
Computing Repairs for Constraint Violations in UML/OCL Conceptual
Schemas

Xavier Oriola,∗, Ernest Tenientea, Albert Tortb

aUniversitat Politècnica de Catalunya – Barcelona, Spain
bSogeti España – Barcelona, Spain

Abstract

Updating the contents of an information base may violate some of the constraints defined over the schema.
The classical way to deal with this problem has been to reject the requested update when its application
would lead to some constraint violation. We follow here an alternative approach aimed at automatically
computing the repairs of an update, i.e., the minimum additional changes that, when applied together with
the requested update, bring the information base to a new state where all constraints are satisfied. Our
approach is independent of the language used to define the schema and the constraints, since it is based on
a logic formalization of both, although we apply it to UML and OCL because they are widely used in the
conceptual modeling community.

Our method can be used for maintaining the consistency of an information base after the application of
some update, and also for dealing with the problem of fixing up non-executable operations. The fragment
of OCL that we use to define the constraints has the same expressiveness as relational algebra and we also
identify a subset of it which provides some nice properties in the repair-computation process. Experiments
are conducted to analyze the efficiency of our approach.

Keywords: conceptual schema, UML/OCL, integrity constraint, repair

1. Introduction

An information system maintains a representation of the state of a real world domain in its information
base (IB), where the domain is defined by means of a conceptual schema. A conceptual schema consists of
two parts: a structural schema and a behavioral schema. The structural schema defines the structure of
the IB and some integrity constraints, that is, some conditions that every IB should satisfy according to the
domain [1]. The behavioral schema defines the events that might be applied to the IB to change its contents.

When a set of events is applied to an IB, it may be the case that some of the constraints in the structural
schema are violated. To avoid so, several techniques have been proposed to efficiently check constraint
satisfaction [2, 3, 4, 5, 6]. Using these techniques, it is possible to detect those violations committed by the
events, but none of them is able to propose additional changes, i.e., repairs, that would bring the IB back
to a consistent state where all constraints are satisfied. Therefore, according to those techniques, if after
applying the events some constraint violation is detected, then, the changes implied by the events should
necessarily be rolled-back to keep the IB consistent.

However, rolling back the update when there is some violation might not be always satisfactory since
it might cause a mismatch between the IB and the reality it is intended to represent. Instead, we propose
to compute the additional changes required to maintain the IB in a consistent state so that we are able to
perform the update as required by the domain.

∗Corresponding author
Email addresses: xoriol@essi.upc.edu (Xavier Oriol), teniente@essi.upc.edu (Ernest Teniente),

albert.tort-pugibet@sogeti.com (Albert Tort)

Preprint submitted to Elsevier November 25, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Drug
name:5String
minimalAge:5Integer

Disease
name:5String *

contraindicated

Person
name:5String
age:5Integer

Suffers
Physician

Takes

AggravatesTreats

Attends

*

*

*

1..*

*

0..5

* * 1

indicated

aggravatedtreated

context Drug invSTreatsExcludesAggravates:
self.treated->excludesAll(self.aggravated)
context Person invSNoContraindicatedDrugsTaken:
self.disease.contraindicated->excludesAll(self.drug)
context Person invSAllSufferingDiseasesAreTreated:
self.drug.treated->includesAll(self.disease)
context Person invSAllTakenDrugsAreIndicated:
self.disease.indicated->includesAll(self.drug)
context Person invSAgeIsOverTakenDrugsMinimalAge:
self.drug->forAll(d|Sself.ageS>Sd.age)

Figure 1: A UML/OCL schema for the domain of medical drugs taken by people

This leads to the main goal of this paper: given a structural schema with its constraints, an information
base IB, and an update consisting of a set of events E to be applied to IB, we want to compute a repair
R (i.e., an additional set of events) such that the application of E ∪ R to IB does not violate any of the
constraints in the schema. Concretely, we are interested in computing minimal repairs, that is, repairs whose
proper subsets are not repairs themselves.

In general, several repairs Ri may exist and the user should select the one to apply. The case in which
there is only one empty repair Ri = ∅ corresponds the case in which E does not violate any constraint. In
this manner, we can perform integrity checking along the same lines as the previous proposals by checking
whether the returned set of repairs Ri is composed only of the empty set. It may also be the case that there
is no repair Ri, meaning that E cannot be applied without necessarily violating the consistency of the IB.

Our approach can be applied independently of the language used for defining the structural conceptual
schema and the integrity constraints since it is fully specified in terms of a logic formalization which can
be drawn from different languages. However, for the purpose of this work, we assume that the structural
schema is represented by means of a UML class diagram [7, 8] and that the constraints are specified as OCL
constraints [9].

Computing repairs has attracted attention in Description Logics (DL) since the moment that knowledge
bases have also been considered for providing support in the maintenance and evolution phase of information
systems, thus requiring update operations to be performed directly on the knowledge base [10, 11]. However,
these methods work with the open world assumption instead of the closed world assumption [12]. This is a
crucial difference since an IB might be consistent under the open world assumption but inconsistent in the
closed world, making these methods inapplicable in the latter.

In the context of UML, some work has been done to support change propagation in UML models [13, 14]
and to resolve design model inconsistencies of UML schemas [15, 16, 17, 18]. These problems are specifically
focused on fixing inconsistencies among the different UML models used for specifying an information system,
but not the schema and the IB. To our knowledge, the unique work intended to do so is the OCLexec tool
[19, 20], but without dealing the case of class instance deletion neither class instance generalization.

1.1. Motivating example

Consider the UML class diagram and OCL constraints in Figure 1. This schema specifies an information
system about the medical drugs taken by people. In particular, for each person, the system stores the
physician who is attending him/her. A person may suffer some disease, which can be treated or aggravated
by means of some drugs. Each drug treats at least one disease and it also has a minimal age indication. A
person takes at most five drugs.

2

OCL constraints provide the class diagram with additional semantics. Treats-ExcludesAggravates states
that no drug is both indicated and contraindicated for the same disease. NoContraindicatedDrugsTaken as-
serts that nobody takes a drug that aggravates a disease he/she is suffering. AllSufferingDiseasesAreTreated
ensures that everybody takes some drug indicated for each of his/her diseases, while AllTakenDrugsAreIndi-
cated ensures that people do not take drugs that do not treat their diseases. AgeIsOverTakenDrugsMini-
malAge guarantees that nobody takes some drug whose minimal indicated age is greater than their own.
Additionally, for the sake of simplicity, we assume that the name attribute is unique in the classes person,
disease and drug (i.e., there are no two instances of person, disease or drug, with the same name), and thus,
we use it as their identifier.

Consider now the following IB for the class diagram in Figure 1:

treats(aspirin, headache) disease(headache) drug(aspirin)
treats(ibuprofen, headache) disease(cold) drug(ibuprofen)
treats(ibuprofen, cold) person(john) drug(loratadine)
treats(loratadine, cold)

and suppose that new medical research has found that ibuprofen is now contraindicated for cold. Then, such
new fact should be added to the IB (or, more formally, the event insert(aggravates(ibuprofen, cold)) should
be applied). The application of this event would, however, violate TreatsExcludesAggravates. In this case,
the constraint violation can be repaired by additionally applying the event delete(treats(ibuprofen, cold)).

Things would become more complex if the requested event was to insert that john suffers a cold, which
would violate AllSufferingDiseasesAreTreated. Here three possible repairs may be found: inserting that john
is taking ibuprofen; inserting that he is taking loratadine; or considering a new drug to be taken by john
which would also be indicated for a cold. It clearly follows from this example that trying to find repairs by
hand would be unfeasible because of the number of possibilities to take into account. Moreover, it is not
possible to say, a priori, whether there may be many, one or no repairs.

1.2. Contribution

To our knowledge, ours is the first approach able to automatically compute repairs when a set of inser-
tion/deletion events is applied to an IB of a UML/OCL conceptual schema. In this way, we contribute to
the conceptual-schema centric development grand challenge of enforcing integrity constraints in conceptual
schemas [21] aimed at providing, among others, the automatic execution of the schema. This target is also
aligned with the Conceptual Modeling Programming Manifesto [22], which argues that conceptual models
should be executable.

Moreover, the kind of feedback we automatically provide to the user allows him/her to identify the
additional changes needed to keep the IB consistent. Computing repairs is done without the user intervention,
although he/she might be required to choose the best repair if several options exist.

In [23] we presented a particular application of this approach aimed at fixing up non-executable opera-
tions. We fix up a non-executable operation by means of computing the missing effects in the underspecified
operation postcondition in a manner similar to how we compute the repairs for constraint violations. Com-
puting the missing effects in underspecified operation postconditions corresponds to apply an extended
interpretation of an operation [24], in which the operation is assumed to apply all the events specified in
the postcondition and any additional event required to maintain the consistency of the IB. We provide now
several additional contributions with regards to our previous work in [23]. The most important ones are the
following:

- Terminating fragment of OCL identified. We prove that the fragment of OCL we dealt in our previous
work, called OCLUNIV, ensures termination of the process for computing the repairs. We also analyze the
efficiency of this fragment through experiments and we compare its expressiveness with that of OCL-Lite
[25], a well-known decidable fragment of OCL.

- Repairable fragment of OCL extended. We extend the OCL fragment for which we can compute repairs
to OCLFO, i.e., a fragment of OCL which is expressively equivalent to relational algebra [26]. Due to the new

3

constraint expressiveness, we extend our previous algorithms to deal with this new complexity, and perform
some experiments to show its efficiency.

- Limitation of the solution space proposed. In general, the number of expected solutions is exponential
due to a combinatorial explosion intrinsic to the problem. However, we identify several strategies for keeping
the number of solutions as low as possible by means of bounding techniques that removes solutions that are
not acceptable in the domain.

2. Basic concepts and notation

On the following, we summarize the logic and conceptual modeling background used in this paper. Most
of the logic concepts have been taken from[27], whereas the conceptual modeling definitions are based on
[28].

Terms, atoms and literals. A term t is either a variable or a constant. An atom is formed by a n-ary
predicate p together with n terms, i.e., p(t1, ..., tn). We may write p(t) for short. If all the terms t of an
atom are constants, we say that the atom is ground. A literal l is either an atom p(t), a negated atom ¬p(t),
or a built-in literal ti ω tj , where ω is an arithmetic comparison (i.e., <,≤,=,6=).

Derived/base predicates. A predicate p is said to be derived if the boolean evaluation of an atom p(t) depends
on one or more derivation rules; otherwise it is said to be base. A derivation rule is a formula of the form:

∀t. p(tp)← φ(t)

where tp ⊆ t. p(tp) is an atom called the head of the rule and φ(t) is a conjunction of literals called the
body. We assume all derivation rules to be safe (i.e., all the variables appearing in the head or in a negated
or built-in literal of the body also appear in a positive literal of the body) and non-recursive. Given several
derivation rules with predicate p in the head, p(t) is evaluated to true if and only if at least one of the bodies
of those rules is true. We also say that an atom is base if its predicate is base too; otherwise it is derived.

Logic formalization of the UML schema. We formalize each class C in a class diagram with attributes
{A1, . . . , An} by means of a base atom c(Oid) together with n atoms of the form cAi(Oid,Ai), each asso-
ciation R between classes {C1, . . . , Ck} by means of a base atom r(C1, . . . , Ck), and each association class
R between classes {C1, . . . , Ck} with attributes {A1, . . . , An} by means of a base atom r(Oid,C1, . . . , Ck)
together with n atoms rAi(Oid,Ai), as proposed in [29].

Information base. An information system maintains a representation of the state of a domain in its in-
formation base (IB). An information base is a set of instances of the classes and associations defined in a
conceptual schema. We represent the IB by means of a set of ground base atoms.

Constraint. A constraint is a logic assertion posed over a schema S that must be satisfied by the IB. Given
a constraint c defined over a schema S and an IB of S, we say that IB satisfies c, i.e., IB |= c, if and only
if c evaluates to true in IB. Otherwise, we say that IB violates c (IB 6|= c). We naturally extend this notion
for a set of constraints C, i.e., IB |= C iff ∀c ∈ C. IB |= c. Additionally, we say that IB of S is consistent
when IB satisfies all the constraints defined in S; otherwise we say that the IB is inconsistent.

Structural events. A structural event is an elementary change in the population of a class or association
(that is, a change of the IB). We consider six types of structural events: class instance insertion and deletion,
association instance insertion and deletion, attribute instance insertion and deletion. We denote insertions
by ι and deletions by δ.

Given a base atom p(x), insertion structural events are formally defined by the formula ∀x(ιp(x) ↔
pn(x)∧¬p(x)) and deletion structural events by ∀x(δp(x)↔ p(x)∧¬pn(x)), where pn stands for predicate
p evaluated in the new information base, that is, the one obtained after applying the change.

Given a set of structural events E and an IB, the function apply : E × IB → IB returns the new IBn

resulting from applying E to IB.

Repair. Given an IB, a constraint c, and a set of structural events E such that apply(E, IB) 6|= c, we define
a repair as another set of structural events R such that apply(E ∪R, IB) |= c. Given a set of constraints C,

4

R is a repair for IB, E, and C if and only if apply(E ∪R, IB) |= C. A repair R is minimal when no proper
subset R′ of R is also a repair, i.e., ∀R′ ⊂ R. apply(E ∪R′, IB) 6|= C.

Dependencies. A Tuple-Generating Dependency (TGD) is a formula of the form ∀x, z. ϕ(x, z)→ ∃ y. ψ(x, y).
For our purposes, ϕ(x, z) will be a conjunction of literals and ψ(x, y) will be a conjunction of positive base
atoms and optionally some built-in literals constraining its terms. A denial constraint is a special type of
TGD of the form ∀x

(
ϕ(x)→ ⊥), in which the conclusion only contains the ⊥ atom, which cannot be made

true. A Disjunctive Embedded Dependency (DED) is a variation of TGDs where disjunctions are admitted
in the conclusion of the rule. In particular, they follow the form: ∀x, z. φ(x, z)→

∨
∃y. ψ(x, y). From now

on, we omit the logic quantifiers since they can be understood by context.
A Repair-Generating Dependency (RGD) is a DED where the premise contains necessarily at least one

structural event, whereas the conclusion is either a single structural event or a disjunction of several structural
events, i.e., it has the form ev1(x1, y1) ∨ . . . ∨ evk(xk, yk), where each evi(xi, yi) is a structural event.
An Extended Repair-Generating Dependency (eRGD) is an RGD where the conclusion is a disjunction of
conjuncted structural events. That is, an eRGD has the form E1(x1, y1) ∨ . . . ∨ Ek(xk, yk), where each
Ei(xi, yi) is a conjunction of structural events. An Event-Dependency Constraint (EDC) is an RGD in
which the conclusion only contains the atom ⊥.

3. Our approach in a nutshell

Given a structural schema S, a set of constraints C defined over S, an information base IB for S, and a
set of structural events E to apply to IB, our goal is to automatically compute all minimal repairs Ri, that
is, all those structural events that when applied with E to IB leads IB to a new consistent state.

Repairs are drawn from a set of rules, called repair-generating dependencies (RGDs for short), which
are automatically obtained from each constraint in C. An RGD indicates which structural events will
violate a constraint and the repairs that must be performed to remove that violation. In this way the set of
RGDs captures all possible ways to detect and repair the integrity constraints of the schema. RGDs can be
computed at compile time since they depend only on the definition of integrity constraints.

As an example, the RGDs obtained from the OCL constraint TreatsExcludes-Aggravates are the following:

aggravates(MD, D) ∧ ιtreats(MD, D)→ δaggravates(MD, D) (1)

treats(MD, D) ∧ ιaggravates(MD, D)→ δtreats(MD, D) (2)

ιaggravates(MD, D) ∧ ιtreats(MD, D)→ ⊥ (3)

The first rule states that the constraint will be violated if a medical drug MD is contraindicated to a disease
D and we insert the fact that MD also treats D. The only way to repair such violation is by deleting the
fact that MD is contraindicated to D. The semantics of the second rule is very similar to the first one. The
third rule states that there is a violation without any possible repair when we insert the facts that MD both
aggravates and treats D.

Given the set of RGDs drawn from the integrity constraints, we compute the different repairs Ri by
means of chasing the RGDs with the information base IB and the set of events to apply E. Finally, the user
is responsible for selecting the repair Ri to apply from the set of obtained repairs. The two-step process
followed by our method is summarized in Figure 2. In the left-hand side of the figure, we see how RGDs are
obtained from the OCL constraints specified by the domain expert. This is done through three intermediate
stages (not shown in the figure): translating the schema and the constraints into its logic formalization,
moving from this formalization to event-dependency constraints showing how constraints may be violated
by means of events, and finally getting the RGDs from them.

The right-hand side illustrates the application of the chase to compute the different repairs. Chasing the
RGDs is a dynamic step since it is performed at runtime each time a user wants to apply a set of events to
the IB. Both RGD generation and chasing are fully automatic in the sense that no human intervention is
required to perform them, although some expert user might need to choose the best repair in case the chase
finds several options.

5

Repair-Generating
Dependencies

Domain Expert

Defines

Translation Algorithm

Applies Selects

Chase-like algorithm

User

Constraints

Information Base

Structural events

Set Of Repairs

Figure 2: Overview of our approach

3.1. Specifying repairs in RGDs

We assumed in our previous work [23] that the conclusion of an RGD was a disjunction of single structural
events, where each structural event stands for a different way to repair a constraint. Given the restricted
fragment of OCL considered in that paper, this assumption was enough to capture all possible repairs since
each OCL constraint defined in that fragment could be repaired through the application of a single event.

As an example, consider the minimum cardinality constraint stating that each drug must be indicated for
at least one disease. If we delete that some drug MD is indicated for a disease D, where D is the only disease
treated by MD, then we may repair the constraint violation by making MD indicated for a new disease D′

or by deleting MD, but no additional events are required to repair the violation in any of the cases. These
repairs may be specified by an RGD with the formula ιtreats(MD, D′) ∨ δdrug(D) in its conclusion.

Assuming that each constraint can be repaired through the application of a single event no longer holds
when considering the OCLFO subset of OCL [26], as we do in this paper. For instance, AllSufferingDis-
easesAreTreated is violated when some person P stops taking the last medical drug MD treating some
disease D that he is suffering. This violation may be repaired by applying two new events together: insert-
ing the fact that P takes a new medical drug MD2, and inserting the fact that MD2 treats D. Therefore,
the RGD’s conclusion capturing this situation should be a disjunction of conjunctions of events (such as
ιtakes(P,MD2)∧ ιtreats(MD2, D) in our example), where each conjunction of structural events also stands
for a different repair of the constraint.

We capture these ideas by means of extended repair-generating dependencies (eRGDs), which is an
extension of RGDs having disjunctions in the dependency conclusion.

3.2. Applying our approach to fix up non-executable operations

The approach we propose in this paper is also applicable to identify whether an operation is executable
in a particular IB and to provide information about how to fix the problem when it is not. We addressed this
problem in [23], for a certain fragment of OCL, where the information to fix up the problem was given in terms
of the missing effects underspecified on the operation postcondition that would ensure that all constraints
would be satisfied after the execution of the operation. Missing effects were given as a set of structural
events Ri that should be applied together with those events E already implied by the postcondition. Such
additional structural events Ri were computed by means of RGDs since they are repairs.

6

In this paper, besides dealing with a much more expressive fragment of OCL (i.e., OCLFO) which increases
the complexity of the problem, we have also relaxed the assumptions of [23] regarding the way the IB and
the events used as input of our approach were obtained. This is shown in Figure 2, where we consider that
the IB contains the current data of the application while the events to apply are given by the user.

However, our new approach can also be applied to fix up non-executable operations. Given a UML/OCL
schema and an operation Op to be analyzed, we should first generate a consistent IB satisfying the operation
precondition to test whether Op is executable in such IB. This IB can be automatically obtained by applying
[29], manually given by the designer, or through a combination of both. The structural events from which
to reason are drawn from the postcondition of Op according to the mapping defined in [30] and summarized
in [23].

As an example, consider the following operation aimed at inserting the fact that a drug d aggravates a
disease md:

Operation: addContraindication(d: Drug, md:Disease)
pre: -
post: md.contraindicated->includes(d)

Applying [29] from the parameters and the precondition of addContraindication, we get an information
base IB={drug(d1), disease(md1), treats(d1,md1)}; while with [30] we draw the set of structural events
E = {ιaggravates(d1,md1)} from its postcondition. Now, we can apply our approach exactly as stated
in Figure 2. In this scenario, the chase would return a repair Ri = {δtreats(d1,md1)} because of RGD
2. Thus, addContraindication is not executable in IB since it would necessarily violate the constraint
TreatsExcludesAggravates. To fix-up such operation, we should modify the postcondition of the operation
to additionally imply the event δtreats(d1,md1).

Besides fixing up non-executable operation contracts, this particular application of our approach permits
computing at run time the extended interpretation of an operation [24]. An extended interpretation of an
operation contract assumes a reactive behavior of the operation when its application induces some constraint
violation. In particular, it assumes that an operation execution additionally applies any set of structural
events required to keep the IB consistent if some constraint is violated, although these events might not be
specified in the postcondition.

4. Obtaining RGDs and eRGDs

As we have seen in the previous section, repair-generating dependencies (extended or not) are a crucial
component in our approach since they capture the different ways a constraint can be repaired. Given an
OCL constraint in the structural conceptual schema, its associated dependencies are automatically computed
according to the following steps:

1. Encoding the OCL constraint as a logic denial.

2. Obtaining the event dependency constraints (EDCs) from the denial.

3. Drawing the (extended) repair-generating dependencies from the EDCs.

The translation from OCL constraints to (extended) RGDs is static in the sense that it is performed
only once at compilation time, when the schema and the OCL constraints have been defined.

At the end of the translation, we obtain a set of repair-generating dependencies (RGDs) or a set of
extended repair-generating dependencies (eRGDs) depending on the expressiveness of the fragment of OCL
considered. We have identified two fragments of OCL for this purpose: OCLUNIV and OCLFO.

OCLUNIV. The main feature of the OCLUNIV constraints is that they give rise to a particular case of RGDs,
i.e., dependencies with a single event in each disjunct of the conclusion, where all variables appearing in the
conclusion are universally quantified. OCLUNIV is defined by the syntax:

7

ExpBool ::= ExpBool and ExpBool | ExpBool or ExpBool
| ExpOp

ExpOp ::= Path->excludesAll(Path) | Var.Member->includesAll(Path)
| Path->excludes(Path) | Var.Member->includes(Var)
| Path->isEmpty() | Path->forAll(Var| ExpBool)
| Path OpComp Constant | not Path.oclIsKindOf(Class)
| Path OpComp Path | Path.oclIsKindOf(Class)
| Path->isUnique(Attrib) | Class.allInstances()->exists(IdEq)

Path ::= Var.Navigation | Class.allInstances().Navigation
Navigation ::= Role.Navigation | oclAsType(Class).Navigation

| Role | Attrib
| oclAsType(Class)

where OpComp is an arithmetic comparison (i.e., <,≤,=,6=), Constant is an OCL literal (e.g. integers
such as 1, strings such as "Hello world!", etc.), Var is an iteration variable appearing inside a forAll or
the special OCL variable self. In exists, IdEq is an equality comparison between the properties identifying
the source Class (in particular, OIDs for classes, association ends for association classes) and some OCL
variables (e.g. self or iterator variables from forAll). This limited exists operation is included to
simulate an includes/includesAll with (reified) n-ary associations where n > 2. As expected, Class, Role
and Attrib are names of classes, association roles and class attributes appearing in the UML class diagram.

OCLUNIV is the fragment of OCL that we considered in our previous work [23], where we used RGDs for
fixing-up non-executable operations.

OCLFO. OCLFO is a fragment of OCL expressively equivalent to relational algebra [26] that subsumes
OCLUNIV. In particular, it is the fragment of OCL limited to first-order constructs, that is, OCL excluding
general aggregation such as sum, the transitive closure closure and where any collection is a set. OCL
constraints defined according to this fragment give rise to eRGDs, i.e., dependencies whose conclusion is a
disjunction of conjunctions of structural events, and where variables in the conclusion may be existentially
quantified.

Step 1 of the translation process is the same for OCLUNIV and OCLFO constraints. However, steps 2 and
3 depend on the OCL fragment considered. In the rest of this section we define in detail all these three
steps.

4.1. Encoding the OCL constraints as logic denials

We first encode each OCL constraint as a logic denial as proposed in [29]. These logic denials are written
over the predicates of the logic formalization of the UML schema that has been described in Section 2. In
our example of Figure 1, the formalization for the UML class diagram is:

disease(D), drug(MD), drugAge(MD, A), person(P), personAge(P,A)

physician(P), suffer(P,D), treats(MD, D), aggravates(MD, D)

takes(P,MD), attends(P1, P2)

where we use, without loss of generality, the identifier attribute of a class as its oid. In this way, we can
omit the predicate corresponding to that attribute.

Given the previous schema, OCL constraints TreatsExcludesAggravates and AllSufferingDiseasesAre-
Treated would be encoded into the following denials 1:

treats(MD, D) ∧ aggravates(MD, D)→ ⊥ (4)

suffers(P,D) ∧ ¬diseaseTreated(P,D)→ ⊥ (5)

diseaseTreated(P,D)← takes(P,MD) ∧ treats(MD, D) (6)

1Note that if a denial contains a derived predicate, like in rule 5, then additional derivation rules are required to define
them.

8

Denial 4 is obtained from TreatsExcludesAggravates and states that there might not be a medical drug
MD that treats and aggravates the same disease D. Denial 5, drawn from AllSufferingDiseasesAreTreated,
prevents a person P to suffer from a disease D without taking any medical drug MD treating D. This last
denial makes use of a derived predicate diseaseTreated, which is defined in the derivation rule 6.

In addition to the OCLUNIV and OCLFO constraints, the encoding proposed in [29] also defines how to ob-
tain denials for graphical/implicit constraints in the UML schema such as min/max cardinality constraints,
referential integrity constraints from associations, hierarchies, and disjoint/complete constraints on hierar-
chies. Therefore, our approach is also able to compute repairs for violations of such kinds of constraints
since we obtain repair-generating dependencies from the denials, regardless of whether they come from a
constraint of the UML schema or an OCL constraint.

4.2. Obtaining RGDs from OCLUNIV constraints

Logic denials obtained in the previous step have a different form depending on whether its original OCL
constraint was written in OCLUNIV or OCLFO. As we are going to prove in Section 6, logic denials coming
from OCLUNIV constraints are guaranteed to contain only base predicates. This simplifies its translation
to RGDs in comparison to those denials coming from OCLFO constraints, which usually contain negative
derived literals like in rule 5. We explain in this section how to obtain RGDs for OCLUNIV constraints.

4.2.1. Obtaining EDCs for OCLUNIV constraints

An event dependency constraint (EDC) identifies a particular situation in which the original OCLUNIV

constraint would be violated in an information base IBn resulting from applying some set of structural
events E to some initial information base IB. Therefore, each denial constraint obtained in the previous step
will be translated into several EDCs, corresponding to the different ways the constraint may be violated
depending on the applied events.

The main idea for obtaining the EDCs is to replace each literal in the denial constraint by the expression
that evaluates it in the new IBn. Positive and negative literals in the denial are handled in a different way,
according to the following formulas:

∀x. pn(x)↔ (ιp(x)) ∨ (¬δp(x) ∧ p(x)) (7)

∀x. ¬pn(x)↔ (δp(x)) ∨ (¬ιp(x) ∧ ¬p(x)) (8)

Rule 7 states that an atom p(x) (e.g. person(john)) will be true in the new IBn if its insertion structural
event has been applied (e.g. person john has been inserted) or if it was already true in the initial IB and
its deletion structural event has not been applied (e.g. the person john existed in the initial IB and it has
not been deleted). In an analogous way, rule 8 states that p(x) will not hold in the new IBn if it has been
deleted or if it was already false and it has not been inserted.

By applying the substitutions above, we get a set of EDCs that state all possible ways to violate a
constraint by means of the possible structural events of the schema. EDCs are grounded on the idea of event
rules which were defined in [31] to perform integrity checking in deductive databases. In general, we will
get 2k − 1 EDCs for each denial constraint dc, where k is the number of literals in dc. The pseudocode of
the algorithm getEventDependencyConstraints performing this transformation is shown in Algorithm 1.

Intuitively, the algorithm interprets each literal p as pn and it performs a replacement according to the
definition given by formulas 7 and 8. One of the EDCs generated corresponds to a dependency that would
be activated just in case the constraint was violated in the initial IB since it has no positive structural event.
Using the common assumption that the initial IB state is consistent, we can safely delete such EDC. This
deletion is done in the removeEDCWithout-PositiveEvents function.

Applying Algorithm 1 to the constraint TreatsExcludesAggravates, encoded in the first step into the
denial treats(MD, D) ∧ aggravates(MD, D) → ⊥, we get the following event-dependency constraints:

treats(MD, D) ∧ ¬δtreats(MD, D) ∧ ιaggravates(MD, D)→ ⊥ (9)

ιtreats(MD, D) ∧ aggravates(MD, D) ∧ ¬δaggravates(MD, D)→ ⊥ (10)

ιtreats(MD, D) ∧ ιaggravates(MD, D)→ ⊥ (11)

9

Algorithm 1 getEventDependencyConstraints(premise→ ⊥)
EDC := {∅ → ⊥}
for all Literal p in premise do
EDCPre := EDC
EDC := ∅
for all Dependency premisePre → ⊥ in EDCPre do

if p is Built-in literal then
EDC := EDC ∪ {premisePre ∧ p→ ⊥ }

else
if p is positive then
EDC := EDC ∪ {premisePre ∧ p ∧ ¬δp→ ⊥} ∪ {premisePre ∧ ιp ∧ ⊥}

else
EDC := EDC ∪ {premisePre ∧ δp→ ⊥} ∪ {premisePre ∧ ¬ιp ∧ ¬p→ ⊥}

end if
end if

end for
end for
EDC.removeEDCWithoutPositiveEvents()
return EDC

Rule 9 is an EDC stating that the constraint will be violated for a medical drug MD and a disease D if
we insert the fact that MD aggravates D but we do not delete at the same time the fact that MD treats D.
EDC 10 identifies a violation to happen when we insert the fact that MD treats D without deleting the fact
that MD aggravates D. EDC 11 states that TreatExcludesAggravates will be violated if we insert the facts
that MD treats and aggravates D at the same time.

4.2.2. Drawing RGDs for OCLUNIV constraints

EDCs points out the situations where an integrity constraint is violated as a consequence of the appli-
cation of a set of structural events. However, they do not directly provide any information on the repairs
for that violated constraint. We transform EDCs into RGDs for this purpose by means of the algorithm
getRepairGeneratingDependencies, reported in Algorithm 2.

Intuitively, each negated structural event in the premise of the dependency constraint represents a differ-
ent way to repair the constraint. Therefore, we obtain the RGDs by removing the negated structural events
of the EDC and placing them positively in the conclusion. If there is more than one negated structural event
in the EDC, then there is more than one possible repair. Thus, these events are all placed in the conclusion
of the RGD as a disjunction. Note that we obtain exactly one RGD for each EDC.

Algorithm 2 getRepairGeneratingDependencies(premise→ ⊥)
new Conclusion := ⊥
new Premise := >
for all Literal p in premise do

if p is negative structural event then
new Conclusion := new Conclusion ∨ positive(p)

else
new Premise := new Premise ∧ p

end if
end for
return new Premise→ new Conclusion

Applying Algorithm 2 to the EDCs defined by the rules 9, 10, 11, we get the following RGDs:

treats(MD, D) ∧ ιaggravates(MD, D)→ δtreats(MD, D) (12)

ιtreats(MD, D) ∧ aggravates(MD, D)→ δaggravates(MD, D) (13)

ιtreats(MD, D) ∧ ιaggravates(MD, D)→ ⊥ (14)

The first RGD states that whenever we insert a fact that a medical drug MD aggravates a disease D
when the current information base states that MD treats D, then, we should delete the fact that MD treats
D. Similarly, the second one establishes that when a medical drug MD aggravates some disease D and we
insert the fact that MD treats D, then, we should delete the fact that MD aggravates D. The third RGD

10

is exactly its original EDC 11, meaning that there is no possible way to repair that situation. That is, the
structural events ιtreats(MD, D)∧ιaggravates(MD, D) cannot happen together without necessarily violating
a constraint.

4.3. Obtaining eRGDs from OCLFO constraints

Denial constraints obtained from OCLFO constraints usually contain negative derived base predicates.
Therefore, we have to extend the algorithms proposed in the previous section in order to obtain the repair-
generating dependencies for such constraints. As we are going to see, in this case we will mostly obtain
eRGDs rather than RGDs due to the negative derived predicates.

4.3.1. Obtaining EDCs for OCLFO constraints

If we apply Algorithm 1 strictly to the denials obtained from OCLFO constraints, we would get EDCs
which contain derived events (i.e., events of insertion/deletion on the population of a derived predicate).
Therefore, in this case, besides translating denials into EDCs, we also need to define the derivation rules for
computing the derived events (i.e., rules for computing which structural events cause an insertion/deletion
on the population of some derived predicate).

As an example, consider again the denial 5 we got from the OCLFO constraint AllSufferingDiseasesAre-
Treated. Applying Algorithm 1 to it, we get the following rules:

suffers(P,D) ∧ ¬δsuffers(P,D) ∧ δdiseaseTreated(P,D)→ ⊥ (15)

ιsuffers(P,D) ∧ ¬diseaseTreated(P,D) ∧ ¬ιdiseaseTreated(P,D)→ ⊥ (16)

ιsuffers(P,D) ∧ δdiseaseTreated(P,D)→ ⊥ (17)

Notice that we now have two derived event predicates: ιdiseaseTreated and δdiseaseTreated. Then, we also
need to define their derivation rules. Intuitively, ιdiseaseTreated(P,D) will be true if diseaseTreated(P,D) was
false in the initial IB and diseaseTreated(P,D) is true in the new IBn; and similarly for δdiseaseTreated(P,D).
Therefore, we also need to define the following derivation rules for computing such derived events:

ιdiseaseTreated(P,D)← ¬diseaseTreated(P,D) ∧ diseaseTreatedn(P,D) (18)

δdiseaseTreated(P,D)← diseaseTreated(P,D) ∧ ¬diseaseTreatedn(P,D) (19)

Predicate diseaseTreated is already well defined in 6 but diseaseTreatedn is not yet defined. This predicate
corresponds to evaluating diseaseTreated in the new IBn which can be done by means of evaluating the body
of its original derivation rule in IBn, in particular:

diseaseTreatedn(P,D)← takesn(P,MD) ∧ treatsn(MD,D) (20)

Now we can unfold the predicates takesn and treatsn with the rules defined in 7 and 8, obtaining the
rules:

diseaseTreatedn(P,D)←takes(P,MD) ∧ ¬δtakes(P,MD) ∧ treats(MD, D) ∧ ¬δtreats(MD, D) (21)

diseaseTreatedn(P,D)←takes(P,MD) ∧ ¬δtakes(P,MD) ∧ ιtreats(MD, D) (22)

diseaseTreatedn(P,D)←ιtakes(P,MD) ∧ treats(MD, D) ∧ ¬δtreats(MD, D) (23)

diseaseTreatedn(P,D)←ιtakes(P,MD) ∧ ιtreats(MD, D) (24)

For optimization purposes, consider again the rule 19 that defines the derived event δdiseaseTreated after
unfolding the predicate diseaseTreated :

δdiseaseTreated(P,D)← takes(P,MD) ∧ treats(MD, D) ∧ ¬diseaseTreatedn(P,D) (25)

11

If diseaseTreated(P, D) evaluates to true in the initial IB, but it evaluates to false in the new IBn, then,
necessarily one of the positive atoms of its body has been removed in the new IBn. Thus, we can replace
this rule by the rules:

δdiseaseTreated(P,D)← δtakes(P,MD) ∧ treats(MD, D) ∧ ¬diseaseTreatedn(P,D) (26)

δdiseaseTreated(P,D)← takes(P,MD) ∧ δtreats(MD, D) ∧ ¬diseaseTreatedn(P,D) (27)

These two rules are logically equivalent to the rule 25 but they are more efficient to evaluate. This is
because they are defined in terms of structural events rather than usual instances from the IB, and since we
expect the number of structural events to apply to be much lower than the number of instances in the IB,
evaluating the body of these two rules is faster than computing rule 25 .

Algorithm 3 applies all these transformations and optimizations. That is, it receives as input a derivation
rule head ← body and returns as output the set of necessary derivation rules to compute the ιhead and δhead
derived events.

Algorithm 3 getInsertionDeletionDerivedEventRules(head← body)
% Create the New State Derivation Rules
NewStateDerivRules := {headn ← ∅}
for all Literal p in body do
NewStateDerivRulesPre := NewStateDerivRules
NewStateDerivRules := ∅
for all DerivationRule headnPre ← bodynPre in NewStateDerivRulesPre do

if p is Built-in-literal then
NewStateDerivRules := NewStateDerivRules ∪ {headnPre ← bodynPre ∧ p}

else
if p is positive then
NewStateDerivRules := NewStateDerivRules ∪ {headnPre ← bodynPre ∧ p ∧ ¬δp} ∪ {head

n
Pre ← bodynPre ∧ ιp}

else
NewStateDerivRules := NewStateDerivRules ∪ {headnPre ← bodynPre ∧ δp} ∪ {head

n
Pre ← bodynPre ∧ ¬ιp ∧ ¬p}

end if
end if

end for
end for
% Create the Insertion Event Rules
InsertionDerivRules := ∅
for all DerivationRule headn ← bodyn in NewStateDerivRules do
InsertionDerivRules := InsertionDerivRules ∪ {ιhead← bodyn ∧ ¬head}

end for
% Create the Deletion Event Rules
DeletionDerivRules := ∅
for all Literal p in body do
DeletionDerivRules := DeletionDerivRules ∪ {δhead← (body \ {p}) ∧ δp ∧ ¬headn}

end for
return InsertionDerivRules ∪DeletionDerivRules ∪NewStateDerivRules

The algorithm starts by creating the new state derivation rules (e.g. the derivation rules of diseaseTreatedn)
following exactly the same strategy as followed in Algorithm 1 to obtain the EDCs: interpreting each literal
p in body as pn and unfolding according to rules 7 and 8.

Then we create the insertion derivation rules (e.g. ιdiseaseTreated) by means of adding, for each deriva-
tion rule of the new state predicate, a new rule containing the same body but adding a literal to check that
the head was not true in the previous state (e.g. ¬diseaseTreated).

Finally, we create the deletion derivation rules (e.g. δdiseaseTreated) by means of iterating each literal of
the original derivation rule body, replacing the literal with its deletion literal (e.g. takes for δtakes and treats
for δtreats) and adding a literal to check that the head does not exist in the new state (e.g. ¬diseaseTreatedn).

4.3.2. Drawing eRGDs for OCLFO constraints

EDCs coming from OCLFO constraints will in general contain negative derived events, like rule 16 which
contains ¬ιdiseaseTreated(P,D). Therefore, if we build repair-generating dependencies by just applying
the criteria used in Section 4.2.2 of removing negative events from the premise and placing them positively
into the conclusion, we would end up with derived events in the conclusion of the rule. Then, this rule would
not be a repair-generating dependency since RGDs require all the literals in the conclusion to be base. This

12

is a necessary condition to ensure that chasing the RGDs computes repairs that contain only structural
events and no derived events. Therefore, we require an additional transformation to remove derived events
from the conclusion of such rules.

As an example, by applying Algorithm 2 to the previously stated EDC 16 we would obtain:

ιsuffers(P,D) ∧ ¬diseaseTreated(P,D)→ ιdiseaseTreated(P,D) (28)

To ensure that all literals in the conclusion of this rule are base, we can unfold ιdiseaseTreated(P,D)
and obtain:

ιsuffers(P,D)∧¬diseaseTreated(P,D)→
(takes(P,MD) ∧ ¬δtakes(P,MD) ∧ ιtreats(MD, D) ∧ ¬diseaseTreated(P,D)) ∨
(ιtakes(P,MD) ∧ treats(MD, D) ∧ ¬δtreats(MD, D) ∧ ¬diseaseTreated(P,D)) ∨
(ιtakes(P,MD) ∧ ιtreats(MD, D) ∧ ¬diseaseTreated(P,D))

Note that ¬diseaseTreated(P,D) appears both in the premise and the conclusion of the previous rule.
For optimization purposes, we can safely delete the literal from the conclusion since its truth evaluation is
guaranteed by the premise.

ιsuffers(P,D)∧¬diseaseTreated(P,D)→
(takes(P,MD) ∧ ¬δtakes(P,MD) ∧ ιtreats(MD, D))∨
(ιtakes(P,MD) ∧ treats(MD, D) ∧ ¬δtreats(MD, D))∨
(ιtakes(P,MD) ∧ ιtreats(MD, D))

Due to the unfolding, we may have added in the conclusion of the eRGD some literals that are not events
(e.g. takes(P,MD)) and negative events (e.g. ¬δtakes(P,MD)). Again, these literals are not allowed to
appear in the eRGD conclusion and we also have to remove them. This can be done by using the following
transformation defined in [32].

Given a disjunctive embedded dependency with a negated literal in its conclusion like:

φ(x)→ ψ1(x1) ∧ ¬p(xp) ∨ ... ∨ ψn(xn)

we can build two new disjunctive embedded dependencies with no negated literals in the conclusion that are
equivalent to the initial one:

φ(x)→ ψ1(x1) ∧ forbidP (xp) ∨ ... ∨ ψn(xn)

forbidP (xp) ∧ p(xp)→ ⊥

Intuitively, if we decide to repair the violation of φ by means of ψ1(x1) ∧ forbidP (xp), then p(xp) must
necessarily evaluate to false (otherwise, we would violate the second dependency defined). In this way, we
simulate the behavior of the original dependency with a negated literal in the conclusion. For our purposes,
we use ιforbidP instead of forbidP in order to use the syntax of structural events.

In a similar way, we extend this transformation for a positive literal (not representing a structural event)
in the conclusion. Given a dependency:

φ(x)→ ψ(x1) ∧ p(xp) ∨ ... ∨ ψn(xn)

we can build two new disjunctive embedded dependencies taking out one of the positive literals of the
conclusion:

φ(x)→ ψ1(x1) ∧ ιcontainP (xp) ∨ ... ∨ ψn(xn)

ιcontainP (xp) ∧ ¬p(xp)→ ⊥

13

In our previous example, using these two transformations to remove undesired literals from the conclusion,
we obtain the following final eRGD together with four new EDCs:

ιsuffers(P,D) ∧ ¬diseaseTreated(P,D)→
(ιcontainTakes(P,MD) ∧ ιforbidDelTakes(P,MD) ∧ ιtreats(MD,D))∨
(ιtakes(P,MD) ∧ ιcontainTreats(MD,D) ∧ ιforbidDelTreats(MD,D))∨
(ιtakes(P,MD) ∧ ιtreats(MD,D))

ιcontainTakes(P,MD) ∧ ¬takes(P,MD)→ ⊥
ιforbidDelTakes(P,MD) ∧ δtakes(P,MD)→ ⊥
ιcontainTreats(P,MD) ∧ ¬treats(P,MD)→ ⊥
ιforbidDelTreats(P,MD) ∧ δtreats(P,MD)→ ⊥

In Algorithm 4, which is an extension of Algorithm 2, we formally define how to obtain the eRGDs of a
given EDC by applying all these transformations. It receives as input an EDC and returns as output a set
of eRGDs. The number of eRGDs obtained depends on the derived literals appearing in the EDC.

Algorithm 4 getExtendedRepairGeneratingDependencies(premise→ ⊥)
result := ∅
if premise contains a positive derived literal p then

for all unfoldedPremise in unfoldingPremise(p, premise) do
result := result ∪ getRepairGeneratingDependencies(unfoldedPremise→ ⊥)

end for
else
new Conclusion := ⊥
new Premise := >
% Place negative literals to the conclusion
for all Literal p in premise do

if p is negative event then
new Conclusion := new Conclusion ∨ positive(p)

else
new Premise := new Premise ∧ p

end if
end for
% Apply all the possible unfoldings
for all Positive derived literal p in new Conclusion do
new Conclusion := unfoldingConclusion(p, new Conclusion)

end for
% Remove negative literals from the conclusion
for all Negative literal p in new Conclusion do
new Conclusion := replace(¬p, ιforbidP , new Conclusion)
result := result ∪ getExtendedRepairGeneratingDependencies(ιforbidP ∧ p→ ⊥)

end for
% Remove non structural event literals from the conclusion
for all Non structural event literal p in new Conclusion do
new Conclusion := replace(p, ιcontainP , new Conclusion)
result := result ∪ {ιcontainP ∧ ¬p→ ⊥}

end for
result := result ∪ {new Premise→ new Conclusion}

end if
return result

The algorithm starts by checking the existence of positive derived literals in the premise. If this is the
case, the algorithm unfolds the literal and recursively calls the algorithm until all the literals are base. Since,
in our settings, the predicates are non-recursive, this recursion is guaranteed to terminate.

Then, the algorithm performs four loops, each one corresponding to a different transformation.
The first loop moves the negative event literals (structural or derived) from the premise to the conclusion.

This is exactly the transformation defined in Algorithm 2 but extended to derived events.
The second loop applies the usual unfolding for derived literals placed in the conclusion, which is also

guaranteed to terminate.
The third loop removes negative literals from the conclusion using the transformation in [32]. This

transformation encompasses a recursive call to the algorithm for some predicate p. This recursion directly

14

terminates if the predicate p is base since the formula ιforbidP∧p→ ⊥ would need no more transformations.
Again, the absence of recursive predicates guarantees that at some point predicate p will be base and, thus,
the recursion will be finite.

The last loop removes non-structural event literals from the conclusion. We replace any non-structural
event literal p for ιcontainP and add a new EDC ιcontainP ∧ ¬p → ⊥. In this case, we do not need to
call the algorithm recursively to translate this EDC to eRGDs because we know that, since p is base, no
transformation would be applied to the rule.

Since all the recursions and loops are guaranteed to terminate, the algorithm terminates.
Moreover, the eRGDs generated by the algorithm are equivalent to the input EDCs in the following sense:

for any information base IB and set of structural events E, apply(E, IB) satisfies the EDCs if and only if
apply(E′, IB) also satisfies all the generated eRGDs, where E′ is the set of structural events E with possibly
some extra atoms of the form ιcontainP , ιforbidP . We now prove that this kind of logical equivalence is
preserved along all the transformations we apply.

Clearly, unfolding a formula is known to be logically equivalent to its original one. The transformation
for moving negated literals from the premise to the conclusion is based on the logical equivalence:

φ ∧ ¬p→ ψ ≡ ¬φ ∨ p ∨ ψ ≡ φ→ p ∨ ψ

The transformation consisting in the replacement of ¬p for ιforbidP and p for ιcontainP is based
on forcing forbidP ≡ ¬p and containP ≡ p. On one hand, the additionally created EDCs ensure that
ιforbidP =⇒ ¬p and ιcontainP =⇒ p. On the other hand, we are able to add as many ground atoms
of ιcontainP and ιforbidP as we require in order to force ¬p =⇒ ιforbidP and p =⇒ ιcontainP (since
adding them does not cause the violation of any eRGD besides ιcontainP ∧¬p→ ⊥ and ιforbidP ∧ p→ ⊥
since these literals do not appear in any other RGD premise). Thus, we achieve to force p ≡ containP and
¬p ≡ forbidP . Note that we only need to create a finite number of instances of forbidP because the rules
are safe.

4.4. Removing/tuning eRGDs to limit the number of obtained repairs

The disjunctions and the existential variables in the conclusion of eRGDs cause the number of repairs
to grow exponentially since all of them specify alternative ways to repair a constraint. Therefore, if two
constraints are violated and each one may be repaired by means of m and n different possibilities respectively,
we may expect about m∗n repairs in general. Therefore, it becomes necessary to take additional information
into account for keeping the number of repairs as low as possible. This can be done by considering information
from the domain directly stated in the UML schema or directly provided by domain experts to remove some
eRGDs or some of its disjuncts.

addOnly and frozen stereotypes. A changeability stereotype can be specified for attributes and roles of the
schema. Its default value is changeable, stating that the attribute or role value can be updated whenever
desired, but other possible values are addOnly, stating that they can never be removed, and frozen, stating
that they cannot be changed after the object is initialized. In our example, the class Disease can be defined
to be add-only. 2

Invalid repairs. Additionally, a user may define some kind of structural events to be invalid repairs for some
concrete structural events to be applied. An invalid repair is an event type that cannot appear in any repair
Ri. For example, given the structural event ιsuffers(john, cold), it might be invalid to repair any violation
caused by this event by means of adding new medical drugs in the system (in this manner, we limit the
repairs to using medical drugs that currently exist in our system).

Both invalid repairs and addOnly and frozen stereotypes invalidate certain events in the domain and thus,
they should not be considered in the repair-generating dependencies (either RGDs or eRGDs). Intuitively,
if such an event appears in the premise of the dependency, then the dependency can be removed because

2In UML 1.x the changeability property was part of the UML metamodel. However, since this property has disappeared in
UML 2.x, it now needs to be defined as a stereotype.

15

it will be never applicable. If it appears in a disjunction of the conclusion, then that disjunct should be
eliminated from the dependency conclusion because it will never be possible to repair the constraint in the
way it specifies.

5. Computing repairs

Once RGDs and eRGDs have been generated, we use them to compute the minimal repairs for a given set
of structural events E to be applied in some information base IB. In other words, we compute the additional
structural events Ri such that apply(E∪Ri, IB) |= C, where C is the set of all the constraints defined in the
schema. Intuitively, we only need to chase (i.e., to execute) the RGDs with the current IB and E and then,
for each Ri obtained, check whether it is minimal or not. We define in this section the chase-like algorithms
we use for computing such repairs. We start by showing how to chase the RGDs obtained from OCLUNIV

constraints using a current existing chase algorithm and then, we define how to chase the eRGDs obtained
from OCLFO.

5.1. Chasing RGDs from OCLUNIV

In this particular case, we can make use of some preexisting chase algorithms to compute the repairs.
Concretely, we show that we may use any chase-like algorithm that computes universal model sets to obtain
the repairs Ri, provided that the algorithm supports dependencies with disjunctions and negative/built-in
literals. Moreover, using such algorithms ensures that any returned Ri will be minimal.

We start from the definition of universal model set. Intuitively, given a set of ground facts I, a universal
model set [33] is a minimal set of models U ⊇ I (i.e., sets of ground facts that satisfy all the dependencies),
possibly containing instances of a special kind of constants called labeled nulls, s.t. for any model U ′ ⊇ I,
there is some model U in the universal model set and some substitution σ for the labeled nulls of U s.t.
Uσ ⊆ U ′.

Consider now that we compute the universal model set for our set of RGDs obtained from OCLUNIV,
using as ground facts the set IB ∪ E. Clearly, any model U from the universal model set will correspond
to the form U = IB ∪ E ∪ Ri, and will guarantee that U satisfies all the RGDs. In addition, U will not
contain any labeled null since the unique sources of labeled nulls are the existential variables, but the RGDs
drawn from OCLUNIV are dependencies where all variables are universally quantified. Thus, any Ri from
U = IB ∪ E ∪Ri is a repair.

Moreover, it will be minimal since, if there was some other (minimal) repair R′i ⊂ Ri, then, U ′ =
IB ∪ E ∪ R′i would also be a model from the universal model set, and since U ′ ⊂ U , the universal model
set would not be minimal. Similarly, it can be argued that any Rj minimal repair will appear as some
Uj = IB ∪ E ∪ Rj in the universal model set, otherwise, there would not be any model Ui in the universal
model set s.t. Ui ⊆ Uj .

A sound and complete algorithm for computing universal model sets for dependencies dealing with dis-
junctions, negated literals, and 6= comparisons between terms is the extended core chase [33]. Unfortunately,
this chase cannot deal with < neither ≤ comparisons between terms, and both kind of inequalities may ap-
pear in our RGDs. However, it is not difficult to extend it to handle them when the variables compared
are universally quantified, as it happens in our case, since it only requires checking the satisfaction of the
comparison when applying a chase step, and rejecting the ongoing Ri computation if this is not the case.

5.2. Chasing eRGDs from OCLFO

We cannot use currently existing chases when we have to deal with eRGDs coming from OCLFO because
their usual way of dealing with existential variables is to invent a new labeled null that may stand for either
some new constant or some unknown constant currently existing in the information base IB or in the events
E. This is not appropriate for us since we want our repairs to make explicit the existing values that can
repair a violation.

That is, we are interested in computing repairs like ιtakes(john, aspirin) instead of ιtakes(john, null1),
since they provide a concrete way to repair the violation using the currently existing values in the IB.

16

To achieve this behavior, we need to define a chase-like procedure that incorporates the notion of Variable
Instantiation Patterns (VIPs) [34]. Intuitively, VIPs rely on instantiating any existential variable with any
current value from IB∪E∪Rc, where Rc is the current repair being computed, and some other new invented
values. This chase procedure is defined in Algorithm 5.

Algorithm 5 chaseExtendedRGDs(eRGDs, IB, E, Rc, Result)
d := getViolatedDependency(RGDs, IB, E, Rc)
if d = null then
Result.add(removeForbidContain(Rc))

else
for all Structural events conjunction R in (d.conclusion) do
σRS := getRepairingSubstitutions(R, IB, E, Rc)
for all σR in σRS do

chaseRGDs(eRGDs, IB, E, Rc ∪ {RσR}, Result)
end for

end for
end if

Initially, the algorithm is called with Rc = ∅ and Result = ∅, where Result is an input/output parameter
that will contain the set of all the repairs when the algorithm execution terminates. The getViolatedDepen-
dency function looks for a dependency being violated according to the contents of IB∪E ∪Rc, and returns
it after substituting its universal variables for the constants that witness the violation. If no dependency
is violated, then Rc is a repair, and thus, it is added into the Result. Before adding Rc into Results, we
apply the function removeForbidContain. This function returns the set of structural events Rc but removing
those ground atoms corresponding to the auxiliary structural events ιforbidP and ιcontainP added as a
consequence of the auxiliary dependencies created in Algorithm 4.

For repairing the dependency, we try all the possible conjunctions of events R in the dependency conclu-
sion. Moreover, for each one of these conjunctions, we try all the suitable variable-to-constant substitutions
σR for their existential variables according to the VIPs. Then, we add RσR into the repair Rc being computed
and apply a recursive call to the same algorithm to continue the chase until no dependency is violated.

After executing the algorithm, Result contain a set of repairs Ri for the given IB and E. Since the
algorithm does not ensure their minimality, we must perform some additional check if we are interested in
minimal repairs.

The algorithm is sound since it does not add any Rc as a repair in the Results unless it truly satisfies
all the eRGDs. The algorithm is also complete since it is, in fact, a subcase of the CQC algorithm where
unfoldings have been made explicit. The CQC algorithm has been proved to be complete with the VIPs
approach, even in the presence of built-in literals such as < and ≤ and considering both discrete and
continuous domains for terms [34].

6. Identifying nice properties of OCLUNIV Constraints

In addition to producing simpler repair generating dependencies, OCLUNIV benefits from some nice prop-
erties that are interesting to investigate. Two of them are considered in this section: the assurance that
the chasing algorithm ends when computing the repairs for OCLUNIV constraints, and its relationship with
OCL-Lite, a well-known decidable fragment of OCL [25].

6.1. Termination for computing repairs of OCLUNIV constraints

We prove that computing OCLUNIV constraints repairs will always terminate for any information base
and for any set of structural events applied. The proof benefits from two observations: first, any OCLUNIV

constraint can be translated as a denial where all literals are base3. Second, any denial constraint where

3Generally, an OCL constraint is translated as a unique denial constraint. However, since any set of OCL constraints can
be collapsed into a single one, for example, by using the and operator, an OCL constraint might be translated into two or more
denial constraints.

17

all literals are base can be translated to an RGD where all variables from the conclusion are universally
quantified. Thus, we prove termination by proving that chasing RGDs where all variables from the conclusion
are universally quantified always terminates. We first prove the two observations.

Proposition 1. Given a UML class diagram U and its logic formalization into base predicates P, an
OCLUNIV constraint written over U can be translated into a set of denial constraints written over the set of
base predicates P.

Proof. According to the translation from OCL to denial constrains as defined in [29], the unique OCL
operators that generate negated literals when translated to denial constraints are includes, includesAll,
oclIsKindOf and exists. The rest are translated using only positive literals, which can be iteratively
unfolded until all positive literals are base. This is possible since the translation of [29] does not use
recursive predicates.

For those operations using negative literals, we can see that they are translated using just one negative
base literal due to our restricted syntax. Indeed, includes and includesAll are translated by means of a
unique literal corresponding to the base predicate representing the association of the role. This is possible
since the source of such operations is a single navigation step from some variable. Regarding oclIsKindOf

and our limited exists, these operations are translated using one unique negated literal corresponding to
the base predicate representing the class used by the operation. Thus, all negative literals are base.

Since positive and negative literals are base, no literal is derived and the claim is proven.

Proposition 2. Any denial constraint dc written over some set of base predicates P is translated as a set
of different RGDs r where all variables in the conclusion are universally quantified, i.e., r = ∀x. φ(x) →∨
ψi(xi), xi ⊆ x.

Proof. We first show that any dc over some set of base predicates P is translated as a set of different safe
EDCs, and from there, we show that each EDC gives rise to an RGD where all variables are universally
quantified.

Any denial constraint dc is safe, so, any term in the formula appears at least in one positive literal.
When translating dc to EDCs using the rules defined in 7, 8, any positive literal p is replaced by at least
one positive literal with the same terms (p or ιp). Given that the translation to EDCs does not create new
variables, the generated EDCs are also safe.

To obtain the RGDs from each of the previous EDCs, it is sufficient to move the negative literals from the
premise to the conclusion of each rule (no unfolding is required since all literals are base). In this situation,
we observe that all the terms of the conclusion of any generated RGD also appear in its premise (otherwise,
the EDC would be unsafe). Thus, the generated RGDs are necessarily dependencies whose variables are
universally quantified.

Theorem 1. Given a UML class diagram U , and its logic formalization into base predicates P, an OCLUNIV

constraint written over U can be translated into a set of RGDs R where all the variables of the RGD’s
conclusion are universally quantified, i.e., for any r ∈ R, r has the form ∀x. φ(x)→

∨
ψi(xi), xi ⊆ x.

Proof. Direct from Propositions 1 and 2.

Theorem 2. Given a UML class diagram U , any information base IB, and any set of structural events E for
U , computing the repairs for a set C of OCLUNIV invariants written over U by means of a chase terminates.

Proof. From Theorem 1 we get to the conclusion that the set of OCLUNIV constraints C is translated as a
set of RGDs over some finite set of base predicates P where all variables from the conclusion are universally
quantified.

Because the variables of all the RGDs are universal, the chase will not create new constants when creating
new ground structural events, but will instead reuse those that already appear in IB and E, name them
K. Since the set of predicates P encoding the class diagram is finite and the set of constants K used by
the chase is finite, the number of different insertion/deletion events that can be defined with P and K is
finite. Given that the chase stops when it does not instantiate a new different ground structural event and

18

OCL
OCLFO

OCL-LiteOCLUNIV

Figure 3: OCLFO, OCLUNIV and OCL-Lite relations

it cannot keep creating new ground different structural events forever because they are finite, the chase will
eventually terminate.

6.2. Comparison of OCLUNIV with OCL-Lite

OCL-Lite is a decidable subset of OCL [25], meaning that, given a set of OCL-Lite invariants for a
specific UML class diagram U , and an initial information base IB for U , we can correctly compute a new
information base IB’ ⊇ IB for U satisfying every OCL-Lite invariant, or answer that no consistent IB’ exists,
in finite time.

It is easy to show that computing repairs for OCL-Lite invariants can also be done in finite time.
Intuitively, given the initial information base IB, and some set of structural events E, we can compute in
finite time a new IB’ ⊇ apply(E, IB) satisfying all the invariants due to the OCL-Lite decidability. Then,
the repairs would be the structural events corresponding to the insertions of the instances IB’\apply(E, IB).
In this way we can compute the repair that uses only insertion structural events. To compute repairs
that include deletion structural events, we can compute such IB’ not for apply(E, IB), but for all IBs ⊆
apply(E, IB), name it IB’s. Thus, the repairs are defined by the insertion structural events corresponding
to IB’s \ apply(E, IB), and the deletion structural events corresponding to apply(E, IB) \ IB’s.

Since computing repairs for OCL-Lite invariants can be done in finite time, our method will find those
repairs also in finite time provided that the chase algorithm used is complete.

Given this situation, it is reasonable to ask ourselves whether OCL-Lite and OCLUNIV have any rela-
tionship in terms of expressiveness. In other words, can any constraint written in OCLUNIV be rewritten in
OCL-Lite or viceversa? Our conclusion is that OCL-Lite and OCLUNIV are different languages (i.e., none of
them subsumes the other), although they have a common intersection and both are subsets of the OCLFO

fragment of OCL. This relationship is illustrated in Figure 3.
It is easy to see that some OCL-Lite invariants cannot be encoded in OCLUNIV since OCL-Lite has

the exists operation unrestricted which would be translated into RGDs with existential variables in the
conclusion. Such constraints cannot be encoded in OCLUNIV. On the other hand, OCLUNIV has arithmetic
comparisons, which are not allowed in OCL-Lite. As an example of the common part, both languages can
use forAll in an unrestricted manner. To show that both are subsets of OCLFO it is sufficient to observe
that all the operations that appear in OCL-Lite and OCLUNIV are in the syntax of OCLFO [26].

7. Experiments

To prove the feasibility of our approach and to analyze its efficiency, we have developed a prototype tool
of our method and applied it to compute repairs in several situations related to a particular case study: the
well-known EU-Car Rental UML/OCL schema [35]. We have considered two different scenarios to perform
our experiments: the original version of the schema and also a simplified one, limited to constraints encodable
in OCLUNIV. We refer to the former as EU-Car Rental schema and the latter as EU-Car Rental OCLUNIV

schema.
The goal of our experiments is to analyze the efficiency and the scalability of our approach, according to

the following criteria:

19

- Size of the initial information base. We want to analyze to what extent our method scales up with the
size of the information base.

- Whether the applied structural events do or do not cause any violation. We want to measure the time
required for computing a repair when some constraint is violated, but also the time consumed when
there is no constraint violation.

- Whether the applied structural events are insertions or deletions.

- Whether the constraints considered are OCLUNIV or not.

We first describe the EU-Car Rental and EU-Car Rental OCLUNIV schemas and then discuss the experi-
ments performed with them.

7.1. EU-Car rental and EU-Car rental OCLUNIV schemas

The EU-Car Rental system is aimed at specifying a fictional car rental company with the purpose of
managing the rentals agreed, its customers, the rented cars and the different branches of the company,
among other concepts.

We have used the EU-Car Rental schema that appears in [35] as the first schema for our case study.
This schema has 21 classes/associations, 17 attributes and 74 explicit constraints (15 OCL constraints, 2
subtyping constraints and 57 min/max cardinalities).

The EU-Car Rental OCLUNIV schema is the same as before but removing those constraints that cannot
be encoded in OCLUNIV. In this particular example, we only had to remove minimum cardinality constraints
since they were the only ones leading to dependencies with existential variables. Then, we came up with a
total of 47 explicit constraints (15 OCL constraints, 2 subtyping constraints and 30 max. cardinalities).

7.2. Experiments

We implemented the translation algorithms in Java to obtain the repair-generating dependencies from the
two EU Car Rental schemas. Then we chased the dependencies with some randomly generated information
base and structural events. To perform the chase, we used a customized version of the SVTe tool [36].
Briefly, SVTe is a sound and complete reasoning engine developed in C# implementing the VIPs approach.
For our purposes, we modified SVTe to behave as a chase. As a special feature, the input of SVTe is a set of
EDCs rather than RGDs since SVTe internally interprets EDCs as RGDs. We performed all the experiments
with an Intel Core i7-4710HQ up to 3.5Ghz, 8GB of RAM, running Windows 8.

First of all, we used our Java implementation of Algorithm 1 to translate all constraints of the EU-Car
Rental and the EU-Car Rental OCLUNIV schemas into EDCs. From this translation we obtained 437 EDCs
and 393 EDCs in 2.58s and 2.71s respectively.

Then, we randomly built information bases of increasing size for which we applied two kinds of operations:
one to create a new rental and another to delete a rental. Each scenario has been executed twice, one
considering the EU Car Rental constraints and the other considering the EU Car Rental OCLUNIV constraints.

The results of these experiments are shown in Tables 1 and 2. The first column in each table indicates
the number of instances in the information base used. The following columns state the seconds taken to
execute the chase until finding the first repair after taking out M necessary structural events from the set
of events to be consistent in the EU-Car Rental Schema. That is, for the M=0 column, we used a set of
structural events which ensured that no constraint was violated. For the other columns, we randomly took
out M = {2, 4, 6, 8} events in the initial set, thus causing some violation which required computing a repair.
In this way, we ensured that all the violations were repairable, and controlled the size of the required repair.

To avoid the chase computing undesirable repairs (e.g. creating new branches of the company to pick-
/drop some new rental), we restricted the events that can be used as repairs as explained in Section 4.4.
In this way, when inserting new rentals, we limited the chase to repair constraints just by creating new
rental instances, instances for its attributes and associations, and possibly new customers. For deletions, we
allowed the chase to compute new rental deletions together with their corresponding associations/attributes.

Table 1 shows that our method scales well in the EU-Car Rental schema when inserting new rentals
when no constraint is violated (case M = 0). As expected, the execution time increases when some violation

20

occurs and repairs need to be computed (cases M > 0). In this situation, the execution time increases with
the size of the repair to be computed.

For deletions, our method takes about 2–3 min to compute repairs for an information base of 24,000
instances. Intuitively, these higher execution times are explained because, when some instance is deleted,
we need to check in the information base whether some minimum cardinality is violated. This encompasses
looking through all the instances of that association in the information base. This phenomenon turns out
to be the bottleneck of the chase rather than the size of the repair to be computed since, as Table 2 shows,
the execution times remain almost constant among the size of the repair needed.

On the other side, our method scales nicely when dealing with the version of the schema limited to
OCLUNIV for both cases, insertions and deletions. This can be explained because taking out structural
events from the set of structural events to be applied especially violates minimum cardinality constraints,
which are not encodable in OCLUNIV.

For this reason, we decided to perform a new experiment with the EU-Car Rental OCLUNIV schema
with a different strategy for generating the structural events. In particular, we generated totally random
structural events combining both insertions and deletions. We argue that this is the worst case since, when
the structural events of an operation are randomly generated, the number of missing events to make it
consistent (i.e., the number of structural events of the repair) may grow with each new structural event
considered. Note that this case is just theoretical since operations are usually cohesive, and thus, not
random.

In this experiment, most executions took less than one second, or just a few seconds (See Table 3).
Execution times over 10s occurred with the largest IB of 24,000 instances (i.e., last row) and also with the
largest N (i.e., last column values), especially when the size of the repair was composed of more than 20
structural events. Nevertheless, the maximum execution time was up to 1 min.

It is worth saying that we used a tool originally developed for satisfiability checking where only few
instances needed to be taken in account. Thus, better results might be expected if considering a dedicated
application with big data structure support.

Table 1: Execution time in seconds for new rental insertion

EU-Car Rental EU-Car Rental OCLUNIV

IB size M=0 M=2 M=4 M=6 M=8 M=0 M=2 M=4 M=6 M=8

1168 0.11 0.11 0.14 0.78 0.58 0.11 0.10 0.12 0.90 0.09

1804 0.12 0.14 0.11 0.15 0.68 0.12 0.11 0.10 0.13 0.09

3525 0.14 0.12 0.36 0.60 1.96 0.14 0.10 0.13 0.11 0.10

6016 0.16 9.75 10.7 1.35 2.50 0.15 0.12 0.10 0.11 0.10

12567 0.21 0.27 0.24 14.6 8.29 0.20 0.21 0.18 0.14 0.12

24834 0.38 31.0 24.3 147 19.0 0.42 0.28 0.22 0.17 0.16

Table 2: Execution time in seconds for deleting a rental

EU-Car Rental EU-Car Rental OCLUNIV

IB size M=0 M=2 M=4 M=6 M=8 M=0 M=2 M=4 M=6 M=8

1168 0.24 0.28 0.29 0.27 0.26 0.06 0.06 0.06 0.06 0.06

1804 0.61 0.56 0.51 0.57 0.56 0.06 0.06 0.06 0.06 0.06

3525 2.32 2.30 2.04 2.21 2.03 0.07 0.07 0.06 0.07 0.06

6016 7.10 5.98 7.10 7.49 5.73 0.15 0.07 0.07 0.07 0.07

12567 35.8 33.2 32.6 35.1 34.3 0.09 0.09 0.08 0.10 0.08

24834 161 141 187 146 147 0.12 0.10 0.12 0.11 0.11

8. Related work

To our knowledge, the unique work similar to ours is the OCLexec animation tool [19, 20]. Apart from
it, there are several research areas that are closely related to ours: incremental constraint checking, model

21

Table 3: EU-Car Rental OCLUNIV results for random insertions/deletions

N=2 N=4 N=6 N=8

IB size Rep. Time Rep. Time Rep. Time Rep. Time

1052 11 0.70 4 0.07 NR 0.09 NR 0.11

1877 5 0.14 2 0.15 NR 0.07 NR 0.10

3292 11 1.30 NR 0.09 NR 0.07 15 0.55

6539 3 0.12 NR 0.08 18 2.99 28 59.7

11739 3 0.61 6 6.51 NR 2.51 22 55.5

24272 3 14.1 0 0.04 11 19.2 NR 12.6

change propagation, and updates in Description Logics. We review them in this section.

8.1. OCLexec animation tool

Given an operation, the method proposed in [19, 20] translates its OCL postcondition and all the con-
straints defined in the conceptual schema into a SAT problem. Then, the method simulates the operation
execution by means of invoking a SAT reasoner. Hence, the SAT reasoner returns an IB that is guaranteed
to satisfy both the OCL operation postcondition together with all the constraints.

This approach benefits from the advantages of using well known SAT reasoners and it can be integrated
in Java programs. Nevertheless, this approach cannot repair a constraint with class instance deletion.
This implies that it cannot make use of instance generalization nor instance subclass modification (that is,
removing or changing the type of a given instance) during maintenance. It is worth noting that they do not
need to consider these cases since their work is focused on Java, where instances are not explicitly deleted
and can not change their type. On the contrary, our method is not bound to any concrete technology and,
thus, it considers also these kinds of repairs.

8.2. Incremental constraint checkers

By incremental constraint checkers we refer to those approaches that are able to detect in an incremental
way whether an integrity constraint of the schema has been violated because of a change in the IB. Incre-
mentality is achieved by evaluating only those constraints affected by the change and doing the evaluation
only for the relevant data according to the change.

In [2], the author translates OCL constraints (limited to first-order logic constructs but with transitive
closure) to graph patterns to benefit from incremental graph-pattern query algorithms. The work in [3]
specifies the constraints in Prolog, and checks them using the updates of the elements that occur in the
data. Proposals like [4, 5, 6] directly work with OCL interpreters from which they assess which OCL
constraints should be checked and for which values.

It is worth noting that all these approaches are aimed at checking whether a constraint is violated but not
to compute the repairs, as we do in this paper. Moreover, our method can also be used to check constraints
incrementally directly using EDCs rather than its translation to RGDs. Indeed, an EDC is, by itself, a
rule stating which kind of events causes a violation in a given information base IB. That is, it states the
incremental checks that must be performed to ensure that no constraint is being violated because of an
update. We have sketched how to use EDCs to perform incremental integrity checking in [37].

8.3. Model change propagation

There are several works concerned with propagating changes to models. That is, given some change
applied in an element of a model diagram, compute the additional changes that need to be propagated
to other model diagram elements to ensure their consistency. These approaches are working on the same
problem of finding repairs, but in the concrete case in which the schema is a metamodel, the information
base is the codification of one schema over that metamodel, and the constraints are the logic rules that
should be true to ensure that the schema conforms to its metamodel.

22

In [15], the authors use an automated planning tool to compute the changes that should be applied to
the information base to reach a consistent state. This approach is not incremental since it does not make
use of the set of applied structural events E, but takes as input the new information-base state after its
application (i.e., apply(E , IB)).

The approach in [16] extends its previous work in [5] to compute also the repairs in addition to incremen-
tally checking violations of OCL constraints. Nevertheless, the work presented by the authors is intended
to deal only with those repairs defined by a single structural event which, in turn, cannot contain any new
constant (i.e., all constants have to be taken from IB or E).

The work presented in [14, 13] is based on compiling OCL constraints (limited to first-order constructs)
into some production rules that generate repairs. The idea is that, when some violation occurs, the pro-
duction rules are triggered, possibly violating new constraints, which might in turn trigger new production
rules. Interestingly, this approach suggests assigning cost to the repairs (hence, preferred structural events
will have lower cost); in this manner, the different repairs can be sorted before being shown to the user.
However, the authors do not clarify how they deal with the case in which some production rule produces
some new structural event that violates some previously repaired constraint. This is an important problem
to tackle since it may cause an infinite loop.

Similarly, the work in [18] is intended to compute repairs for xlinkit’s first-order logic constraints. It
also works with production rules and, again, the method does not clarify how it deals with structural events
that, although repairing some constraint, violate previously repaired constraints.

8.4. Updates in Description Logics

Description Logics research has also paid attention to the problem of consistently updating a knowledge
base by means of updating its information base (i.e., the ABox in the knowledge base terminology). However,
this research makes use of the open world interpretation of an information base which makes their concepts
of IB consistency and repair to be different to ours.

Intuitively, an information base IB is consistent in the open world semantics if there exists some in-
formation base IBc ⊇ IB satisfying all the constraints defined, although IB might violate some of them.
Since there might be several IBc ⊇ IB satisfying the constraints, it is useful to define the concept of logical
consequences of IB, denoted by cl(IB), as the intersection of all these IBc.

Given an information base IB and some structural events E, the methods proposed in [10] and [11] are
based on, first, computing the logical consequences cl(IB), and then, the minimal deletion structural events
R s.t. apply(E ∪R, cl(IB)) is consistent in terms of the open world semantics. In other words, the repair R
is computed in such a manner to ensure the existence of some IBc ⊇ apply(E ∪R, cl(IB)) satisfying all the
constraints.

As a result, the set of additional structural events computed by these methods does not bring the IB to a
new state satisfying all the constraints (closed world notion of consistency), but to a new IB that will satisfy
all the constraints if some other unknown facts are properly inserted (open world notion of consistency).

Following our example about medicines, inserting in the IB the fact that some person john suffers diabetes
without inserting any new medicine administration to john would bring a new consistent IB according to
the open world semantics, and thus, no repair would be provided by the previous methods. In contrast,
in the closed world semantics, the AllSufferingDiseasesAreTreated constraint would be violated, and thus,
our method would compute a repair stating that we should add in the IB the fact that john is taking some
medicine x, where x treats diabetes.

9. Conclusions

Computing the repairs that bring the data to a consistent state when a constraint has been violated is
an important challenge in software development. On the one hand, it represents a step forward towards
automatically enforcing constraints directly from the schema [21]. On the other hand, they are strictly
necessary for maintaining the consistency of information systems. Our approach provides an important
contribution in this direction, particularly for UML schemas with OCL constraints.

23

The proposed approach is able to compute repairs, that is, additional modifications of the data that
avoid violating any integrity constraints for a certain update. We deal with constraints defined in OCLFO,
which is a rich fragment of OCL whose expressiveness is equivalent to relational algebra. We have also
identified a particular fragment of OCLFO, called OCLUNIV, for which we have proved termination of the
repair computation process. Some techniques to reduce the number of obtained repairs have also been
discussed.

As an additional application of our approach, we have shown how it can also be used to fix up non-
executable operations in UML/OCL conceptual schemas.

We have conducted some experiments to analyze the scalability of our approach in practice, both for
repairing constraints defined in OCLUNIV and OCLFO. We have shown that our approach performs efficiently
with OCLUNIV constraints and it also provides good results when dealing with OCLFO constraints.

This work can be extended in several directions. First, by providing additional insight into the problem
of reducing the number of repairs obtained. Second, by still going beyond the expressive power provided by
OCLFO. Third, by providing automatic translations to our logic formalization from other languages beyond
UML/OCL, such as SQL or ORM for instance.

Acknowledgments

This work has been partly supported by the Ministerio de Economı́a y Competitividad under the projects
TIN2014-52938-C2-2-R, and TIN2011-24747, and by the Secretaria d’Universitats i Recerca de la Generalitat
de Catalunya under 2014 SGR 1534 and an FI grant.

References

[1] J. Van Griethuysen, Concepts and terminology for the conceptual schema and the information base, ISO/TC97/SC5/WG3,
ISO/TC97 Computers and Information Processing, 1982.

[2] G. Bergmann, Translating OCL to graph patterns, in: Model-Driven Engineering Languages and Systems, Vol. 8767 of
LNCS, Springer, 2014, pp. 670–686.

[3] J. R. Falleri, X. Blanc, R. Bendraou, M. A. Almeida Da Silva, C. Teyton, Incremental inconsistency detection with low
memory overhead, Software: Practice and Experience 44 (5) (2014) 621–641.

[4] A. Uhl, T. Goldschmidt, M. Holzleitner, Using an OCL impact analysis algorithm for view-based textual modelling,
ECEASST 44 (2011) 1–20.

[5] I. Groher, A. Reder, A. Egyed, Incremental consistency checking of dynamic constraints, in: Fundamental Approaches to
Software Engineering, Springer, 2010, pp. 203–217.

[6] J. Cabot, E. Teniente, Incremental integrity checking of UML/OCL conceptual schemas, Journal of Systems and Software
82 (9) (2009) 1459–1478.

[7] J. Rumbaugh, I. Jacobson, G. Booch, Unified Modeling Language Reference Manual, 2nd Edition, Pearson Education,
2005.

[8] Object Management Group (OMG), Unified Modeling Language (UML) Superstructure Specification, version 2.4.1, http:
//www.omg.org/spec/UML/ (2011).

[9] Object Management Group (OMG), Object Constraint Language (UML), version 2.4, http://www.omg.org/spec/OCL/

(2014).
[10] M. Lenzerini, D. F. Savo, Updating inconsistent description logic knowledge bases., Vol. 242 of Frontiers in Artificial

Intelligence and Applications, 2012, pp. 516–521.
[11] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Updating ABoxes in DL-Lite, in: Alberto Mendelzon Workshop

on Foundations of Data Management (AMW), Argentina, 2010.
[12] R. Reiter, On closed world data bases, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Springer US, 1978, pp.

55–76.
[13] H. K. Dam, M. Winikoff, Supporting change propagation in UML models, in: Software Maintenance (ICSM), 2010 IEEE

International Conference on, 2010, pp. 1–10.
[14] K. Dam, M. Winikoff, Generation of repair plans for change propagation, in: M. Luck, L. Padgham (Eds.), Agent-Oriented

Software Engineering VIII, Vol. 4951 of LNCS, Springer, 2008, pp. 132–146.
[15] J. Pinna Puissant, R. Van Der Straeten, T. Mens, Badger: A regression planner to resolve design model inconsistencies,

in: Modelling Foundations and Applications, Vol. 7349 of LNCS, Springer, 2012, pp. 146–161.
[16] A. Egyed, E. Letier, A. Finkelstein, Generating and evaluating choices for fixing inconsistencies in UML design models,

in: Automated Software Engineering, 2008. ASE 2008, 2008, pp. 99–108.
[17] C. Nentwich, W. Emmerich, A. Finkelsteiin, E. Ellmer, Flexible consistency checking, ACM Trans. Softw. Eng. Methodol.

12 (1) (2003) 28–63.

24

http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/OCL/

[18] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency management with repair actions, in: Software Engineering, 2003.
Proceedings. 25th International Conference on, 2003, pp. 455–464.

[19] M. P. Krieger, A. Knapp, B. Wolff, Automatic and efficient simulation of operation contracts, in: Proceedings of the 9th
International Conference on Generative Programming and Component Engineering, GPCE ’10, ACM, New York, NY,
USA, 2010, pp. 53–62.

[20] M. P. Krieger, A. Knapp, Executing underspecified OCL operation contracts with a SAT solver, Electronic Communications
of the EASST 15 (2008) 1–17.

[21] A. Olivé, Conceptual schema-centric development: A grand challenge for information systems research, in: Advanced
Information Systems Engineering, Vol. 3520 of LNCS, Springer, 2005, pp. 1–15.

[22] D. W. Embley, S. W. Liddle, O. Pastor, Conceptual-model programming: A manifesto, in: D. W. Embley, B. Thalheim
(Eds.), Handbook of Conceptual Modeling, Springer, 2011, pp. 3–16.

[23] X. Oriol, E. Teniente, A. Tort, Fixing up non-executable operations in UML/OCL conceptual schemas, in: Conceptual
Modeling, Vol. 8824 of LNCS, Springer, 2014, pp. 232–245.

[24] A. Queralt, E. Teniente, Specifying the semantics of operation contracts in conceptual modeling, in: Journal on Data
Semantics VII, Vol. 4244 of LNCS, Springer, 2006, pp. 33–56.

[25] A. Queralt, A. Artale, D. Calvanese, E. Teniente, OCL-Lite: Finite reasoning on UML/OCL conceptual schemas, Data &
Knowledge Engineering 73 (0) (2012) 1 – 22.

[26] E. Franconi, A. Mosca, X. Oriol, G. Rull, E. Teniente, Logic foundations of the OCL modelling language, in: Logics in
Artificial Intelligence, Vol. 8761 of LNCS, Springer, 2014, pp. 657–664.

[27] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition, Springer Verlag, 1987.
[28] A. Olivé, Conceptual Modeling of Information Systems, Springer, Berlin, 2007.
[29] A. Queralt, E. Teniente, Verification and validation of UML conceptual schemas with OCL constraints, ACM TOSEM

21 (2) (2012) 13.
[30] A. Queralt, E. Teniente, Reasoning on UML conceptual schemas with operations, in: 21st International Conference on

Advanced Information Systems Engineering (CAiSE’09), Vol. 5565, Springer, 2009, pp. 47–62.
[31] A. Olivé, Integrity constraints checking in deductive databases, in: Proceedings of the 17th Int. Conference on Very Large

Data Bases (VLDB), 1991, pp. 513–523.
[32] G. Mecca, G. Rull, D. Santoro, E. Teniente, Ontology-based mappings, Data & Knowledge Engineering (to appear).
[33] A. Deutsch, A. Nash, J. Remmel, The chase revisited, in: Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’08, ACM, New York, USA, 2008, pp. 149–158.
[34] C. Farré, E. Teniente, T. Urṕı, Checking query containment with the CQC method, Data & Knowledge Engineering 53 (2)

(2005) 163–223.
[35] D. Costal, C. Gómez, A. Queralt, R. Raventós, E. Teniente, Improving the definition of general constraints in UML,

Software & Systems Modeling 7 (4) (2008) 469–486.
[36] C. Farré, G. Rull, E. Teniente, T. Urṕı, SVTe: a tool to validate database schemas giving explanations, in: 1st Int.

Workshop on Testing database systems, DBTest ’08, ACM, New York, NY, USA, 2008, pp. 9:1–9:6.
[37] X. Oriol, E. Teniente, Incremental checking of OCL constraints through SQL queries, in: Proceedings of the 14th Inter-

national Workshop on OCL and Textual Modelling, 2014, pp. 23–32.

25

	Introduction
	Motivating example
	Contribution

	Basic concepts and notation
	Our approach in a nutshell
	Specifying repairs in RGDs
	Applying our approach to fix up non-executable operations

	Obtaining RGDs and eRGDs
	Encoding the OCL constraints as logic denials
	Obtaining RGDs from OCLUNIV constraints
	Obtaining EDCs for OCLUNIV constraints
	Drawing RGDs for OCLUNIV constraints

	Obtaining eRGDs from OCLFO constraints
	Obtaining EDCs for OCLFO constraints
	Drawing eRGDs for OCLFO constraints

	Removing/tuning eRGDs to limit the number of obtained repairs

	Computing repairs
	Chasing RGDs from OCLUNIV
	Chasing eRGDs from OCLFO

	Identifying nice properties of OCLUNIV Constraints
	Termination for computing repairs of OCLUNIV constraints
	Comparison of OCLUNIV with OCL-Lite

	Experiments
	EU-Car rental and EU-Car rental OCLUNIV schemas
	Experiments

	Related work
	OCLexec animation tool
	Incremental constraint checkers
	Model change propagation
	Updates in Description Logics

	Conclusions

