
Applying ISO 9126 Metrics to MDD Projects

Ricardo Muñoz-Riesle, Beatriz Marín

Facultad de Ingeniería

Universidad Diego Portales

Santiago, Chile

e-mail: rm.riesle@gmail.com; beatriz.marin@mail.udp.cl

Lidia López

Software and Service Engineering Group

Universitat Politècnica de Catalunya

Barcelona, Spain

e-mail: llopez@essi.upc.edu

Abstract— The Model Driven Development (MDD) paradigm

uses conceptual models to automatically generate software

products by means of model transformations. This paradigm is

strongly positioned in industry due to the quickly time to market

of software products. Nevertheless, quality evaluation of software

products is needed in order to obtain suitable products.

Currently, there are several quality models to be applied in

software products but they are not specific for conceptual models

used in MDD projects. For this reason, it is important to propose

a set of metrics to ensure the quality of models used in MDD

approaches in order to avoid error propagation and the high cost

of correction of final software applications. This paper analyzes

the characteristics and sub-characteristics defined in the

ISO/IEC 9126 quality model in order to reveal their applicability

to MDD conceptual models.

Keywords-Quality Model; Model-Driven Development; Metrics;

ISO 9126; Conceptual models

I. INTRODUCTION

Software production processes based on Model Driven
Development (MDD) generate software products automatically
or semi-automatically from conceptual models by means of
model transformations [1][2]. To do this, well-defined
modeling constructs, model-to-model transformations and
model-to-code transformations are needed. Therefore, MDD
approaches uses as input conceptual models and models
transformations in order to generate the programming code of
software products. This type of development is strongly
positioned in the software development industry [3] due to the
automatic generation of code, which speed the time to market
and avoids error propagation and the high cost of correction of
human errors in manual programming.

The MDD software process is supported by the Model
Driven Architecture (MDA) [4] standard. MDA defines four
abstraction levels for the models used to generate a software
product that goes from the higher abstraction level to the lower
abstraction level. These levels correspond to the computation
independent model (CIM), the platform independent model
(PIM), the platform specific model (PSM), and the
implementation model (IM). Therefore, the conceptual models
used by MDD approaches at any level become an essential
resource in the process of software generation due to they are
the main input for code generation. In other words, CIM
models are used to generate PIM models, PIM models are used
to generate PSM models, and PSM models are used to generate
the IM model, which corresponds to the code in a specific
programming language.

The quality evaluation of these conceptual models is of
paramount importance since it allows an early verification of
final software products. However, there is no standard defined
to evaluate the quality of conceptual models used at MDD
environments. The ISO 9126 standard [5] presents a set of
characteristics and sub-characteristics that allows the
evaluation of the quality of a software product by using
different quality metrics proposed for each characteristic.
However, these metrics are applied to measure artifacts
obtained in later stages of software development cycles,
increasing the cost of detecting and correcting defects.

We advocate that it is possible to apply the standard ISO
9126 to evaluate software products that have been developed
under an MDD approach. Thus, this paper analyzes the ISO
9126 characteristics, sub-characteristics and their metrics in
order to fit an MDD development process, and therefore,
evaluate the quality of MDD projects using the metrics defined
by ISO 9126. To do this, an exploratory study about the
applicability of the defined metrics to conceptual models at
different abstraction levels of MDD approaches has been
performed. Thus, the main contribution of this work is the
selected set of metrics that can be applied to the conceptual
models that are specified at the different abstraction levels
regarding MDA. This set of metrics composes, therefore, a
quality model that allows an early evaluation of software
generated in MDD environments.

This contribution is useful for both practitioners and
researchers. Practitioners can use this set of metrics in order to
evaluate early the quality of models used for the generation of
their software products, aligning this evaluation with the
standard ISO 9126. Researchers can use this set of metrics in
order to integrate it to other quality evaluation techniques used
at early phases in the software development cycle.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 presents an exploratory
study about the ISO 9126 quality model in order to evaluate the
applicability of the defined metrics at MDD projects. Section 4
presents the application of the set of selected metrics of the
quality model to a case study. Finally, Section 5 presents an
overall analysis and some conclusions from the results
obtained.

II. BACKGROUND AND RELATED WORK

This section introduced the ISO 9126 standard in order to
facilitate the understanding of later sections. Afterwards, a
discussion about relevant related works is presented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. ISO/IEC 9126 standard

The ISO/IEC 9126 standard consists of four parts: the
quality model [5], the external metrics [6], the internal metrics
[7] and the metrics for quality in use [8]. The first part
describes in detail six quality characteristics for software
products (functionality, reliability, usability, efficiency,
maintainability, and portability), and their corresponding sub-
characteristics (see Figure 1).

Figure 1. ISO 9126 characteristics and sub-characteristics.

In order to determine the level of quality of software
products, it is necessary to evaluate these characteristics by
applying a set of well-defined metrics. Thus, the second, third
and fourth part of ISO 9126 describes metrics to assess the
software quality. These metrics are focused on measuring
artifacts obtained in later phases of the software development
cycle, complicating the detection and correction of problems at
early stages, which are propagated to later stages.

B. Related Work

The quality evaluation of software products is the
paramount importance. For software products that are
developed using an MDD approach, the quality evaluation can
be performed at the conceptual models that are used as input
for the automatic code generation.

There are several works that are focused in the quality
evaluation of software products generated in an MDD
approach. A mapping study of works that are focused in quality
at Model-Driven Engineering (MDE) was presented in [9]. The
main concerns presented in this study are (1) the studies do not
provide an explicit definition of quality in model-driven
contexts; (2) studies that are focused in UML models are not
aligned with MDD approaches; and (3) there is a lack of
analysis that indicates when a metric may or may not be
applied to an MDD approach.

An approach to integrate usability evaluations of ISO 9126
into Model-Driven Web Development was presented at [10].
This study shows how the final user interface can provide
feedback about changes in order to improve usability issues at
intermediate artifacts of MDD projects (PIM and PSM
models). This paper presents a similar way to us to analyze if
the ISO 9126 metrics can fit into the MDD approach.

In [11], a quality model for MDD projects was presented.
This model allows the verification of conceptual models by
using a set of rules to detect defects related to data, process and
interaction perspectives.

As summary, even though there are several model-driven
proposals defined, and also there are several works that are
focused on quality evaluation of MDD projects, there is a lack
of a standard method to evaluate the quality at the different
abstraction levels in model-driven approaches. For this reason,
we decided to analyze the overall software quality framework
presented by the ISO 9126 in order to identify if the metrics

presented can be applied to the conceptual models defined at
the different abstraction levels of MDD approaches.

III. EXPLORATORY ANALYSIS OF ISO 9126

This section presents an analysis of each characteristic of
ISO 9126 and their corresponding sub-characteristics,
considering if they are or not suitable to be applied to software
products developed by using an MDD approach. In addition,
the abstraction level of each presented metric has been
identified.

A. Functionality

Functionality has been defined as the capability of a
software product to provide the functions that meet the stated
and implied needs when the software is used under specific
conditions [5]. Requirements specifications are used to define
the functions that meet the needs of users. Thus, to evaluate
functionality it is necessary to focus in this kind of
specifications.

In MDD projects, the requirements specifications can be
performed by using CIM models, for instance i* models [12]
[13], use-case diagrams [14], or BPMN diagrams [15]. Later,
these models are transformed into PIM models (such as class
diagrams) in order to continue with the process of code
generation by using an MDD approach. These transformations
are performed by different MDD approaches with their
supporting tools, such as [16][17]. Thus, it is possible to
evaluate the functionality of a software product generated in an
MDD environment by using the CIM models that correspond to
the requirements models. In other words, it is possible to
evaluate if the software provide the functions stated in
requirements by using CIM models and the traceability [18] of
these models to the final programming code.

Functionality is comprised of the following sub-
characteristics: suitability, accuracy, interoperability, security
and conformance. For all the metrics, the closer to 1, the better:

1) Suitability: It corresponds to the capability to provide an
appropriate set of functions for specific objectives [5]. In this
context, the appropriateness is understood as the ability to
correctly select a set of functions that meet the user needs. This
verification process can be performed comparing the CIM with
the PIM, or the CIM with the IM generated. The following
metrics has been defined to evaluate the suitability [6]:

 Functional Adequacy (FA): This metric evaluates how
adequate are the functions by using the formula
presented in (1). This metric is useful for MDD
approaches since it can be used at CIM or PIM. To do
this, it is necessary to apply inspection techniques to
find problems in the functions specified at CIM or
PIM. For instance, if an MDD approach uses a class
diagram as PIM, it is possible to identify defects in the
defined functions by using for example a list of
possible defects [19][20].

1 FA = 1-(Number of functions in which problems are
detected/Number of functions evaluated) (1)

 Functional Implementation Completeness (FIC): This
metric evaluates how complete is the implementation
according to requirement specifications using the

formula presented in (2). This metric allows the
identification of missing functions, based on the
requirement specifications. Note that in MDD
approaches the requirements are specified at CIM.
Thus, the verification process can be performed by
evaluating if the functions specified at CIM are present
at PIM after the transformation from CIM to PIM, and
also, it can be performed by evaluating if the functions
specified at PIM are present at IM after the
transformation process. For example, if an MDD
approach uses i* models as CIM, it is possible to apply
rules to verify that all the elements specified in the i*
models are in the class diagram by using [21].

 FIC = 1-(Number of missing functions detected/Number of
functions described in Req Spec) (2)

 Functional Implementation Coverage (FICo): This
metric evaluates how correct is the functional
implementation using the formula presented in (3).
This metric identifies those functions that have been
incorrectly implemented or have not been implemented
instead they have been specified in requirements
models. In MDD projects, the code (IM) is
automatically generated by the compilers, so that, to
use this metric it is necessary to evaluate the CIM and
the IM. Note that to go from CIM to IM it is necessary
to go from CIM to PIM, then from PIM to PSM, and
later for PSM to IM.

 FICo = 1-(Number of incorrectly implemented or missing
functions/Number of functions described in Req Spec) (3)

2) Accuracy: Corresponds to the capability of the software
product to provide the right or agreed results or effects [5]. In
order to measure the accuracy, it is necessary to define the
concepts of trueness and precision. Trueness refers to the
closeness of the mean of the measurement results to the true
value; and precision refers to the closeness of agreement within
individual measurement results. Therefore, according to the
ISO standard, the term accuracy refers to both trueness and
precision [22].

In order to measure the accuracy, two metrics has been
defined [6]: Accuracy to expectation (AE) and Computational
accuracy (CA). AE evaluates the actual results against the
reasonable expected results in the operation time. CA evaluates
how often the user found inaccurate results during the
operation time. In both cases, to evaluate the accuracy is
necessary to have the user executing the code. Thus, these
metrics are used in later phases of the software development, so
that, they do not contribute to the early quality evaluation of
MDD projects.

3) Interoperability: Corresponds to the capability of a
software product to interact with one or more specified systems
[5]. The interoperability of a software product can be specified
at the conceptual models that are used as input in an MDD
approach. To do this, interfaces with other systems must be
defined in the conceptual model to specify the data inputs and
outputs.

The following metric is defined to evaluate the

interoperability in [6]:

 Data Exchangeability (DE): This metric evaluates how
correctly have been specified the exchange functions
for specific data transfer using the formula presented in
(4). To evaluate this metric it is necessary to specify
the data formats that are exchanged with other systems
and then apply inspection techniques to verify that the
functions defined to exchange data are correctly
defined. This metric can be evaluated at PIM of MDD
approaches, where it is possible to specify the
interaction with other systems. For instance, the MDD
OO-method approach [23] allows the specification of
Legacy Views, which corresponds to the abstraction of
a software component that is represented by a class.
The specification of the attributes and services of a
legacy view requires the characterization of the
functions or procedures that effectively carry out the
corresponding function at other systems. By doing this,
it is possible to identify whether software functions are
compatible with the software that is specified by using
the MDD approach. In addition, if the other system it is
also specified by using an MDD approach, then, it is
possible to specify the interactions between both
systems at the metamodel level [24]. Thus, to verify
this metric it is necessary to inspect the models
following the syntax, semantics and restrictions
specified in the metamodels.

DE = (Number of data formats which are approved to be
exchanged successfully with other software or system
during testing on data exchanges/Total number of data
formats to be exchanged) (4)

4) Security: Corresponds to the capability of the software
product to protect information in order to avoid unauthorized
people or systems to read or modify them; and to provide
authorized people or systems to have access to them [5]. The
MDD approaches allow the specification of the users of the
generated software. For instance, the OO-Method MDD
approach allows the specification of agents at PIM, which have
access to perform specific tasks and to read specific data.

The following metrics have been defined to evaluate the
security [6]: Access Auditability (AA), Access Controllability
(AC), and Data Corruption Prevention (DCP). AA, AC and
DCP are calculated by using information of the user access at
the operation time. Therefore, they do not contribute to the
early evaluation of the quality of MDD projects. Nevertheless,
it is important to note that in MDD projects the code is
automatically generated from an input conceptual model. Thus,
if an erroneous access is found in the access to the
functionality, it can be corrected at PIM, and then regenerate
the code.

B. Reliability

Reliability corresponds to the capability of the software
product to maintain a specified level of performance when it is
used under specified conditions [5]. To evaluate the
performance it is necessary to execute the software, so that it
cannot be simulated at design time of software, and it is

necessary to use the IM model, which corresponds to the code
automatically generated by the MDD approach.

C. Usability

Usability corresponds to the capability of the software
product to enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and
conditions of use [5]. This characteristic and its sub-
characteristics are usually used once the software is executed,
but we advocate that it is possible to measure this characteristic
at early stages of the software development cycle by using an
MDD approach. To do this, it is necessary that the conceptual
model of the MDD approach has a holistic representation of the
system, i.e., including the specification of the structure of the
system, the behavior of the system, and the graphical user
interface.

In [25], a new sub-characteristic of usability is presented:
Complexity, which can be applied to MDD approaches. Two
metrics have been defined to evaluate the complexity in the use
of interfaces and operations in software.

 Complexity: This metric provides an indicator that
measures the average number of operations per offered
interface [25] using the formula presented in (5). For
MDD projects, this metric can be evaluated by using
the specification of the graphical user interfaces
defined in the presentation model and the services that
are accessed from these interfaces. Thus, this metric
can be applied at the PIM of MDD approaches. This
parameter can be compared with the user's opinion on
how hard it is to use all the operations of a specific
interface. This would indicate the perceived level of
complexity if the system has high complexity or low
complexity by using the IM model in order to define
the acceptable value of this metric.

 Interface Defects Avoidance (IEA): This metric defines
the level of understanding of a user after a defect
occurs. The closer to 1, the better. IEA uses the
average number of graphic operations failed
recognized by the user in comparison to the total
defects pre-defined by the developers. Thus, this metric
is evaluated when the software is executed, so that it
does not contribute to the early quality evaluation of
MDD projects.

 Complexity = (Operations in all offered interfaces/Offered
interfaces) (5)

D. Efficiency

Efficiency corresponds to the capability of the software
product to provide appropriate performance, relative to the
amount of resources used, under stated conditions [5].

Unfortunately, there are many external factors, such as
bandwidth, hardware, and number of users connected, which
cannot be known at early stages of the software development
cycle since they cannot be specified in the conceptual model.
These factors are only known when the software is executed, so
that this characteristic cannot contribute to the early evaluation
of quality of MDD projects.

E. Maintainability

Maintainability corresponds to the capability of the
software product to be modified. Modifications may include
corrections, improvements or adaptation of the software, and
also, in requirements and functional specifications [5].

The maintainability can be evaluated in the conceptual
models used by MDD approaches. An MDD approach allows
the automatic generation of code by using as input a conceptual
model, thus facilitating the detection of defects in the final
product, and the corresponding corrections at the conceptual
model. In addition, the automatic code generation allows
software analysts to easily return to the initial steps of the
software development cycle in order to include improvements
or adaptations in the conceptual model. For this reason, the
sub-characteristics of maintainability are also analyzed.

1) Analyzability: Corresponds to the capability of the

software product to be diagnosed for deficiencies or causes of

failures in the software, or for the parts to be modified to be

identified [5]. The metrics defined in [6] are focus to measure

analyzability by observing the user's behavior, so that they do

not make a contribution as a quality metric for MDD

approaches.

2) Changeability: Corresponds to the capability of the

software product to enable a specified modification to be

implemented [5]. One of the main advantages of MDD

approaches is the ease of change. This is due to the great

advantage of the automatic generation of code that allows the

quick return to any stage of the development cycle, and

therefore, correct the problem by redefining the models of the

software.
The metrics defined in [6] are not useful to define a quality

model for MDD approaches regarding the changeability,
because these metrics are focused on the user behavior using
the software at a specific time, instead of measuring the
behavior of the software itself. Despite this, we found a metric
in [25], which has been defined to evaluate the changeability:

 Customizability Ratio (CR): This metric provides an
indicator of the ability of modification of the software
using the formula presented in (6). If the software
offers few interfaces and many parameters, normally it
would be very modifiable, though difficult to handle,
while one with many interfaces and few parameters is
slightly modified. This metric can be evaluated by
using the PIM of an MDD approach.

 CR = (Number of parameters/Number of interfaces offered) (6)

3) Stability: Corresponds to the capability of the software

product to minimize unexpected effects from modifications of

the software [5]. In [6], there are defined metrics focused on

user's behavior so that they do not perform a contribution for

the early quality evaluation of MDD.

4) Testability: Corresponds to the capability of the

software product to enable modified software to be validated

[5]. Software developed by MDD approaches can be easily

tested by the automatic generation of code and test cases [26].

This allows testing the software model based on the software

requirements specification. If a problem occurs, it can be

solved by returning to the initial stages of software

development cycle.

For this reason, the metrics defined in [6], do not contribute to

the early quality evaluation of MDD projects because they are

focused on user's behavior.

F. Portability

Portability corresponds to the capability of a software
product to be transferred from one environment to another [5].
In MDD approaches, the software products are developed
under specific requirements, using models such as PSM [3].
Therefore, the same conceptual model can be used on different
platforms assuring portability. Unfortunately, metrics defined
in [6] doesn't help to evaluate the quality for MDD approach.
This is because the metrics defined by the ISO 9126 are
focused on reuse of the software developed. In contrast, MDD
approaches allow going one step back and re-compile the
conceptual model to different technological platforms by using
different PSM and compilers.

G. Other Metrics of ISO 9126

The metrics presented with their formula are focused on
measuring quality for MDD approach at an early stage of
software development. Nevertheless, there are other metrics
defined in the ISO 9126 standard that cannot be used to
measure the quality of models used at MDD approaches, since
they are used in final stages of software development, i.e., they
need the execution of the software to be tested or they are
focused on the user's behavior.

These metrics are (1) Functional Specification Stability
(FSS), which counts the number of functions changed after
entering in operation; (2). Precision (P), which counts the
number of results with a level of precision different from
required during the operation time; (3) Data exchangeability
by the user (DEu), which counts the number of cases in which
user failed to exchange data with other software or systems.

IV. CASE STUDY

This Section exemplifies how the metrics are used at a
software development project using an MDD approach. To do
this, we present a system called SICOVE, which corresponds to
a vehicle trading system that supports the process of managing
vehicles, premises, revenues and costs undertaken by a buy-sell
generic vehicle company (accounting and taxes processes
associated are excluded). Figure 2 shows the conceptual model
for SICOVE system.

This conceptual model has been specified using OO-
Method approach and the Integranova [27] tool, which is able
to compile the conceptual model and automatically returns the
generated code compiled to different platforms. To do this, the
OO-Method conceptual model is comprised of four
complementary views: the static view, the functional view, the
dynamic view and the presentation view. The static view is
specified in a class diagram, which allows the specification of
the structure of the final system. The functional view is
specified in a functional model, which allows the specification
of the change of values of the attributes when a service is
executed. The dynamic view is specified in a state transition
diagram, which allows the specification of the valid lives of an

object. The presentation view is specified in a presentation
diagram, which allows the specification of the graphical user
interface. We have selected this tool to apply the set of metrics
since it is an MDD tool that has more than 10 years of
successful usage in industry.

Figure 2. SICOVE Conceptual Model

Figure 2 shows the structural view of SICOVE system. All
the functions of SICOVE have been specified by using the
functional model (e.g., see Figure 3, which presents the
specification of create_client). In Figure 3 it is possible to see
the inbound arguments and the data type of each argument of
the service.

Figure 3. Example of SICOVE functional view

The generated code allows the testing of some of the
functions of SICOVE system, for example create_client. In
order to create a client we need to enter the following data into
the system: id_client, name, last_name, rut, address, phone,
email, date of birth, city (e.g., see Figure 4, which presents the
attributes for the class client). Once entered the data, the system
verifies that the user is not registered in the database in order to
add it.

The SICOVE system has been used to evaluate the
applicability of the metrics proposed in Section III. To do this,
an analysis of all the functions defined in the specification of
the system was performed in order to evaluate each metric
proposed for MDD.

Table I shows the results obtained by applying the proposed
metrics to the SICOVE system. This data was calculated by
using the mathematical formulas described before, the
requirements specification of the vehicle trading system that

was performed by using the IEEE 830 standard, and the
conceptual model defined by the OO-Method approach, which
correspond to the PIM abstraction level of MDA.

Figure 4. Example of SICOVE attributes

Regarding the functionality, FA, FIC and FICO metrics
obtain a value less than one. This means that there are some
functions that have been specified in the requirements but they
do not have been generated at PIM. A summary of the
functions defined in the requirements specification are
presented in Table II. As this table shows, there is some
functionality that is not fully present at the PIM conceptual
model, such as Generate Quotation, Set Vehicle for Sale and
Sell Vehicle. Thus, from a total of 17 functions defined for the
SICOVE system, 3 of them are not fully implemented (e.g., see
Figure 5). The result obtained after applying the mathematical
formulas is 0.8 for each metric, which indicates that are some
functions of the SICOVE system are not implemented. If the
value of these metrics had been 1 this would indicate that all
functions were correctly implemented.

Figure 5. Functions specified for SICOVE system

TABLE I. RESULTS

Characteristic Sub- Characteristic Metric Result

Functionality Suitability FA 0.8

FIC 0.8

FICo 0.8
Interoperability DE -

Usability Complexity Complex 5.3
Maintainability Changeability CR 7.1

TABLE II. FUNCTIONS FOR SICOVE SYSTEM

ID
Functions of

SICOVE system
Defined

Functions
ID

Functions of

SICOVE

system

Defined

Functions

1

Login to the

system Yes 10 Sell vehicle No

2 Create user Yes 11
View vehicle
history Yes

3 Edit user Yes 12

View user

history Yes

4 Remove user Yes 13 See income Yes

5 Add local Yes 14 View users Yes

6 Modify local Yes 15 View all local Yes

7 Remove Local Yes 16

View all

vehicles Yes

8
Set vehicle for
sale No 17

Generate
quotation No

9

Modify vehicle

in system Yes

For DE metric, the SICOVE system works without requires

inputs from other system. This means that is not dependant on
other systems to perform their functions, so the connection
between the SICOVE and other systems is not applicable.
Thus, it is not possible to apply this metric in this case study.

For Complex and CR metrics, we identified 10 interfaces
offered by SICOVE, 53 operations, and 71 parameters on all
the graphical user interfaces offered, giving a result of 5.3 for
Complex and 7.1 for CR metrics. In addition, the presentation
view has been specified (e.g., see Figure 6, which presents the
patterns to create the graphical user interface of new client
service). The services with the arguments owned specified in
Figure 3 are specified in Figure 5 as service interaction units.
These results give us an indication of the current status of
Complex and CR of the SICOVE system. These results
indicate a normal level of complexity and customizability ratio
to this system, due to it has the basic functions and parameters
for the system to work.

Figure 6. Example of SICOVE presentation view

All these metrics were applied manually to study the
SICOVE system, which was automatically generated by the
Integranova tool. Even though the case is small, and
consequently the data delivered by not too big, it is enough to

understand the applicability of the ISO 9126 metrics to a
particular MDD project. Thus, in this section we have
exemplified the application of ISO 916 metrics to an MDD
project, so that we verify the applicability of the selected
metrics of ISO 9126 to an MDD project.

V. CONCLUSIONS AND FURTHER WORK

Software quality involves a strategy towards the production
of software that ensures the user satisfaction, the absence of
defects, the compliance with the budget and time constraints,
and the application of standards and best practices for the
software development. Thus, different techniques can be
applied to the different artifacts used along the software
development process. The ISO 9126 standard is a well-known
quality model for software systems, so that in this paper we
present an analysis of ISO 9126 regarding their applicability to
MDD projects.

In particular, this paper presents an exploratory analysis of
the ISO 9126 metrics that was performed in order to identify
the metrics that could be used at early stages of software
development cycle by analyzing the abstraction level of the
conceptual models at which these metrics can be used. These
early stages correspond to the specification of conceptual
models for the analysis and design of software systems. In
MDD projects, these conceptual models are located at different
abstraction levels, which are the CIM, PIM, PSM or IM. In
addition, these metrics have been used in an MDD project in
order to evaluate their applicability. To calculate these metrics,
the conceptual models of an industrial MDD approach were
used. So that, we can conclude that these ISO 9126 metrics
allow the early evaluation of quality of MDD projects, i.e.,
these metrics are useful for MDD projects.

Nevertheless, in MDD approaches there are many edges
where is still possible to make a contribution to improve the
quality evaluation of MDD projects, for instance extending the
analysis to modeling languages, modeling tools, and modeling
transformations, i.e., evaluating the quality of projects
generated in MDE environments. Thus, immediate future work
considers the inclusion of other metrics in order to have a well-
defined set of metrics that conforms the basis of a quality
model for MDD. And, later, further work considers the quality
evaluation of MDE projects. We are aware that additional
evaluation of our proposal to real development scenarios is
necessary. Therefore, we consider as future work the
development of empirical studies to evaluate the effectiveness
and benefits of using these metrics under MDD approaches in
real MDD projects.

ACKNOWLEDGMENT

This work was funded by Universidad Diego Portales and the

FONDECYT project TESTMODE (Ref. 11121395, 2012-

2015) and the Spanish project EOSSAC (TIN2013-44641-P).

REFERENCES

[1] O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano, "The OO-Method

Approach for Information Systems Modelling: From Object-Oriented
Conceptual Modeling to Automated Programming", Information Systems,
vol. 26, 2001, pp. 507–534.

[2] B. Selic, "The Pragmatics of Model-Driven Development", IEEE
Software, vol. 20, 2003, pp. 19–25.

[3] OMG. MDA Products and Companies. Available: [retrieved: October,
2015] http://www.omg.org/mda/committed-products.htm

[4] OMG, "MDA Guide Version 1.0.1", 2003.

[5] ISO/IEC, "ISO/IEC 9126-1, Software Eng. – Product Quality – Part 1:
Quality model", 2001.

[6] ISO/IEC, "ISO/IEC 9126-2, Soft. Eng. – Product Quality – Part 2:
External metrics", 2003.

[7] ISO/IEC, "ISO/IEC 9126-3, Soft. Eng. – Product Quality – Part 3:
Internal metrics", 2003.

[8] ISO/IEC, "ISO/IEC 9126-4, Soft. Eng. – Prod. Qual. – Part 4: Quality-in-
Use metrics", 2004.

[9] F.D. Giraldo, S. Espana, and O. Pastor, "Analysing the concept of quality
in model driven engineering literature: A systematic review". IEEE
Eighth International Conference on Research Challenges in Information
Science (RCIS), 2014, pp 1–12.

[10] A. Fernandez, E. Insfran, and S. Abrahão, "Towards a Usability
Evaluation Process for Model-Driven Web Development", I-USED'09,
Uppsala, Sweden, 2009, pp.1-6.

[11] B. Marín, G. Giachetti, O. Pastor, and A. Abran, "A Quality Model for
Conceptual Models of MDD Environments", Advances in Software
Engineering, vol. 2010 - Article ID 307391, 2010, pp. 1-17.

[12] S. Abdulhadi, "i* Guide version 3.0", 2007.

[13] i*. Wiki Web Page. Available: [retrieved: October, 2015] http://istar.rwth-
aachen.de/

[14] OMG, "Unified Modeling Language (UML) 2.4.1 Superstructure
Specification " 2011.

[15] OMG, "Business Process Model and Notation (BPMN) 2.0", 2011-01-03
2011.

[16] M. Kardoš and M. Drozdová, "Analytical method of CIM to PIM
transformation in Model Driven Architecture (MDA)", Journal of
Information and Organizational Sciences, vol. 34, 2010, pp. 89-99.

[17] B. Brahim, E. B. Omar, and G. Taoufiq, "A methodology for CIM
modelling and its transformation to PIM", Journal of Information
Engineering and Applications, vol. 3, 2013, pp. 1-21.

[18] M. Ruiz, Ó. P. López, and S. E. Cubillo, "A Traceability-based Method to
Support Conceptual Model Evolution", CEUR-WS.org, 2014, pp-1-8.

[19] B. Marín, G. Giachetti, O. Pastor, "Applying a Functional Size
Measurement Procedure for Defect Detection in MDD Environments"
16th European Conference EUROSPI 2009, Vol. CCIS 42, Springer-
Verlag, 2009, pp. 57-68

[20] B. Marín, G. Giachetti, O. Pastor, and T. E. J. Vos, "A Tool for
Automatic Defect Detection in Models used in Model-Driven
Engineering", 7th International Conference on the Quality of Information
and Communications Technology (QUATIC), Oporto, Portugal, 2010, pp.
242-247.

[21] G. Giachetti, B. Marin, and X. Franch, "Using Measures for Verifying
and Improving Requirement Models in MDD Processes", 14th
International Conference on Quality Software (QSIC), 2014, pp. 164-173.

[22] ISO, "ISO 5725-2 – Accuracy (trueness and precision) of Measurements
Methods and Results – Part 2: Basic Method for the Determination of the
Repeatability and Reproducibility of a Standard Measurement Method",
1994.

[23] O. Pastor and J. C. Molina, Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling, 1st
edition ed. New York: Springer, 2007.

[24] O. Pastor, G. Giachetti, B. Marín, and F. Valverde, "Automating the
Interoperability of Conceptual Models in Specific Development
Domains", in Domain Engineering: Product Lines, Languages, and
Conceptual Models, Springer, 2013, pp. 349-374.

[25] A. Mattsson, B. Lundell, B. Lings, and B. Fitzgerald, "Linking model-
driven development and software architecture: a case study", IEEE
Transactions on Software Engineering, vol. 35, 2009, pp. 83-93.

[26] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, and C.
Williams, Model-Driven Testing: Using the UML Testing Profile:
Springer-Verlag 2008.

[27] Integranova. (2015). Web Page. [retrieved: October, 2015]
http://www.integranova.com

http://www.omg.org/mda/committed-products.htm
http://istar.rwth-aachen.de/
http://istar.rwth-aachen.de/
http://www.integranova.com/

