (possibly typed) hyper-
links in between. To make the store machine-accessible, the server might addi-
tionally serve rdf representations, in which the relations are rdf predicates,
which eventually can lead to Linked Data. However, the Linked Data principles
only explain how to browse books and reviews, whereas the html representations
provide the controls to add reviews. restdesc bridges this gap by explaining the
functionality of this Web api, in a representation-independent way.

This paper starts with a description of related work in Section 2, then high-
lights the differences and similarities of Linked Data and hypermedia apis in
Section 3, zooming in on the gaps that need to be bridged. Section 4 continues
with an illustration of the role restdesc can play herein by formally express-
ing the relationship between resources in a hypermedia api. Finally, Section 5
looks back on the discussed topics and ends by indicating the importance of
hypermedia-driven apis on the Web for autonomous agents.

4 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

2 Related work

Description of Web services or apis for automated use has been on the Web since
before the advent of the Semantic Web (notably wsdl [11]), and played an im-
portant part during the beginning of the Semantic Web’s inception. Several of the
first initiatives are well-known: owl-s [29], which evolved from daml-s [3], and
the conceptually different wsmo [24,32]. These formats target what are called
“Big” Web services [31], which function in a message-passing or Remote Proce-
dure Call (rpc) paradigm. While these models use Semantic Web elements such
as ontologies, they predate the Linked Data vision and the recent revaluation of
rest apis. Neither owl-s nor wsmo have stood the test of time, as extensive
Web searches did not reveal substantial real-world usage. We therefore focus on
more recent research projects that have design goals similar to restdesc, e.g.,
a focus on functionality and/or hypermedia apis.

Several methods aim to enhance existing technologies to deliver annotations
of Web apis. html for restful Services (hrests, [21]) is a microformat to anno-
tate html descriptions of Web apis in a machine-processable way. sa-rest [18]
provides an extension of hrests that describes other facets such as data for-
mats and programming language bindings. Microwsmo [22,25], an extension to
sawsdl that enables the annotation of restful services, supports the discovery,
composition, and invocation of Web apis. The Semantic Web sErvices Editing
Tool (sweet, [27]) is an editor that supports the creation of mashups through
semantic annotations with Microwsmo and other technologies. A shared api de-
scription model, providing common grounds for enhancing apis with semantic
annotations to overcome the current heterogeneity, has been proposed in the
context of the soaall project [28].

The Resource Linking Language (rell, [1]) features media types, resource
types, and link types as first class citizens for descriptions. It offers a metamodel
and an associated xml Schema to capture these aspects formally. The restler
crawler [1] finds restful services based on rell descriptions. The authors also
propose a method for rell api composition [2] using Petri nets to describe the
machine-client navigation.

Linked Open Services (los, [23]) have an http api approach, in which
sparql graph patterns identify the offered functionality. Part of the project’s
scope concerns the lifting and lowering of existing services, since many of them
do not expose their data in a semantic format yet. A difference with restdesc
is that los apis are not committed to the hypermedia constraint, whereas the
hypermedia-driven consumption of apis is a central concept in restdesc.

Linked Data Services (lids, [33]) have a similar notion of input and output
graphs. They use the input data to construct a resource’s uri, as opposed to
los, which sends input data in the request body. The result is an api whose
interactions are thus in a sense solely form-based—the form structure being
defined by the unbound variables in the input graph pattern. In addition to
forms (not discussed in this paper), restdesc also aims to support the link part
of the hypermedia control set.

Linked Data and Linked apis: Similarities, Differences, and Challenges 5

3 A joint future for Linked Data and hypermedia apis

We start this section with an essential definition to avoid misunderstandings on
the thin ice of rest, restlike, and unrestful apis:

Hypermedia Web apis are interfaces to retrieve and manipulate resources
according to the http method semantics, serving representations of these
resources along with the controls to advance through the interface [14].1

Striking parallels between Linked Data and hypermedia apis exist—and this
is not a coincidence, since both are closely tied to the original visions and ar-
chitecture of the Web. One of the common elements are resources: concepts
in Linked Data are identified by one or multiple uris, which, when requested
through http GET, lead to information about that concept. Hypermedia apis
are similarly structured as concepts or resources, with the constraints that ev-
ery uri should identify a resource and that the http methods should be used
conform to the http specification [15]. The semantics of the GET method have
therein been defined as “obtaining the information identified by the uri”, which,
unsurprisingly, matches the Linked Data purpose [19].

The other common element are links: as the name implies, they play a vital
role in Linked Data, and they are at the heart of the Semantic Web. Links
give a concept’s data meaning beyond its own context. More concretely, if an
agent does not understand what a data property means, it can look up that
property because its link is an http uri. The same applies to hypermedia apis:
the controls, telling us how other resources relate to the current resource, can
be links. Details on the nature of the relation are conveyed by link types, which
can have the same uris as Linked Data properties [30].

In essence, one could see the whole Linking Open Data Cloud [9] as a large,
distributed hypermedia application. This is in fact how its usage is encouraged:
an agent starts from one resource and can make its way through the whole cloud,
just by “following its nose”, thanks to the links. However, it only provides a subset
of the possibilities of what we expect from a hypermedia api: merely retrieval
operations are supported. Yet, the role of links here remains important: browsing
billions of triples in billions of resources would otherwise prove difficult.

An interesting aspect of rest is that it does not matter whether the resources
and triples already exist. They can either be part of documents, or be the result
of a service invocation—but the agent does not have to know and does not
have to care. For example, a huge dataset of natural numbers has been made
available as Linked Data [38], yet the information of each number is not static,
but instead generated dynamically when an agent dereferences its uri. This
dataset is thus what we would traditionally consider a “service”, but thanks to
the rest principles, it manifests itself as just another set of linked resources.
1 Hypermedia apis are synonymous to “rest apis or services, in the sense as defined
by Fielding” [16]. This last clarification is important, since many apis that were
given a “rest” label do not, or only partially, adhere to Fielding’s definition, which
is why we use the term “hypermedia api” to distinguish the intended meaning [20].

6 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

Nevertheless, we often associate the concept of services additionally with
action-driven behavior, for example, allowing us to post a comment or order
tickets. In a rest architectural model, these actions are captured by the modifi-
cation or creation of resources, linked to existing resources. While these and sim-
ilar actions are very common on the human Web and on the Web of services, the
Semantic Web still struggles with state-changing operations [7]. Several mecha-
nisms are there (e.g., sparql UPDATE [17]), but issues such as authorization and
security still impede wide adoption. Consequently, the Linked Data vision must
in the meantime assume that the publisher and consumer sides are distinct, i.e.,
that consumers of Linked Data will not need to perform write operations. This
simplifying assumption has its benefits—just look at the overwhelming amount of
data—but will not be sufficient for the vision of autonomous agents that require
actions in the real world. Indeed, as the comment and ticket examples indicate,
many interactions we perform on a daily basis involve write actions. Therefore,
in the next section, we will look at the requirements of agents for browsing full
hypermedia apis, which offer both information-retrieving and state-changing op-
erations.

4 restdesc describes hypermedia links

4.1 Example scenario

As an example, let us consider the situation of Fig. 1. Starting from the book
store’s main uri, an agent discovers resources in a fully hypermedia-driven way.
Its steps might be the following:

1. GET a representation of the index resource at /.
2. Find a hasBook link in this representation titled “The Catcher in the Rye”.
3. GET a representation of this linked resource at /books/443.
4. Find a hasReview link in this representation.
5. GET a representation of this linked resource at /books/443/reviews/7.

This way of working is hypermedia-driven, because the agent only follows the
representation-supplied controls (e.g., links) to go from one step to the next.

4.2 Understanding the GET operations

As an introduction to restdesc, we will know discuss the restdesc description
that is associated with the action of retrieving a book’s representation. restdesc
descriptions are expressed in Notation3 (n, [5]), a small superset of rdf put
forward by Tim Berners-Lee. n adds support for quantification, necessary to
create statements concerning all resources instead of only specific ones. Without
this explicit support, the quantifications should have to be expressed indirectly.
One other possibility to express this is to wrap sparql expressions inside string
literals, which is the method used by lids [33]. The quantification constructs
in n enable to integrate the semantics directly, whereas for instance sparql
expressions have to be interpreted separately.

Linked Data and Linked apis: Similarities, Differences, and Challenges 7

@prefix ex: <http://example.org/book-store#>.
@prefix http: <http://www.w3.org/2011/http#>.

{
?store ex:hasBook ?book. 1

}
=>
{

_:request http:methodName "GET"; 2
http:requestURI ?book;
http:resp [http:body ?book].

?book ex:hasTitle ?title; 3
ex:hasAuthor ?author;
ex:hasReview ?review.

}.

Listing 1. restdesc describes the act of retrieving a book by explaining the associated
hypermedia link.

Listing 1 displays a description of the GET operation on the hasBook link type
and serves as an illustration of several common aspects of restdesc descriptions.
Every description is a logic implication. The logical foundations of n (nlogic,
[6]) define an operational semantics, i.e., restdesc descriptions are n rules that
can be instantiated and executed by a reasoner. As indicated in Listing 1, it is
convenient to examine the description in three parts:

1 if you obtain a book’s uri from a hasBook hyperlink
2 then you can make a POST request to that uri
3 to retrieve a representation of this book.

Below, we discuss some important aspects of this description.
Firstly, the explicit quantification makes agent understand that the book in

the antecedent and the conclusion are the same. The ?book variable can be in-
stantiated with a concrete instance. For example, if an agent finds a hasBook

link from the store / to the book /books/443/, it can instantiate the description
of Listing 1 into the rdf fragment in Listing 2. This fragment details the in-
structions an agent needs to execute. Since this request in these instructions has
not been executed, the resulting values are not known yet. However, the reasoner
has instantiated them with blank nodes (title1, author1, and review1). After
a successful execution of the request, these blank nodes can be substituted by
the actual data received from the server.

Secondly, it might seem strange at first sight that the request 2 is part of the
consequent, and not of the antecedent. After all, it is the existence of the link 1
and the execution of the request 2 that lead to obtaining information about the
book 3 . However, restdesc adopts a different view here. In fact, it is because
of the existence of the link 1 , that a request exists 2 which will lead to the
information 3 . The word exists is important here: the description indeed states
that a request exists that will deliver the information, not that all requests with

8 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

@prefix ex: <http://example.org/book-store#>.
@prefix http: <http://www.w3.org/2011/http#>.

</> ex:hasBook </books/443>.
_:request1 http:methodName "GET";

http:requestURI </books/443>;
http:resp [http:body </books/443>].

</books/443> ex:hasTitle _:title1;
ex:hasauthor _:author1;
ex:hasreview _:review1.

Listing 2. The instantiation of the restdesc description in Listing 1 yields an rdf
fragment with instructions.

the given parameters will lead there. In other words: the request is existentially
quantified, not universally. This notion is important, because it models the world
more accurately. For example, a given request could fail because of connection
issues or might require additional authentication.

Thirdly, restdesc does not specify what representations should look like.
This is a central part of the rest philosophy. While restdesc describes the
relations between resources and the result of actions performed on them, the
selection of the right representation should happen at runtime by making use
of the content negotiation mechanism of the http protocol. For example, List-
ing 1 states that the retrieved resource will have a title and an author. The
description does, however, not imply that this information will be supplied in
rdf or any other format. While it seems logical that an agent would ask for
an rdf representation (since the agent uses Semantic Web technologies inter-
nally), this is by no means a requirement. The actual representation could be
in xml, json, html, or any other format. This opens possibilities to work with
non-textual data, such as images and video [36]. However, the major benefit of
rdf representations is that their contents are self-describing and can therefore
be automatically interpreted by machines.

The final and most crucial remark is that the necessity of the description in
Listing 1 can be questioned. After all, why would we want to describe a GET

request? It seems unnecessary, because of the following two reasons: first, the
Linked Data principles already tell us what happens with GET request—receiving
a representation of the resource with the corresponding uri (which is called
“dereferencing”). Second, even if these principles did not apply, an agent could
safely execute the request, since the http specification indicates GET should not
change application state [15]. We fully agree here: restdesc is designed to de-
scribe state-changing operations whose result is resource-dependent, the primary
verb being POST. Therefore, the next subsection illustrates a POST request, which
fully illustrates restdesc’s capabilities. restdesc can however be used for GET,
which is interesting a) for situations where ontological constructs are insufficient
to describe a complex resource relationship and b) to convey an expectation of
what properties a representation will contain (e.g., hasTitle, hasAuthor, . . .).

Linked Data and Linked apis: Similarities, Differences, and Challenges 9

@prefix ex: <http://example.org/book-store#>.
@prefix http: <http://www.w3.org/2011/http#>.

{
?store ex:hasBook ?book. 1
?review ex:author _:author;

ex:rating _:rating;
ex:contents _:text.

}
=>
{

_:request http:methodName "POST"; 2
http:requestURI ?book;
http:body ?review;
http:resp [http:body ?book].

?book ex:hasReview ?review. 3
}.

Listing 3. restdesc describes the act of posting a review by explaining the associated
hypermedia link.

4.3 Understanding POST requests

The situation is completely different for POST requests because, unlike with GET

and other safe requests, the agent cannot carelessly issue a POST request in one
of the steps, since a) it cannot predict what the result will be and b) testing
what the result is can have unwanted consequences, as POST is unsafe [15].
Furthermore, it cannot determine what body it should send along with the POST
request. Although some representation formats provide forms (e.g., html and
Atom), others lack form functionality (e.g., rdf, although proposals exist [4]),
but in either case, it is unclear how the result relates to the submitted data.

Let us therefore examine the description in Listing 3, which can similarly be
interpreted in three parts:

1 if you obtain a book’s uri from a hasBook hyperlink
2 then you can make a POST request to that uri
3 to add a review with the supplied parameters to this book.

This enables agents to understand what data they can send along with a POST

request and how this data will influence the outcome of the request.
Note how, in this example, the precondition is more restricting: the agent

needs to have access to a review before the request can be executed. Also, this
review is necessary to construct the request: it should be placed inside the http
request’s POST body. Again, the exact representation of this body is not detailed,
because agents and servers should be able to agree on the best representation at
runtime. We do, however, get a suggestion of properties that should be present
in the representation: an author, a rating, and a review text.

Now that the agent understands each of the steps, it is able to chain them
together and actually execute each of the requests in the process.

10 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

4.4 Executing the requests

Concretely, if the agent has been given the contents of a review (author, rating,
content), it can follow these hypermedia-driven steps:

1. GET the restdesc description of hasBook.2
2. GET a representation of the index resource at /.
3. Find a hasBook link in this representation titled “The Catcher in the Rye”.
4. Instantiate the description with the review and found link.
5. POST the review, as instructed by the description, at /books/443.

Note again how only hypermedia controls are used to get from one step to the
next. The added value of restdesc here is to explain the agent in advance what
effect the POST request will have, so it can decide whether to execute this request.
In real-world applications, restdesc descriptions can be used for goal-driven api
compositions [37]. For instance, the user can supply the review parameters as
input, and ask that it is submitted to a certain book.

5 Conclusion

The Linked Data vision strives to connect data on the Web, making it available
in a machine-processable format. Hypermedia apis similarly strive for connect-
edness of resources, but also consider the write side of interactions. Their goals
are similar, and so are their tools: both make automated consumption of the Web
available using the core principles of the http architecture, featuring resources,
representations, and links. However, dealing with state-changing operations
requires automated agents to have expectations of what consequences their
actions will have.

restdesc shows how existing Semantic Web technologies can be combined to
explain the functionality of a Web api to those agents. It enables us to apply the
Linked Data vision to hypermedia apis by describing the meaning of links for
state-changing operations. In that sense, it is a plea for more hypermedia apis
on the Web, as they beautifully incorporate the controls that future autonomous
agents will need to browse the Web. Therefore, we believe it is time to transition
today’s services towards hypermedia apis by adding the missing links.

Acknowledgments The described activities were funded by Ghent University,
the Interdisciplinary Institute for Broadband Technology (ibbt), the Institute
for the Promotion of Innovation by Science and Technology in Flanders (iwt),
the Fund for Scientific Research Flanders (fwo), and the European Union.

This work was partially supported by the European Commission under Grant
No. 248296 FP7 (i-search project). Joaquim Gabarró is partially supported by
TIN-2007-66523 (formalism), and SGR 2009-2015 (alcom).

2 restdesc discovery, i.e., how to obtain restdesc descriptions, has been discussed
earlier [36]. The agent could for example dereference the hasBook link.

Linked Data and Linked apis: Similarities, Differences, and Challenges 11

References

1. R. Alarcón and E. Wilde. restler: crawling restful services. In Proceedings of the
19th international conference on World Wide Web, pages 1051–1052. acm, 2010.
Available at http://doi.acm.org/10.1145/1772690.1772799.

2. R. Alarcón, E. Wilde, and J. Bellido. Hypermedia-driven restful service compo-
sition. In Service-Oriented Computing, volume 6568 of Lecture Notes in Computer
Science, pages 111–120. Springer, 2011. Available at http://dx.doi.org/10.1007/
978-3-642-19394-1_12.

3. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. daml-s:
Web service description for the Semantic Web. 2342:348–363, 2002. Available
at http://eprints.soton.ac.uk/257342/1/ISWC2002-DAMLS.pdf.

4. M. Baker. rdf forms, 2003–2005. Available at http://www.markbaker.ca/2003/
05/RDF-Forms/.

5. T. Berners-Lee and D. Connolly. Notation3 (n): A readable rdf syntax. wc
Team Submission, 2011. Available at http://www.w3.org/TeamSubmission/n3/.

6. T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. nlogic: A logical
framework for the World Wide Web. Theory and Practice of Logic Programming,
8(3):249–269, 2008. Available at http://arxiv.org/pdf/0711.1533v1.pdf.

7. T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey, O. Seneviratne, and
O. Ureche. Realising a read-write Web of Data, June 2009. Available at http:
//web.mit.edu/presbrey/Public/rw-wod.pdf.

8. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, 284(5):34–43, 2001. Available at http://www.scientificamerican.com/
article.cfm?id=the-semantic-web.

9. C. Bizer. The emerging Web of Linked Data. Intelligent Systems, ieee, 24(5):87–
92, Sept. 2009. Available at http://lpis.csd.auth.gr/mtpx/sw/material/IEEE-
IS/IS-24-5.pdf.

10. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – the story so far. In-
ternational Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.
Available at http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-
linked-data.pdf.

11. F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-
raveling the Web services Web: an introduction to soap, wsdl, and uddi. Internet
Computing, ieee, 6(2):86–93, Mar. 2002. Available at http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=991449.

12. A. DuVander. 3,000 Web apis: Trends from a quickly growing directory, Mar. 2011.
Available at http://blog.programmableweb.com/2011/03/08/3000-web-apis/.

13. A. DuVander. 6,000 apis: It’s business, it’s social and it’s happening quickly, May
2012. Available at http://blog.programmableweb.com/2012/05/22/6000-apis-
its-business-its-social-and-its-happening-quickly/.

14. R. T. Fielding. rest apis must be hypertext-driven. Untangled – Musings of
Roy T. Fielding, Oct. 2008. Available at http://roy.gbiv.com/untangled/2008/
rest-apis-must-be-hypertext-driven.

15. R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – http/.. Request for Comments:
2616, June 1999. Available at http://tools.ietf.org/html/rfc2616.

16. R. T. Fielding and R. N. Taylor. Principled design of the modern Web architecture.
Transactions on Internet Technology, 2(2):115–150, May 2002. Available at http:
//dl.acm.org/citation.cfm?id=514185.

http://doi.acm.org/10.1145/1772690.1772799
http://dx.doi.org/10.1007/978-3-642-19394-1_12
http://dx.doi.org/10.1007/978-3-642-19394-1_12
http://eprints.soton.ac.uk/257342/1/ISWC2002-DAMLS.pdf
http://www.markbaker.ca/2003/05/RDF-Forms/
http://www.markbaker.ca/2003/05/RDF-Forms/
http://www.w3.org/TeamSubmission/n3/
http://arxiv.org/pdf/0711.1533v1.pdf
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://web.mit.edu/presbrey/Public/rw-wod.pdf
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://lpis.csd.auth.gr/mtpx/sw/material/IEEE-IS/IS-24-5.pdf
http://lpis.csd.auth.gr/mtpx/sw/material/IEEE-IS/IS-24-5.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991449
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=991449
http://blog.programmableweb.com/2011/03/08/3000-web-apis/
http://blog.programmableweb.com/2012/05/22/6000-apis-its-business-its-social-and-its-happening-quickly/
http://blog.programmableweb.com/2012/05/22/6000-apis-its-business-its-social-and-its-happening-quickly/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc2616
http://dl.acm.org/citation.cfm?id=514185
http://dl.acm.org/citation.cfm?id=514185

12 Ruben Verborgh, Thomas Steiner, Rik Van de Walle, and Joaquim Gabarro

17. P. Gearon, A. Passant, and A. Polleres. sparql . Update. wc Working Draft,
Jan. 2012. Available at http://www.w3.org/TR/sparql11-update/.

18. K. Gomadam, A. Ranabahu, and A. Sheth. sa-rest: Semantic Annotation of
Web Resources. wc Member Submission. Available at http://www.w3.org/
Submission/SA-REST/.

19. O. Hartig and J. Zhao. Publishing and consuming provenance metadata on the
Web of Linked Data. Provenance and Annotation of Data and Processes, pages 78–
90, 2010. Available at http://www2.informatik.hu-berlin.de/~hartig/files/
HartigZhao_Provenance_IPAW2010_Preprint.pdf.

20. S. Klabnik. rest is over, Feb. 2012. Available at http://blog.steveklabnik.
com/posts/2012-02-23-rest-is-over.

21. J. Kopecký, K. Gomadam, and T. Vitvar. hrests: An html microformat for
describing restful Web services. In Proceedings of the International Conference on
Web Intelligence and Intelligent Agent Technology, pages 619–625. ieee Computer
Society, 2008. Available at http://dx.doi.org/10.1109/WIIAT.2008.379.

22. J. Kopecký and T. Vitvar. Microwsmo. wsmo Working Draft, Feb. 2008. Available
at http://www.wsmo.org/TR/d38/v0.1/.

23. R. Krummenacher, B. Norton, and A. Marte. Towards Linked Open Services
and Processes. In A. Berre, A. Gómez-Pérez, K. Tutschku, and D. Fensel,
editors, Future Internet – fis 2010, volume 6369 of Lecture Notes in Com-
puter Science, pages 68–77. Springer Berlin / Heidelberg, 2010. Available at
www.linkedopenservices.org/publications/FIS2010.pdf.

24. R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of
wsmo and owl-s. In L.-J. Zhang and M. Jeckle, editors, Web Services, vol-
ume 3250 of Lecture Notes in Computer Science, pages 254–269. Springer Berlin,
2004. Available at http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/d4.1v0.
1_20050106.pdf.

25. M. Maleshkova, J. Kopecký, and C. Pedrinaci. Adapting sawsdl for semantic
annotations of restful services. In Proceedings of the On the Move to Meaningful
Internet Systems Workshops, volume 5872 of Lecture Notes in Computer Science,
pages 917–926. Springer, 2009. Available at http://dx.doi.org/10.1007/978-3-
642-05290-3_110.

26. M. Maleshkova, C. Pedrinaci, and J. Domingue. Investigating Web apis on the
World Wide Web. In Proceedings of the 8th European Conference on Web Ser-
vices, pages 107–114. ieee, 2010. Available at http://sweet-dev.open.ac.uk/
war/Papers/mmaWebAPISurvey.pdf.

27. M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantic annotation of web apis
with sweet. May 2010. Available at http://oro.open.ac.uk/23095/.

28. M. Maleshkova, C. Pedrinaci, N. Li, J. Kopecky, and J. Domingue. Lightweight
semantics for automating the invocation of Web apis. In Proceedings of the 2011
ieee International Conference on Service-Oriented Computing and Applications,
Dec. 2011. Available at http://sweet.kmi.open.ac.uk/pub/SOCA.pdf.

29. D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D. L.
Mcguinness, E. Sirin, and N. Srinivasan. Bringing semantics to Web services with
owl-s. World Wide Web, 10:243–277, Sept. 2007.

30. M. Nottingham. Web Linking. Request for Comments: 5988, Oct. 2010. Available
at http://tools.ietf.org/html/rfc5988.

31. C. Pautasso, O. Zimmermann, and F. Leymann. restful Web services vs. “Big”
Web services: making the right architectural decision. In Proceedings of the 17th

International Conference on World Wide Web, pages 805–814, New York, NY,

http://www.w3.org/TR/sparql11-update/
http://www.w3.org/Submission/SA-REST/
http://www.w3.org/Submission/SA-REST/
http://www2.informatik.hu-berlin.de/~hartig/files/HartigZhao_Provenance_IPAW2010_Preprint.pdf
http://www2.informatik.hu-berlin.de/~hartig/files/HartigZhao_Provenance_IPAW2010_Preprint.pdf
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://dx.doi.org/10.1109/WIIAT.2008.379
http://www.wsmo.org/TR/d38/v0.1/
www.linkedopenservices.org/publications/FIS2010.pdf
http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/d4.1v0.1_20050106.pdf
http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/d4.1v0.1_20050106.pdf
http://dx.doi.org/10.1007/978-3-642-05290-3_110
http://dx.doi.org/10.1007/978-3-642-05290-3_110
http://sweet-dev.open.ac.uk/war/Papers/mmaWebAPISurvey.pdf
http://sweet-dev.open.ac.uk/war/Papers/mmaWebAPISurvey.pdf
http://oro.open.ac.uk/23095/
http://sweet.kmi.open.ac.uk/pub/SOCA.pdf
http://tools.ietf.org/html/rfc5988

Linked Data and Linked apis: Similarities, Differences, and Challenges 13

USA, 2008. ACM. Available at http://www.jopera.org/files/www2008-restws-
pautasso-zimmermann-leymann.pdf.

32. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied
Ontology, 1:77–106, January 2005. Available at http://dl.acm.org/citation.
cfm?id=1412350.1412357.

33. S. Speiser and A. Harth. Taking the lids off data silos. In Proceedings of the 6th

International Conference on Semantic Systems, i-semantics ’10, pages 44:1–44:4,
New York, ny, usa, 2010. acm. Available at http://www.aifb.kit.edu/images/
4/4a/Triplify-2010-ssp-aha-taking-the-lids-off-data-silos.pdf.

34. R. Verborgh, T. Steiner, R. Van de Walle, and J. Gabarró Vallés. The missing links
– how the description format restdesc applies the linked data vision to connect
hypermedia apis. In Proceedings of the First Linked apis workshop at the Ninth
Extended Semantic Web Conference, May 2012. Available at http://lapis2012.
linkedservices.org/papers/3.pdf.

35. R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. Gabarró Vallés, and
R. Van de Walle. Functional descriptions as the bridge between hypermedia apis
and the Semantic Web. In Proceedings of the Third International Workshop on
restful Design. acm, Apr. 2012. Available at http://www.ws-rest.org/2012/
proc/a5-9-verborgh.pdf.

36. R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle, and
J. Gabarro. Capturing the functionality of Web services with functional descrip-
tions. Multimedia Tools and Applications, 2012. Available at http://rd.springer.
com/article/10.1007/s11042-012-1004-5.

37. R. Verborgh, D. Van Deursen, E. Mannens, C. Poppe, and R. Van de Walle. En-
abling context-aware multimedia annotation by a novel generic semantic problem-
solving platform. Multimedia Tools and Applications, 2012. Available at http:
//rd.springer.com/article/10.1007/s11042-010-0709-6.

38. D. Vrandečić, M. Krötzsch, S. Rudolph, and U. Lösch. Leveraging non-lexical
knowledge for the Linked Open Data Web. 5th Review of April Fool’s day Trans-
actions, pages 18–27, 2010. Available at http://km.aifb.kit.edu/projects/
numbers/linked_open_numbers.pdf.

http://www.jopera.org/files/www2008-restws-pautasso-zimmermann-leymann.pdf
http://www.jopera.org/files/www2008-restws-pautasso-zimmermann-leymann.pdf
http://dl.acm.org/citation.cfm?id=1412350.1412357
http://dl.acm.org/citation.cfm?id=1412350.1412357
http://www.aifb.kit.edu/images/4/4a/Triplify-2010-ssp-aha-taking-the-lids-off-data-silos.pdf
http://www.aifb.kit.edu/images/4/4a/Triplify-2010-ssp-aha-taking-the-lids-off-data-silos.pdf
http://lapis2012.linkedservices.org/papers/3.pdf
http://lapis2012.linkedservices.org/papers/3.pdf
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://www.ws-rest.org/2012/proc/a5-9-verborgh.pdf
http://rd.springer.com/article/10.1007/s11042-012-1004-5
http://rd.springer.com/article/10.1007/s11042-012-1004-5
http://rd.springer.com/article/10.1007/s11042-010-0709-6
http://rd.springer.com/article/10.1007/s11042-010-0709-6
http://km.aifb.kit.edu/projects/numbers/linked_open_numbers.pdf
http://km.aifb.kit.edu/projects/numbers/linked_open_numbers.pdf

	Linked Data and Linked apis:Similarities, Differences, and Challenges

