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Abstract. In industrial metal forming processes a large number of parameters has to be 
considered. As is well known, this number can be reduced by a non-dimensional 
representation. Based on the example of an elasto-plastic cantilever beam, the non-
dimensional form is derived in the framework of the Bernoulli-Euler theory. In the second 
step, a Finite Element analyis of a drop-test experiment is performed, and the results are 
presented in non-dimensional form. The results illustrate the advantage of the normalization. 

1 INTRODUCTION 
In industrial metal forming processes, high versatility is claimed with respect to material 

types, geometric dimensions and process parameters. In order to control and optimize the 
production process, efficient simulation models are required. Usually, metal forming 
simulation models are very complex and highly non-linear. Thus, parameter studies take a 
large computational effort. An efficient and practicable way to reduce the number of the 
essential parameters is the application of non-dimensional formulations, a procedure that finds 
its theoretical foundation in Similarity Methods [1], [2]. 

In the following, plastic bending of a cantilever beam is investigated. Especially, the 
plastic deformations are caused by a drop test as discussed in [1]: A cantilever beam is fixed 
on a drop mass which is falling down from a predefined height and stopped by an elastic 
spring, such that the impact causes plastic deformations. In [1] experimental results have been 
presented with two materials and two configurations of geometric dimensions. Applying the 
concept of similarity, i.e. the Buckingham Pi Theorem, the number of parameters to describe 
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the process has been reduced by introducing appropriate normalized quantities. 
In the present paper, the non-dimensional representation of the elasto-plastic cantilever 

beam and the drop-test experiment are investigated in more detail. First, in section 2, the 
bending process is modelled quasi-statically in the framework of Bernoulli-Euler beam theory 
assuming a uni-axial state of stress and elasto-plastic material behavior, cf. [5] and [6]. In the 
latter references ideal plastic material behaviour has been assumed. In the present 
contribution, the formulation is extended for exponential stress-strain relation of the Ludwik 
type. With an appropriate normalization of the equilibrium equations, a representation is 
found in terms of the same non-dimensional quantities as suggested in [1]. 

Furthermore, in section 3, we discuss the outcomes of a Finite Element model, which we 
have implemented for the drop test process, using the software package ABAQUS, version 
6.12-1. The beam is represented by continuum elements, elasto-plastic material behavior with 
exponential stres-strain relation is assumed, and large deformation is taken into account. A 
dynamic analysis is performed in order to simulate the drop-test. With this model, parameter 
studies have been performed, and the results are represented in terms of the non-dimensional 
form as suggested in [1]. With the simulation model, a very detailed analysis of the influences 
of several geometrical and material properties becomes possible.   

2 ELASTO-PLASTIC BENDING OF A CANTILEVER BEAM 
In the following we consider a cantilever beam with length L as shown in Figure 1. The 

cross-section of the beam is rectangular with width B and height H. The beam is fixed to a 
moving rigid base with prescribed acceleration az.

Figure 1: Accelerated cantilever beam 

With the density ρ of the beam, the influence of the rigid body acceleration can be represented 
by a uniform constant distributed transversal load with amplitude 

zq HBa= ρ . (1)

In the framework of a quasi-static modeling, the moment follows to 
21

2 ( )M q L x= − .
(2)

The transversal deflection of a point on the beam axis relative to the base motion is denoted as 
w. The material behavior is assumed to be elasto-plastic with exponential stress-strain relation
of Ludwik's type. For a uni-axial state of stress the constitutive relations read 

for ,

for ,
Y

b
Y

E

a

σ = ε σ ≤ σ

σ = ε σ < σ

(3)
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where σ is the axial stress, ε the axial strain, E Young's modulus, a and b specify the 
exponential stress-strain relation, and Yσ  is the yield stress, following from solving Eq. (3),

( )1/( 1)/ b
Y E E a

−σ = .
(4)

2.1 Plastic zones 
The bending moment is given by 

( )M B z zdz= σ∫ . (5)

In the elastic range, the distribution of the stress is linear over the cross-section. The yield 
moment corresponds to the state where the yield stress is reached at z=H/2, i.e. 

21
6Y YM BH= σ . In the quasi-static case, the yield load follows from Eq. (2) by substituting

x=0, 
2 21

3Y Yq BH L−= σ .
(6)

If the load is higher than the yield load, the domain is divided into elastic and plastic zones as 
shown in Figure 2. Assuming that the deformations remain small and that the Bernoulli-Euler 
hypothesis holds, the axial strain reads 

zw′′ε = − . (7)

Thus, the stress in the elastic and plastic zones can be expressed by 

for  ,

for  .

Y Y
Y

b
Y

Y
Y

z
z z

z

z
a z z

E z

σ = σ ≤

 σσ = < 
 

.

(8)

Figure 2: Elastic and plastic zones 
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The boundary of the plastic zone follows from equating Eqs. (2) and (5), using Eq. (8): 

/2 21
0 22 ( )Y

Y

b
z H Y

Y z
Y Y

z z
B zdz a dz q L x

z E z

  σ σ + = −    
∫ ∫ .

(9)

From Eq. (9) the length Yx of the plastic zone is obtained by substituting z=H/2. An analytical 
solution is possible. On the other hand side, the height Yz of the plastic zone is obtained as a 
function of x. Due to the nonlinearity of the equation, Yz has to be solved numerically. 

2.2 Curvature 
From Eqs. (3) and (7) follows that 

Y YEz w′′σ = − . (10)

Inserting Eq. (10) into Eq. (9) yields an equation for the curvature in the elasto-plastic case: 

( )( )/22 21
0 22 ( )Y

Y

bz H
z

B Ew z dz a w z dz q L x′′ ′′− + = −∫ ∫ .
(11)

Due to the nonlinearity with respect to w′′ ,only a numerical solution is possible. For the 
elastic range, Yx x> , Eq. (11) simplifies to the well-known form

2
36 ( )q

w L x
BH E

′′ = − .
(12)

3.2 Normalization 
In order to obtain a generalized representation, a normalization of the above equations has 

been performed as follows: By introducing the non-dimensional quantities 

* * * *, , , , , ,x z H a q
H a q

L L L E aB E

σξ = ζ = = = = σ =
(13)

Eq. (9) can be rewritten as 
1

** 2 ** * *2 ** * 1 * * 21 32 (2 3 ) 3 ( ) ( 1) (2 )
2 2

b
b b

Y Ya b a a H a H q a b
+

− ζ + − + ζ = ξ − + 
 

(14)

with 
1

1**
*

1 .b
a

a

− =  
 

(15)

Substituting * / 2Y Hζ =  and solving Eq. (14) yields the normalized extension Yξ  of the
plastic zone. On the other hand side  Yζ is obtained as a function of ξ  . Figure 3 shows the
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solutions for Yξ as a function of * * */ qYQ q=   and ( )Yζ ξ  for some values of *Q . Introducing
the normalized curvature and deflection 

* *, w
w Lw w

L
′′ ′′= = (16)

Here and in the following the convention is used. 
2 * 2

*
2 2,d w d w

w w
d dx

′′ ′′= =
ξ

(17)

Substituting Eq. (13) into Eq. (11) yields the equation for the normalized curvature for the 
elasto-plastic range ( Yξ ≤ ξ ):

( ) ( ) ( )2* 3 * 2 * * *2 * * * *1 14 2 12 3 3 1
2 2

bb

Y Y Yw b a w a H w H q a
b

  ′′ ′′ ′′ − ζ + + ζ − ζ − − = ξ −  +   
(18)

Figure 3: (a) Extension of the plastic zone, (b) Boundary of the plastic zone 

Substituting Eqs. (13) and (16) into Eq. (12) yields the normalized curvature for the elastic 
range ( Yξ > ξ )

( )
* * 2*

*36 1 .q a
w

H
′′ = ξ − (19)

Solving Eq. (18) numerically yields the curvature as a function of ξ  as shown in Figure 4a. 
Numerical integration of Eqs. (18) and (19) provides the deflection as shown in Figure 4b. 
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Figure 4: Results for (a) Curvature and (b) Deflection 

Figure 5a shows the plastic tip displacement as a function of the rigid body acceleration az. 
The rigid-body acceleration at first yield is denoted as az,Y which is obtained by inserting Eq. 
(6) into Eq. (1). In this dimensional representation, for each configuration of H and L a 
separate curve is obtained. However, in the non-dimensional representation in Figure 5b, only 
one curve is obtained for the three cases.  

Figure 5: Plastic tip displacement (a) dimensional and (b) non-dimensional representation 

2.3 Discussion of the non-dimensional formulation 
In the dimensional representation with the coordinates x and z, the bending process is 

specified by eight physical quantities: 

, , , , , , , .zw a E a b H L ρ (20)

On the other hand, in the dimensionless formulation derived in section 2.2 with the 
normalized coordinates / L, /x z Lξ = ζ =  the number of essential parameters has been 
reduced to five non-dimensional quantities 

, , , , .za Hw a H
b

L a E L

ρ
(21)
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The results show that for the simple model of an elasto-plastic beam bending process the same 
normalized quantities have been derived as have been obtained by Baker et al. [1] using the 
Buckingham Pi theorem. 

Recall that all the results in this section are based on the geometrically linear Bernoulli-
Euler beam theory with exponential stress-strain relation. Thus the results are valid for small 
deformations. Goal of this section has been an analytic derivation of the non-dimensional 
formulation. In the next section, the drop test as presented in [1] is simulated by means of 
Finite Element computations, considering large deformations. The results are expressed in 
terms of the same non-dimensional form. 

3 FINITE ELEMENT SIMULATION OF THE DROP-TEST 

3.1 Simulation model 
Figure 6 shows the drop-test as discussed in [1]. A cantilever beam is fixed on a drop mass. 

At the cantilever tip an additional beam with higher thickness is attached. The length of the 
cantilever is L, and HD is the drop height. 

Figure 6: Drop-test 

For this setup a Finite Element model has been implemented as follows: The drop mass is 
modelled as a rigid body, and the beam by three-dimensional Finite Elements. A dynamic 
analysis is performed to model the complete drop-test. After falling down and colliding with 
the spring the cantilever beam deforms due to inertial forces. Two kinds of beams are 
considered with the properties according to Table 1. 

Table 1: Parameters 

Beam 1 Beam 2 
Cantilever length 

height 
width 

mm 
mm 
mm 

12.7 
0.508 
6.35 

25.4 
1.016 
12.7 

Additional beam length 
height 
width 

mm 
mm 
mm 

114.3 
1.016 
6.35 

228.6 
2.032 
12.7 

Material type Steel Aluminium 
Young's modulus N/m² 2.068e11 6.895e10 
yield stress  N/m² 2.30e8 1.15e8 
density  kg/m3 7805.73 2740.31 

Drop mass weight of drop mass kg 0.767 3.8147 
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3.2 Numerical results 
Figure 7 shows the deformed configuration after the impact of the drop mass with the 

spring.  

Figure 7: Deformed configuration after impact with spring 

The time response of the transversal displacement is shown in Figure 8. The deformation of 
the cantilever consists of the plastic part with super-imposed elastic vibrations. In Figure 8 the 
maximum deflection and the plastic part are marked. 

Figure 8: Transversal displacement 

Figure 9 shows the maximum deflection and the plastic deflection as a function of the drop 
height HD. In this dimensional representation the deflection of the aluminium beam is larger 
than the deflection of the steel beam. On the other hand side, Figure 10 shows the non-
dimensional deflection *w as a function of the non-dimensional drop height *

DH , given by 

*
D

Y

gH
H

ρ=
σ

, * .w
w

L
= (22)
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Figure 9: (a) Maximum deflection and (b) plastic deflection 

Figure 10: (a) Maximum deflection, (b) Plastic deflection 

In this normalized representation, the non-dimensional deflection is equal for both beams, 
as it has been shown in the experimental drop-test in [1]. From the investigations in section 2 
it follows that one curve is obtained for equal relations of the non-dimensional parameters 
a/E, b and H/L. In the present case, the ratio H/L is the same for both beams. The exponent b
and the ratio a/E are differing slightly for aluminium and steel. However, this influence is 
negligible. Note that the result for a differing ratio H/L would be another curve in the non-
dimensional representation. 

4 CONCLUSIONS 
A non-dimensional representation of the elasto-plastic bending process has been derived in 

the framework of Bernoulli-Euler beam theory. It has been shown how the number of 
parameters can be reduced by a non-dimensional formulation. In the second step, a Finite 
Element simulation has been performed for a drop-test. In the non-dimensional representation, 
the results for the steel and aluminium beam coincide. The results coincide with [1], where the 
non-dimensional quantities have been derived by the Buckingham Pi theorem, and applied to 
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an experimental drop test. The results show that in complex industrial problems the 
computational effort for numerical simulations and parameter studies can be reduced 
significantly by applying appropriate normalization strategies.  
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