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Summary. In this work, the energetic regularization technique based on the Crack Band 
approach is studied. The main objective is to identify the sources of errors related to the 
application of such technique under 2D and 3D computational analysis. Mathematical 
developments and numerical simulations are proposed in order to assess the limits of 
application of this technique. 

1 INTRODUCTION 
 Numerical modeling is an essential tool in the field of analysis and study of the civil 

engineering structures. Numerical simulation of the nonlinear behavior of concrete suffers from 
a serious problem related to the localization mainly due to the softening parameter, which leads 
to a non-objective analysis. 

The property of softening leads to a loss of ellipticity of the equilibrium equations under 
static and quasi-static analysis and a loss of hyperbolicity under dynamic analysis. In a 
conventional finite element modeling, within each element, the strain and the displacement 
fields are continuous and the strain discontinuities are "repulsed" to the boundaries of the finite 
elements. This leads to a strain localization in a band of a thickness controlled by the size of the 
finite element. If the FE mesh is very fine, the size of this zone decreases. Since the fracture 
energy is related to the volume of the dissipation area, if the size of the finite element 
approaches zero, a structure could collapse without dissipating energy.  

An efficient technique widely used in practical engineering uses the fracture energy as a 
regularization parameter. Based on the "Crack Band approach" [1], where it is assumed that a 
crack (mode I) is spread over a bandwidth “ℎ”, the energy released to open a crack is directly 
related to the area under the stress-strain curve. 

This energetic approach does not permit to solve the mathematical problem (loss of 
ellipticity or loss of hyperbolicity). The fracture energy is injected into a finite element 
calculation to preserve the energy dissipation and make it FE size-independent which could 
eliminate the pathological FE-mesh sensitivity.  
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From a practical point of view, the value of fG  controls the dissipation process during the 
degradation of the material through a parameter of the constitutive law used (damage  or plastic-
damage law). This energetic approach could be used only if the behavior-law formulation 
permits to establish a relationship between the parameter controlling softening and the 
parameter fG . This relationship is generally obtained for a one-dimensional case, ie, for an 
element subjected to a uniaxial stress state. However, it has been shown [2][3] that, in some 
cases, even if the cracking state is under mode I (crack band approach basis), the stress state is 
not always uni-axial. 

In [2], Jirasek and Bauer examined the numerical aspects related to the use of this energetic 
method. The influence of the type of the finite elements used, the integration scheme ... were 
studied to detect sources of errors related to the numerical aspects. In the present work, we 
propose a complementary study. The mathematical aspects of this approach are discussed 
including those related to its use in the case of a state of non-uniaxial stress (2D and 3D).. 
Mathematical developments are performed to understand the evolution of the fracture energy 
based on the relationships between the components of the stress tensor in 2D / 3D. These 
developments are validated by numerical examples.  

2 THE ENERGETIC REGULARIZATION BASIS 
Within a non-linear behavior formulation, the area under the stress-strain curve represents 

the dissipated energy density per unit volume 

∫
∞

=
0 ijij dW εσ (1)

and the product of this quantity by the size of the localization area h  gives the fracture energy 
fG  needed to create a cracking unit surface (energy dissipated per unit area) 

∫
∞

==
0

hWduGf σ (2)

To represent the cracking process under mode I, Bazant and Oh [1] consider that the crack 
is spread over a band of width h , which allows calculating the displacement of the jump as the 
product of the fracture strain by the band width h

∫ ∫
∞ ∞

==
0 0

f
f dhduG εσσ (3)

Using the energetic approach, the cracking process in concrete is thus governed by the 
fracture energy. The value of the fracture energy controls the dissipation process during the 
degradation of the material via a parameter of the nonlinear behavior law that controls 
softening. In the following analysis, a simple isotropic damage model is used [4][5]. The stress-
strain relationships is written as 

klijklijij Cdd εσσ 0)1()1( −=−= (4)

The damage evolution is described by an exponential evolution function of the equivalent 
strain. For the equivalent strain, we use the Mazars’s definition [6]. 
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For a one-dimensional case with a mode I of crack propagation, we obtain [5] 
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With h  the size of the finite element and B  the parameter controlling the softening. 
Under a uniaxial stress stat, using the formulation given in equation (6) ensures that the 

model dissipates the same fracture energy injected.  

2.1 For two-dimensional analysis 
Using the same behavior law, Matallah et al [3] shows, for a beam under three point bending, 

that even if the cracking process is under mode I, the presence of a biaxial stress state modifies 
the dissipation inside the element. 

If we consider the same damage behavior law presented above and if γ  is the stress ratio
12 /σσ , the following formulas are obtained for the fG evolution (0.2 is the value of the Poisson's 

ratio): 
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These formulas are only valid for positive stress ratios. In the case of the presence of a 
negative stress (compression), the formulas are more complex. 

Numerically speaking, let us consider an elementary volume subjected to a biaxial stress 
state with a ratio 1=γ . The simulations are performed with the same parameter set used for the 
1D simulation. Two types of analysis are performed: the first one with a fG  issue form a 1D 
formulation (equation 6) and the second one by considering the 2D formula (equation 8). Table 
1 shows the real dissipation in the element in the two case study. The error induced by 
considering a 1D formulation for the fracture energy is about 25%. 

Table 1: Real energy dissipation in the case of 2D analysis ( injected = 150 N/m) 

Dimensions L (m) Simulation carried out with the 
formula 2D (equation 8) 

Simulation carried out with the 
formula 1D (equation 6) 

0.001 150.01 187.51 
0.01 150.01 187.51 
0.1 149.99 187.48 
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3 3D THEORETICAL ASPECTS OF THE CRACK BAND APPROACH 
In this present paper, we propose an analytical expression for the evolution of the fracture 

energy in the case of a three-dimensional analysis. For an elementary volume submitted to a 
triaxial tension state, the fracture energy is evaluated by: 
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with 3,2,1,, =III εσ  the principal stresses and the principal strains in the direction I. 
In the present study, we adopt 3

elemVh =  with elemV  the volume of the finite element. Note 1γ
, 2γ  the two stress ratios 12 /σσ  and 13 /σσ .
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According to the strains ratios (Equation 11 et 12) we distinguish four domains. Table 2 
illustrates the different zones and the corresponding values of fG .

Table 2: Formulas of fG in the case of 3D analysis. 
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With the following formulation of the parameters  1η , 2η , 3η and 4η : 
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The results of simulations are presented in Table 3. The simulation concerns an element 
subjected to a three-dimensional stress state (triaxial tension) with 11 =γ  and 12 =γ  which 
corresponds to a formula fG  of zone 2. 

Table 3: Real dissipation in the case of 3D analysis (injected = 150 N/m) 

Dimensions L (m) Simulation carried out with the 
formula 3D (Zone 2) 

Simulation carried out with the 
formula 1D (equation 6) 

0.001 150.00 250 
0.01 149.99 250 
0.1 149.82 249.85 

Table 3 shows the real dissipation within the elementary volume in case of a 3D analysis. 
By using a formulation of fG  issued from a one-dimensional analysis the committed error is 
considerable. The fracture energy really dissipated in the finite element is very different from 
that injected in the computation. Using a correct 3D formulation allows a conservation of the 
dissipated energy. 

4 CONCLUSIONS 

The energetic regularization technique is a practical method which allows to eliminate 
(completely or partially) the pathological FE-mesh sensitivity. However, it should be used with 
precaution. In a structural analysis that generates a state of cracking under mode I, the finite 
elements are subjected to different stress states. Mathematically speaking, The parameter of the 
constitutive law used to adjust the softening in order to control the dissipation is calculated by 
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assuming a uniaxial stress state. This aspect could induce a large error (overestimation or 
underestimation) regarding the real dissipated energy.  
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