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Abstract. Valid states of data are those satisfying a set of constraints.
Therefore, efficiently checking whether some constraint has been violated
after a data update is an important problem in data management. We
tackle this problem by incrementally checking OCL constraint violations
by means of SQL queries. Given an OCL constraint, we obtain a set of
SQL queries that returns the data that violates the constraint. In this
way, we can check the validity of the data by checking the emptiness
of these queries. The queries that we obtain are incremental since they
are only executed when some relevant data update may violate the con-
straint, and they only examine the data related to the update.
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1 Introduction

A conceptual schema is the formal specification of an information system in
terms of the structure of the data to be stored together with the operations
applicable to modify such data. The specification of the data structure includes
several integrity constraints, i.e., some conditions that any state of the data
should satisfy in order to be valid.

One of the most used languages for specifying conceptual schemas is UML,
a standard language maintained by the OMG [1]. In UML, the structure of
the data is mainly defined by a taxonomy of classes/associations (i.e., a class
diagram), complemented with several textual integrity constraints written in
OCL [2]. This leads to the problem of efficiently checking whether the current
data of a running information system truly satisfies the OCL constraints defined
in its UML schema. This is an important problem in data management since any
violation of an integrity constraint would indicate an invalid state of the data.

Consider, for instance, the UML schema in Figure 1. This schema specifies
an information system storing data about movies and the people participating
in them as cast members, where each cast member exercises a role (e.g. director,
actor, actress, etc.).

We are clearly interested to ensure that data over such schema satisfies a
set of integrity constraints. For instance, there should not be any cast member
playing the role of actor and actress at the same time; the sum of any movie
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Plays
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Fig. 1. Simplified UML class diagram for the IMDb Information System

budget should be higher than the salaries of its cast members; and there should
be at least one cast member playing the role of director for each movie. These
constraints are defined in OCL in Figure 2. Note that aggregate operations such
as sum or count are used in the constraint definitions.

context CastMember inv NotActorAndActress:
self.role.name->excludes(’actor’ ) or self.role.name->excludes(’actress’ )
context Movie inv BudgetIsHigher:
self.budget >= self.castMember.salary->sum()
context Movie inv HasSomeDirector:
self.castMember.role.name->count(’director’) > 0

Fig. 2. OCL Constraints for the simplified UML class diagram of IMDb

Several techniques have been proposed so far to efficiently checking the vio-
lation of OCL constraints. Some of them handle the problem by translating the
constraints into SQL [3,4]. For example, the work in [3] builds some SQL views
that return the data violating the constraints. Thus, a constraint is violated if its
corresponding view is not empty. Other techniques follow a different approach
aimed at incrementally checking the OCL constraints [5,6,7]. That is, assuming
that no OCL constraint is violated for the current data, they determine which
OCL constraints should be checked, and for which data, after some update is
applied to the information system.

The method we present in this paper follows a combination of these ap-
proaches and so we take advantage of both of them. On the one hand, the idea is
to translate OCL constraints into SQL queries, thus, benefiting from DBMS op-
timizations such as query planners, different join algorithms, indexes, caches, etc.
but stating the query in terms of current data and data being inserted/deleted.
In this way, the query we define is only executed when a data update matches
it, hence, when the update potentially violates its corresponding constraint. On
the other hand, the query only searches for violations in the current data that
joins with the update. In this way, for example, we do not need to recheck all
the constraints for all the movies when some update is applied in only a few of
them.

As far as we know, there is only another proposal following a similar approach
to ours [8]. However, the core of this work is based on the RETE algorithm,
which encompasses materializing any relational algebra operation performed by
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the queries. In this sense, the RETE algorithm has been criticized because of
its combinatorially explosive materialized data growth and the execution time
it might take to maintain such materialization [9]. On the contrary, our pro-
posal only materializes the aggregated values accessed by the constraints (e.g.
sum, size), avoiding in this way the inefficiencies caused by such intermediate
materializations.

This paper extends our previous work in [10], where we outlined how to
perform incremental checking of OCL constraints for a specific fragment of OCL,
in the following directions:

– Dealing with Aggregation Operations. We extend our approach to be able to
deal with distributive aggregation functions of OCL (i.e., sum, count, size).

– Expressiveness Analysis. We analyze the expressiveness of the OCL our
method can deal with and we show that, because of dealing with aggre-
gation, we can handle constraints beyond the OCLFO fragment of OCL [11].

– Experimentation. We have made several experiments using real data ex-
tracted from the public interface of IMDb1 information system. With these
experiments we show the scalability of our approach in realistic conditions.

2 Basic Concepts and Notation

Terms, atoms and literals A term t is either a variable or a constant. An
atom is formed by a n-ary predicate p together with n terms, i,e., p(t1, ..., tn).
We may write p(t) for short. If all the terms t of an atom are constants, we call
the atom to be ground. A literal l is either an atom p(t), a negated atom ¬p(t),
or a built-in literal ti ω tj , where ω is an arithmetic comparison (i,e., <,≤,=,6=).

Derived/base/aggregate predicates A predicate p is said to be derived if the
boolean evaluation of an atom p(t) depends on some derivation rules, otherwise,
it is said to be base. A derivation rule has the form: ∀t. p(tp) ← φ(t) where
tp ⊆ t. In the formula, p(tp) is an atom called the head of the rule and φ(t) is
a conjunction of literals called the body. We restrict all derivation rules to be
safe (i.e., any variable appearing in the head or in a negated or built-in literal of
the body also appears in a positive literal of the body) and non-recursive. Given
several derivation rules with predicate p in its head, p(t) is evaluated to true if
and only if one of the bodies of such derivation rules is evaluated to true.

An aggregate predicate pa (aka aggregate query/rule [12,13,14]) is a predi-
cate defined over some predicate p that aggregates one of the terms of p with
some aggregation function f . An aggregate predicate is defined by means of a
rule: ∀t. pa(tp, f(x)) ← p(t) where tp ⊆ t and x ∈ t. An atom pa(tp, xf ) eval-
uates to true if and only if xf equals to aggregating all values x in p(t) by
means of f . E.g. given the aggregate predicate sumSalaries(e, x) defined by
sumSalaries(e, sum(s)) ← salary(e, s), sumSalaries(e, x) evaluates to true if
and only if x is equal to the sum of all salaries s such that salary(e, s).

1 www.imdb.com
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We also extend the notion of base/derived/aggregate predicate to atoms and
literals. I.e., when the predicate of some atom/literal is base/derived/aggregate,
we say that such atom/literal is base/derived/aggregate respectively.

Logic formalization of the UML Schema. As proposed in [15] we formalize
each class C in the class diagram with attributes {A1, . . . , An} by means of a base
atom c(Oid) together with n atoms of the form cAi(Oid,Ai), each association
R between classes {C1, . . . , Ck} by means of a base atom r(C1, . . . , Ck), and,
similarly, each association class R between classes {C1, . . . , Ck} with attributes
{A1, . . . , An} by means of a base atom r(Oid,C1, . . . , Ck) together with n atoms
rAi(Oid,Ai).

Structural events. A structural event is an elementary change in the pop-
ulation of a class or association of the schema [16]. That is, a change in the
contents of the data. We consider six kinds of structural events: class instance
insertion/deletion, association instance insertion/deletion and attribute instance
insertion/deletion. Attribute updates are simulated by means of a simultaneous
deletion and insertion of the old and new value respectively.

We denote insertions by ι and deletions by δ. Given a base atom p(x), inser-
tion structural events are formally defined by ∀x. ιp(x)↔ pn(x) ∧ ¬p(x), while
deletion structural events by ∀x. δp(x) ↔ p(x) ∧ ¬pn(x), where pn stands for
predicate p evaluated in the new data state, i.e., the one obtained after applying
the change.

Aggregate events. An aggregate event is a change in the value of some aggre-
gate predicate. Aggregate events are determined by the structural events applied
in a data state. Similarly as before, we denote increases of aggregate events by
means of ι and decreases by means of δ.

Dependencies. A tuple-generating dependency (TGD) is a formula of the form
∀x, z. ϕ(x, z)→ ∃ y. ψ(x, y). A denial constraint is a special type of TGD of the
form ∀x. ϕ(x) → ⊥, in which the conclusion only contains the ⊥ atom, which
cannot be made true, and the premise may contain positive, negated and built-
in literals. An event dependency constraint is a special type of denial constraint
containing at least one positive event atom.

3 Our Approach

We follow a two-steps approach to translate, in compilation time, a set of OCL
constraints to SQL queries. In the first step, each OCL constraint is translated
into a set of event dependency constraints (EDCs). An EDC is a logic rule iden-
tifying a particular situation where some structural events applied to a certain
state of the data will cause the violation of the OCL constraint.

In the second step, each EDC is translated into a different SQL query. We
assume a mapping from the EDC predicates to SQL tables for this purpose.
Roughly speaking, base predicates representing UML classes/associations are
mapped to SQL tables containing their instances, structural event predicates
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are mapped to auxiliary SQL tables containing the structural events being ap-
plied, and aggregate predicates are mapped to auxiliary SQL tables containing a
materialization of the relevant aggregated values. Given this mapping, the trans-
lation from an EDC to SQL results into a query joining the three: current data,
current aggregated values, and structural events.

At runtime, our method works as follows: (1) an actor places the structural
events he/she wants to apply in the auxiliary structural event tables; (2) our
method executes the queries for checking the violation of OCL constraints; (3) if
the queries return the empty set, there is no violation and the method commits
the structural events in the tables representing the data, and it incrementally
updates the materialized aggregated values. On the contrary, if the query returns
some data, there is some constraint violation and thus, the update is rejected.

The key for incrementality is the join in the SQL queries between structural
events, current data and current aggregated values. First of all, any SQL query
joining a structural event which is not applied (i.e., whose SQL table is empty)
is immediately discarded. Therefore, we only check those constraints that can
be violated according to the ongoing structural events. Second, the data consid-
ered by an SQL query during its execution is necessarily the data joining the
structural events applied, thus, avoiding to look through all the database. Third,
the materialized aggregated values avoid the need to recompute from scratch the
necessary aggregations required to check a constraint, which might be expensive.
Finally, our method guarantees that the materialized aggregated values can be
updated incrementally, thus, with negligible time penalty.

In our previous work [10] we tackled efficient integrity checking for OCLUNIV

constraints 2, a specific fragment of OCL. We extend here our approach to handle
OCL distributive aggregates, which extends the expressiveness of the OCL we
can deal with beyond OCLFO [11]. For the sake of self-containment of the paper,
we start by reviewing the translation from OCLUNIV constraints to SQL queries.
Then, we extend our approach dealing with aggregates and we show how this
extension allows us to deal with any OCLFO constraint and beyond.

3.1 OCLUNIV Translation into SQL

First, we encode each OCLUNIV constraint as a logic denial according to [15].
Logic denials are written over the logic formalization of the UML schema which
has been defined in Section 2. The logic formalization corresponding to our UML
schema in Figure 1 is:

movie(m),mTitle(m,t),mBudget(m,b), person(p), pName(p,n),

castMember(c,m,p), cmSalary(c,s), plays(c,r), role(r), rName(r,n)

We assume, without loss of generality, that instances of Role and Person can
be identified by its name. Thus, we will use the name attribute as their OIDs.
In this way, we can omit the rName and pName predicates.

2 The name is due to the observation that any OCL expression in OCLUNIV can be
written as a logic formula where all variables are universally quantified.
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Given the previous logic formalization, the translation of the OCLUNIV con-
straint NotActorAndActress is encoded into the following denial constraint:

plays(c, Actor) ∧ plays(c, Actress)→ ⊥

In the rest of this section, we explain how to obtain the EDCs from denial
constraints and how to transform them into SQL queries.

Obtaining EDCs for OCLUNIV Constraints An event dependency constraint
(EDC) identifies a particular situation in which the original OCLUNIV constraint
would be violated in a data state Dn resulting from applying some set of struc-
tural events to some initial data state D. Therefore, each denial constraint ob-
tained in the previous step will be translated into several EDCs, each one corre-
sponding to a different way in which the constraint may be violated.

The main idea for obtaining the EDCs is to replace each literal in the denial
constraint by the expression that evaluates it in the new state Dn. Positive and
negative literals in the denial are handled in a different way according to the
following formulas:

∀x. pn(x)↔ (ιp(x)) ∨ (¬δp(x) ∧ p(x)) (1)

∀x. ¬pn(x)↔ (δp(x)) ∨ (¬ιp(x) ∧ ¬p(x)) (2)

Rule 1 states that an atom p(x) will be true in the new state Dn if its insertion
structural event has been applied or if it was already true in the initial state D
and its deletion structural event has not been applied. In an analogous way, rule
2 states that p(x) will not hold in Dn if it has been deleted or if it was already
false and it has not been inserted.

By applying the substitutions above, we get a set of EDCs that states all
possible ways to violate a constraint by means of the possible structural events
of the schema. From the previous denial constraint we get:

plays(c, Actor) ∧ ¬δplays(c, Actor) ∧ ιplays(c, Actress)→ ⊥ (3)

ιplays(c, Actor) ∧ plays(c, Actress) ∧ ¬δplays(c, Actress)→ ⊥ (4)

ιplays(c, Actor) ∧ ιplays(c, Actress)→ ⊥ (5)

EDCs are grounded on the idea of event rules which were defined in [17] to
perform integrity checking in deductive databases. In general, we will get 2k − 1
EDCs for each denial constraint dc, where k is the number of literals in dc.

Translating EDCs into SQL Now, we translate EDCs into SQL. For this
purpose, we require a mapping from logic predicates to SQL tables. Each literal
from the EDC is translated into a table reference placed in the FROM clause of the
query. We define an SQL JOIN for a table reference when the literal is positive
and it has some variable in common with another previously translated literal.
In contrast, we define an SQL antijoin (by means of a LEFT JOIN together a
IS NULL condition) for negative literals. Built-in literals and constant bindings
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are translated in the WHERE clause. Following our previous example, we would
translate EDC 3 as:

SELECT P1.cast

FROM Plays AS P1

LEFT JOIN del Plays AS dP1 ON (P1.cast = dP1.cast and P1.role = dP1.role)

JOIN ins Plays AS iP2 ON (iP2.cast = P1.cast)

WHERE P1.role = ’actor’ and dP1.cast IS NULL and iP2.role = ’actress’

Intuitively, the previous SQL query looks for those cast members in the table
Plays such that: (1) their role is actor, (2) their role actor is not being deleted
by the structural events, (3) some structural events are inserting the new role
actress to them. When executing this query, the query planner specifies its start
from the ins Plays table, rather than Plays, since the cardinality of ins Plays is
expected to be much lower. In this way, the DBMS does not look through all
current data (i.e., all data in Plays), but only to the data that joins the update.
Moreover, if ins Plays has no tuples, and thus the original OCL constraint cannot
be violated, the query returns the empty set without accessing data because any
join with no tuples trivially returns the empty set. In this way, our queries behave
incrementally since they only look to the data related to the update, and only
when the update may cause a violation.

3.2 OCL Aggregation Translation into SQL

We extend now the previous approach to deal with aggregates. There exist several
kinds of aggregates according to the complexity to incrementally update them
when some structural event is applied [18]. In this work, we focus on distributive
aggregation. Intuitively, distributive aggregates are those that can be updated
by taking into account the current aggregated value of the data, the aggregated
value of the data inserted, and the aggregated value of the data deleted. The
distributive aggregates of OCL are: sum, size and count.

As we did before, we first translate any OCL constraint into a logic denial
constraint; then, we translate this denial constraint into several EDCs and, fi-
nally, we translate each EDCs into an SQL query.

OCL Aggregation Translation into Logic Denials Any OCL aggregation
expression is defined by means of a source (i.e., a navigation) and an aggregation
operation (e.g. sum), where the resulting aggregate value is normally used in
some arithmetic comparison. We translate the source of the expression following
the same lines as [15], and from there, we use an aggregate predicate to aggregate
the required value. Once we obtain the aggregated required value, we can define
the built-in literal encoding the arithmetic comparison.

For instance, given the BudgetIsHigher constraint, the source of the OCL
aggregation expression is self.castMember.salary. This expression is translated
as the following conjunction of literals:



8 X. Oriol, E. Teniente

castMember(c,m, p) ∧ cmSalary(c, s)

From there, we can aggregate the salaries (i.e., the s term) by means of
defining an aggregate predicate:

sumSalaries(m, sum(s))← castMember(c,m, p) ∧ cmSalary(c, s)

In this way, the atom sumSalaries(m, x), indicates that the sum of salaries
of the movie m is x. Thus, we can use x to check whether the sum of the movie
salaries is greater than its budget:

mBudget(m, b) ∧ sumSalaries(m,x) ∧ b < x→ ⊥

Obtaining EDCs for Denial Constraints with Aggregates The most im-
portant issue for obtaining the EDCs in the presence of aggregate predicates
relies on how to compute the aggregate value in the new data state Dn. We
make use of two aggregate event predicates for this purpose: one for computing
the aggregated value xι for the data being inserted, and another one for comput-
ing the aggregated value xδ for the data being deleted. Since we focus on OCL
distributive aggregation functions, we can guarantee that the aggregated value
in the new state Dn equals to the current aggregated value x plus xι minus xδ.

For instance, the previous denial constraint would be translated as:

ιmBudget(m, b) ∧ sumSal(b, x) ∧ ιsumSal(m,xι) ∧ δsumSal(m,xδ)∧
b < x+ xι − xδ → ⊥ (6)

mBudget(m, b) ∧ ¬δmBudget(m, b) ∧ sumSal(m,x) ∧ ιsumSal(m,xι) ∧ δsumSal(m,xδ)∧
xι 6= xδ ∧ b < x+ xι − xδ → ⊥ (7)

The first rule captures those violations occurring when newly inserted movie
budgets with possibly some cast member salary updates are lower than the
aggregated salaries in the new data sate. The second captures those violations
that occur when updating the cast member salaries of those movies for which
no budget update is applied.

These EDCs result from, first, replacing any base literal with the rules defined
in 1 and 2 as before to obtain their evaluation in Dn. Then, we add, for any ag-
gregate literal, two additional aggregate event literals computing the aggregated
value xι and xδ for the data being inserted/deleted respectively. Afterwards,
we replace any occurrence of the aggregated value x for its value in Dn, that
is x + xι − xδ. Finally, we add a new built-in literal xι 6= xδ in the rule with
no structural event literals for mBudget to ensure that there is, at least, some
update in the aggregated value.

Now, we need to define the aggregate event predicates ιsumSal and δsumSal.
Intuitively, for ιsumSal we want to sum the new salaries being added to the
source self.castMember.salary. Again, we can compute the new instances added
to the source by replacing their literals according to the formulas 1 and 2:
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ιsumSal(m, sum(s))← castMember(c,m, p) ∧ ¬δcastMember(c,m, p) ∧ ιcmSalary(c, s)
ιsumSal(m, sum(s))← ιcastMember(c,m, p) ∧ cmSalary(c, s) ∧ ¬δcmSalary(c, s)
ιsumSal(m, sum(s))← ιcastMember(c,m, p) ∧ ιcmSalary(c, s)

Similarly, we can define δsumSal. In this case, we have to replace insertions by
deletions since we are looking for instances which are deleted from the source:

δsumSal(m, sum(s))← castMember(c,m, p) ∧ ¬δcastMember(c,m, p) ∧ δcmSalary(c, s)
δsumSal(m, sum(s))← δcastMember(c,m, p) ∧ cmSalary(c, s) ∧ ¬δcmSalary(c, s)
δsumSal(m, sum(s))← δcastMember(c,m, p) ∧ δcmSalary(c, s)

Note that, in both cases, the different rules form a partitioning of the in-
stances being inserted/deleted in the source expression. In this way, we can
compute the total aggregated value xι and xδ by the sum of the aggregated
values obtained from the various rules.

Translating EDCs with Aggregated Events to SQL Translating EDCs
with aggregates into SQL queries follows the same principles as before: each
literal is translated as a table reference in the FROM clause possibly with a JOIN

condition. For example, the rule EDC 6 is translated as:

SELECT M.movie id,M.budget,sumSalaries.X+ins sumSalaries.X-del sumSalaries.X

FROM ins mBudget AS M

LEFT JOIN sumSalaries ON(M.movie id = sumSalaries.movie id)

LEFT JOIN ins sumSalaries ON(M.movie id = ins sumSalaries.movie id)

LEFT JOIN del sumSalaries ON(M.movie id = del sumSalaries.movie id)

WHERE M.budget <sumSalaries.X+ins sumSalaries.X-del sumSalaries.X

Where sumSalaries is a table containing the materialized aggregation of the cast
member salaries of the different movies, and ins sumSalaries and del sumSalaries are
two views computing the aggregation of the cast member salaries being inserted and
deleted for the different movies. Note that we need to use LEFT JOIN instead of JOIN in
order not to lose those movies for which we do not have any of these aggregate values.

Now, we need to define the SQL views ins sumSalaries and del sumSalaries. Such
views are defined by means of translating into SQL the different definition rules of the
predicates ιsumSalaries and δsumSalaries specified in the EDCs. For instance, the first
definition rule of ιsumSalaries would be translated as:

CREATE VIEW ins sumSalaries1 AS

SELECT CM.movie id, SUM(iCMS.salary) AS X

FROM castMember as CM

LEFT JOIN del castMember as dCM ON (CM.id = dCM.id)

LEFT JOIN ins cmSalary as iCMS ON (CM.id = iCMS.id)

WHERE dCM.id IS NULL

GROUP BY CM.movie id
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These views are obtained by translating the body of the rule into SQL following the
same principles as before, then applying a GROUP BY with the attributes corresponding
to the terms of the rule’s head, and finally aggregating the corresponding term.

At this point, we only need to define a view combining all the different salary sums
corresponding to the different definition rules. In the case of ιsumSalaries it would be:

CREATE VIEW ins sumSalaries AS

SELECT iSS1.movie id, iSS1.X + iSS2.X + iSS3.X AS X

FROM ins sumSalaries1 as iSS1

FULL OUTER JOIN ins sumSalaries2 as iSS2 ON (iSS1.movie id = iSS2.movie id)

FULL OUTER JOIN ins sumSalaries3 as iSS3 ON (iSS1.movie id = iSS3.movie id)

Note the usage of FULL OUTER JOIN in order not to lose any of the aggregated
values in the different ins sumSalariesX views.

Note also that we use the views computing the aggregated value being in-
serted xι and the aggregated value being deleted xδ to incrementally update the
materialized aggregated value x. In our example, we use the views ins sumSalaries
and del sumSalaries to update the table sumSalaries in case we finally commit
the structural events.

3.3 Expressiveness of OCLUNIV with Aggregation

The expressiveness of the OCLUNIV language is already determined by a formal
grammar in [19]. Incorporating distributive aggregation in OCLUNIV extends the
expressiveness of the language beyond the newly supported aggregate operations
sum, size, count since there are many OCL operations beyond OCLUNIV that
can be rewritten in terms of aggregation (e.g. notEmpty). To see to what extent
we are improving the expressiveness of the OCL fragment, we first discuss the
expressiveness in terms of logics, and then, go back to OCL.

From the point of view of logics, dealing with aggregate predicates allows us
to handle negative derived literals, that is, denial constraints with the form φ(x)∧
¬d(x)→ ⊥ where d is a derived predicate. Note that negative derived literals can
be encoded as an aggregate predicate counting the number of instances satisfying
the body of the derived literal, and comparing such number to 0.

Since the work in [15] defines a translation from OCLFO [11] into the lan-
guage of denial constraints with derived negative literals, our method can deal
with any OCLFO constraint. OCLFO is the OCL fragment limited to first order
constructs, in other words, it encompasses almost any OCL operation in excep-
tion of aggregates (min, max, sum, count, size) and transitive closure (closure).

Nevertheless, with the method proposed here we are also able to deal with
some of these aggregates. In particular, we can deal with sum, count, and size

because they are distributive. In this manner, the expressiveness of the con-
straints we deal with is beyond OCLFO.
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4 Experiments

We have conducted some experiments to show the scalability of our approach. We
have loaded the IMDb public interface available data (about 13*104 movies and
2.5*106 cast members) into an SQL schema corresponding to the UML schema
shown in Figure 1. Then, we have measured the execution time of our method to
check the OCL constraints of Figure 2 in three different scenarios: adding new
movies, modifying salaries of cast members, and deleting movie directors. All
these experiments have been conducted in MySQL 5.6 running on Windows 8 in
an Intel i7-4710HQ up to 3.5GHz machine with 8GB of RAM.

For each scenario, we have executed our method several times increasing the
number of structural events applied in each case. Note that inserting a movie re-
quires several structural events: inserting the movie, its budget, its cast members,
etc.; updating a salary requires two events: deleting the old salary and inserting
the new one; and deleting a director from a movie requires three: deleting its
cast membership, its role and its salary. In Table 1 we show the execution times
in seconds for checking each constraint of the example regarding to the number
of structural events applied to each scenario.

From these results we can see that the time to check any constraint increases
with the number of movie insertions. This is because all three constraints can be
violated in this scenario. Insertions of 1000 movie had better response times than
those of inserting 500 due to the cache memories of MySQL. When analyzing
salary updates, we see that only the constraint BudgetIsHigher gets worse results
when increasing the number of events considered, while the other two remain
almost constant. This is because it is impossible to violate them when updating
salaries. The same phenomena occurs with the constraint NotActorAndActress
in the third scenario since it is impossible to violate it by deleting cast members.

It is worth noting that most of the experiments took less than one second
and that only one of them was over 30s. Moreover, the cache memories improved
the results of the last experiments with the largest number of structural events.
In the case with most number of data changes (22,037 structural events), it took
12.37s to check one constraint in a database with more than 3 million rows.

We also show in Table 2 the execution time in seconds required to update
the materialized aggregates for each scenario once the constraint check has been
performed. Note that updating the materialized aggregates does not suppose any
scalability problem since none of them takes more than 0.5 seconds.

To show the benefits of our incremental approach, we have measured the ex-
ecution times of the SQL queries obtained from the OCLDresden tool [3], which
translates each constraint into an SQL query, but without following an incre-
mental approach. In this case, the execution time to check NotActorAndActress
was 21.47s, while checking HasSomeDirector and BudgetIsHigher did not finish
within two hours. We could improve these last execution times after manually
rewriting the automatic translation provided by the tool, but their results were
still hight: 238.33s and 79.44s. Note that, since this method is not incremental,
its execution time is independent of the events applied, thus, it takes these times
even when the events applied cannot violate any of the constraints.
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Table 1. Time in seconds to check constraints

#Movie Insertions 1 5 10 50 100 500 1000
#Structural Events 28 149 272 1254 2059 10876 22037

NotActorAndActress 0.36 0.75 5.31 3.51 5.54 9.39 9.13
HasSomeDirector 0.28 0.08 0.33 0.41 0.56 1.42 0.38
BudgetIsHigher 0.41 0.90 5.37 5.54 9.82 30.34 12.37

#Salary Updates 1 5 10 50 100 500 1000
#Structural Events 2 10 20 100 200 1000 2000

NotActorAndActress 0.14 0.05 0.05 0.03 0.05 0.03 0.06
HasSomeDirector 0.31 0.00 0.00 0.02 0.02 0.00 0.00
BudgetIsHigher 0.17 0.09 0.30 0.69 1.16 1.00 1.44

#Director Deletions 1 5 10 50 100 500 1000
#Structural Events 3 15 30 150 300 1500 3000

NotActorAndActress 0.19 0.20 0.17 0.13 0.16 0.70 0.12
HasSomeDirector 0.45 0.53 0.95 1.79 2.07 13.09 3.93
BudgetIsHigher 0.30 0.47 0.37 0.44 2.38 0.60 0.48

Table 2. Time in seconds to update the materialized aggregates

1 5 10 50 100 500 1000

Movie Insertions 0.05 0.14 0.12 0.15 0.11 0.48 0.35
Salary Updates 0.08 0.08 0.12 0.08 0.06 0.11 0.10
Director Deletions 0.05 0.05 0.08 0.06 0.42 0.06 0.14

5 Related Work

OCL constraints to SQL Similarly to our method, the work of [3] is based on
translating each OCL constraint into an SQL view that will be empty if and only
if the constraint is satisfied. Likewise, the work of [4] defines a translation from
OCL expressions into MySQL queries/procedures that return the evaluation of
the OCL expression. Both translations are able to deal with aggregates, but they
are not incremental since whenever a data update occurs, the overall queries need
to be recomputed from scratch. In a different way, [20] offers a translation from
OCL to SQL queries that are triggered by those data updates that might violate
the constraints. However, in this method queries might still look for violations
trough the overall data instead of the limited data related to the update.

Incremental OCL Constraints Checking The work in [6] is based on, for
each OCL constraint, mapping the different context elements for which the con-
straint must be evaluated to the related data required to perform such evaluation.
Thus, when any of these relevant data is modified, the corresponding OCL con-
straint is reevaluated for such context element. However, this strategy might be
prohibitive due to excessive memory usage depending on the kind of constraints
involved [21]. Instead of storing all these data, the works of [5] and [7] are able to
compute, given a data update, the constraints that might be violated together
the context element for which they should be reevaluated. However, none of these
approaches is fully incremental since they only compute the relevant context el-
ement for which to evaluate the constraint, but not the relevant data for that
context element for which to perform the evaluation.
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OCL translation to graph patterns. The work of [8] consists in translating
OCL constraints into graph patterns to benefit from graph-pattern incremen-
tal queries. Nevertheless, such method uses the RETE algorithm to achieve the
incremental behavior, which materializes every relational algebra operation per-
formed by the queries. Such materialization has already been criticized because
its huge memory usage and the penalization time required to maintain such ma-
terialization. To solve such issues, other algorithms have been suggested such as
TREAT [9]. However, TREAT does not handle aggregates.

6 Conclusions

Checking the satisfaction of constraints over some data state is an essential prob-
lem in order to ensure data validity. In this paper, we have proposed a method
based on SQL to incrementally check the satisfaction of OCL constraints. That
is, we build several SQL queries that return the data violating the constraints.
Thus, we can check data validity by means of checking SQL query emptiness.
Moreover, the queries we propose are defined in a way that perform incremen-
tally. In other words, the SQL queries are only executed when some data update
may have violated a constraint, and only examine the data related to the update.

Our method is based on translating each OCL constraint into a set of logic
rules that we call event dependency constraints (EDCs). Each EDC is a rule that
captures a different combination of events (i.e., data updates) causing the viola-
tion of a constraint given the current data state. Each EDCs is then translated
into SQL. These SQL queries make use of some auxiliary tables containing the
events being applied in the information system, and some other tables contain-
ing a materialization of the relevant aggregates required to check the constraint.
Thus, the SQL query is a join between the three: events, current data and ag-
gregate values. This join is the key for incrementality since it forces the query
to only search for possible violations with the data related to the update.

We have shown that the expressiveness of the OCL constraints we can deal
with is beyond OCLFO, the first order fragment of OCL, because of dealing with
the distributive OCL aggregation operations (sum, count, size). Furthermore,
we have shown the scalability of our method by means of some experiments
with real data examining both the time to execute the queries and the time to
maintain the materialized aggregated data. As further work, we plan to extend
our approach to deal with OCL transitive closure and non-distributive aggregate
operations such as min and max.
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