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Abstract. In practice, precast concrete structures are designed using either analytical
methods or linear finite element tools, and the in-situ cast joints between the precast
panels are assessed using conservative empirical design formulas. This often leads to a
suboptimal design, and local mechanisms inside the joint are not taken into account. This
paper presents an equilibrium element representing in-situ cast joints and an advanced
submodel yield criterion is developed. The element and submodel are verified by compar-
ison to a detailed numerical model as well as experimental results. The computational
time and problem size of the joint element and detailed model will be discussed.

1 INTRODUCTION

Modern precast concrete element buildings use disk systems, i.e. precast wall panels
and in-situ cast joints, to transfer horizontal and vertical forces from the facades and decks
to the foundations of the building. The forces are transferred as in-plane forces, and the
shear capacity of the walls and especially the joints are of the utmost importance. The
shear capacity of such walls are in practice assessed by analytical models, i.e. yield lines or
strut-and-tie models, or linear finite element analysis. This practice leads to suboptimal
designs.

The in-situ cast joints between the precast panels are of particular interest. They are
often the weakest part of the structure and they have some special mechanical properties.
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The joints consist of a concrete core and two interfaces. The core is often reinforced
in two directions, and the interfaces are often keyed. The shear capacity of the joints
and interfaces are assessed by simple empirical design formulas [1], which often give a
conservative estimate of the capacity.

Several researchers have investigated the behaviour of in-situ cast joints and interfaces.
The investigations cover both experimental testing [2, 3, 4] and rigid plastic models, e.g.
yield line analysis, [5, 6]. The analytical methods have been able to capture the behaviour
observed in the experiments to a certain extent. Investigations using numerical tools, e.g.
finite element methods, have primarily been focused on single key joints used in precast
segmental bridges [7, 8]. These investigations have primarily been carried out by use
of non-linear finite element analysis, which is heavy computationally, especially when
considering that the ultimate load capacity is the result of main interest.

Numerical limit analysis is an alternative to the standard finite element formulation.
The method is based on the extreemum principles for rigid-plastic materials [see e.g.
6, 9, 10] and a discretisation known from the finite element method. Anderheggen and
Knöpfel [11] presented a general formulation and equilibrium elements for plates and
solids. Several authors have contributed and equilibrium elements for stringers, bars,
beams, disks, shells, and solids have been formulated [12, 13, 14, 15]. Most yield conditions
relevant for structural engineering can be formulated as either second-order constraints
or semi-definite constraints (linear matrix inequalities).

Precast wall unit
modelled with tri-
angular disk ele-
ments

In-situ cast joints
modelled with joint
elements

Figure 1: Four storey wall subjected to horizontal forces: The wall consists of 12 precast panels and
joints. An example of a mesh (discretisation) for numerical analysis is seen for the top right panel.

Herfelt et al. [16] presented a detailed numerical rigid plastic model of keyed joints. The
model used a lower bound formulation and the analysis determined a statically admissible
stress field as well as the failure mode from the dual problem (i.e. corresponding upper
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bound problem). The detailed model [16] used tringular disk elements [13, 14] representing
the concrete, bar elements representing the reinforcement [13], and interface elements
representing the interfaces between the precast and in-situ cast concrete.

The detailed numerical model predicts the shear capacity and failure mode of keyed
joints reasonably well, however, the model is not feasible for practical modelling of larger
panel structures due to the size of the model and computational time required. Fig. 1
shows a four storey wall consisting of several precast panels and in-situ cast joints. As
indicated in the figure, a joint element is needed for practical modelling.

This paper presents an equilibrium element representing the in-situ cast joints. The
element is designed for interaction with the disk element [13, 14] and interface elements
[16], which both have a linear stress variation, and the scope is to be able to model entire
disk systems, e.g. the wall seen in Fig. 1. An advanced submodel yield criterion based
on the stringer method is developed. The scope of the submodel is to capture some of
the keyed mechanisms identified by the detailed model [16]. The submodel will require
second-order conic constraints and will fit the format of second-order cone programming
(SOCP). The joint element and submodel yield criterion will be compared to the detailed
numerical model [16] as well as experimental results [2].

2 PROBLEM FORMULATION

Numerical limit analysis is formulated as an optimisation problem, where the goal is
to maximise a load factor λ. The analysis determines a statically admissible stress field,
i.e. a stress field that satisfies equilibrium and does not violate the yield criteria in any
point.

maximise λ

subject to Hβ = λR+R0

f(βi) ≤ 0, i = 1, 2, . . . , m

(1)

The linear equality constraints ensure equilibrium, while the functions f (βi) ≤ 0 ensure
that the stress field does not violate the yield criteria. The load consists of a constant
part R0 and a scalable part R λ. H is the equilibrium matrix, and β is the stress vector.

The yield function f is generally convex, but non-linear, thus, the optimisation problem
will be a convex problem. The type of problem depends on the chosen yield function, and
the work presented in this paper will be formulated for second-order cone programming,
a subclass of convex programming [17].

3 KEYED JOINTS

A keyed joint reinforced with U-bars and a locking bar is considered. Fig. 2 shows the
basic design of a keyed joint: The vertical solid lines represent U-bars, and the horizontal
solid line represents the locking bar. The local coordinate system (n, t) is also seen in Fig.
2. A unit section of the joint is indicated with a dashed rectangle; this (repeatable) unit
section will be the basis of an advanced submodel yield criterion for the equilibrium joint
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element. The width of the joint, b, is usually narrower than 100 mm and the thickness t
below 250 mm. The length of the joint, on the other hand, ranges from a single storey
height to the height of the entire building.

U-bars

Locking bar

n

t

2 u

2 a

b

d

o

h2h1

(a)

t

(b)

Figure 2: The basic design of a keyed joint reinforced with U-bars: a) elevation, b) cross section.

4 JOINT ELEMENT

An equilibrium element representing in-situ cast joints is needed for practical modelling
of precast concrete panel structures. The joint element will dictate the distribution and
transfer of stresses through the joint. The element is designed to be compatible with the
linear stress triangle (disk element) [13, 14], thus, the joint element must have a linear
variation of the shear stress and transverse normal stress, and a quadratic variation of
the longitudinal normal stress
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Figure 3: Joint element: a) Geometry, stress variables, and local coordinate system. b) Nodal forces for
the equilibrium equations.

Fig. 3 shows the equilibrium element. The length and orientation of the element are
defined by the two nodes seen in Fig. 3(a) (indicated by 1 and 2). The element has 9
stress variables seen in Fig. 3(a). The equilibrium equations of the element can be written
as follows

qel = hel βel (2)
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where βel is a vector containing the 9 stress variables, qel contains the 12 nodal forces
seen in Fig. 3(b), and hel is the element equilibrium matrix (for this element a 12 × 9
matrix). The equilibrium matrix hel and the stress vector βel are explicitly given in (3).

qel =




q+σ1
q+τ1
q+σ2
q+τ2
q−σ1
q−τ1
q−σ2
q−τ2
qN1

qN2

qp1
qp2




=
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0 0 −t 0 0 0 0 0 0

0 t 0 0 0 0 0 0 0
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(3)

The equilibrium matrix and generalised nodal force vector can be split into three parts;
one for the positive side of the joint, one for the negative side of the joint, and one for the
nodal forces in the longitudinal direction. It is assumed that the transverse normal stress
(n-direction) is transferred directly through the joint, but this is not necessarily the case
for the shear stresses, which may be used to built up an axial force in the longitudinal
direction.

Each point along the joint element has a stress state defined by four stress parameters,
σn, σt, τ

+, and τ−. The yield criterion takes these four stress parameters as input. Five
yield criterion check points evenly distributed along the length of the element are chosen
for the joint element due to the quadratic varying normal stress in the t-direction.

5 SUBMODEL YIELD CRITERION

The submodel yield condition, i.e. the yield function for the joint element, is in itself
a small optimisation problem, and the equilibrium model for the submodel is based on a
stringer model [6, 12]. This study uses a modified stringer method where the panels have
three stress components; confinement pressure is added instead of smeared reinforcement
due to the scale of the model. This approach also allows for the optimisation to determine
the optimal distribution of the confinement pressure.

This section describes the submodel that is used to determine the yield criterion for the
joint element. The scope of the submodel is to capture some important local stress states
within the joint as a result of different reinforcement layouts. Three modified stringer
models are introduced for this purpose. The submodel is based on a unit section of the
keyed joint (see Fig. 2). Fig. 4 shows the overall principle behind the submodel yield
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criterion: Three statically admissible modified stringer models are combined using the
superposition principle.

5.1 Assumptions for the submodel

It is assumed that the behaviour of the joint can be represented by three modified
stringer models. The superposition principle is used to combine the three models, and
the combined model is checked against the appropriate yield criteria to ensure a safe
solution.

We assume a two dimensional stress state in the joint. This assumption may not be
accurate near the U-bars due to their geometry, which necessarily will lead to a three-
dimensional stress state in the joint. The modified stringer models only describe a two-
dimensional stress state and out-of-plane mechanisms are neglected. This will lead to a
lower shear capacity, and the submodel may underestimate the capacity in some cases.

5.2 Equilibrium equations of the submodel

It is necessary to mobilise the two U-bars in order to transfer tension or to establish
confinement pressure on the joint. The stringer model for transfer transverse tension (see
Fig. 4) gives the following relations:

τ21 =
V

o t
=

u

a

T

o t
, τ22 =

(u
a
− 1

) T

o t
(4)

From the antisymmetric stringer model it can be concluded that τ21 = τ23. The stringer
force V will usually be balanced out by an adjacent joint section.

The two horizontal boundaries may be subjected to shear stresses of different mag-
nitudes, hence, the central stringer seen in Fig. 4 will carry a linear varying normal
force. From Fig. 4 it follows that the shear stresses acting on the unit joint section are
transferred directly to panels 1 and 3, respectively:

τ+ = τ1, τ− = τ3 (5)

The two shear panels 1 and 3 overlap the three panels of the second stringer model seen
in Fig. 4, and the resulting stresses can simply be determined by adding up the shear
stresses (superposition).

The concrete shear panels need either reinforcement or confinement pressure in two
directions to be able to carry shear stresses. The confinement pressure may originate
from externally applied compressive loads or from stresses developed to create internal
equilibrium with tensile stresses in the reinforcement. The external loads seen in Fig.
4 must be in equilibrium, thus, the difference in the normal force must be equal to the
difference in the shear forces:

F+
t − F−

t = 2 a t τ+ − 2 a t τ− (6)
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Figure 4: Unit joint section and the three stringer models. The behaviour of the unit joint section is
divided into three main mechanisms, namely transverse tension, shear, and compression.
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Vertical equilibrium at the horizontal boundaries gives:

2 a t σn = T − V − (a− u) t (σn1 + σn3)− 2 u t σn2 (7)

and similarly for the horizontal forces:

F+
t = F+

lt − 2Ft −
b− o

2
t (σ+

t1 + σ+
t3)− o t σ+

t2

F−
t = F−

lt − 2Ft −
b− o

2
t (σ−

t1 + σ−
t3)− o t σ−

t2

(8)

The necessary equilibrium equations of the submodel have now been established.

5.3 Yield conditions

The loop reinforcement and locking bar carry stringer forces. It is assumed that the
reinforcement only carries tension, hence, the yield criterion can be stated as

0 ≤ T ≤ Asu fY u, 0 ≤ F+
lt ≤ Asl fY l, and 0 ≤ F−

lt ≤ Asl fY l (9)

where Asu and Asl are the cross section areas of the loop reinforcement and locking bar,
respectively, and fY u and fY l are the uniaxial yield strength of the loop reinforcement
and locking bar, respectively.

The concrete stringers (indicated by the thick dashed lines in Fig. 4) are treated
differently as there are no reinforcement. Confinement pressure is necessary to ensure
that the entire stringer is loaded in compression, which leads to the following linear
inequality:

−Ft + τ21 (a− u) t ≤ 0 (10)

Each shear panel in the submodels has three stress components; the shear stress and two
normal stresses. The modified Mohr-Coulomb yield criterion for plane stress is used as
the yield criterion for the panels.

σ1 ≤ ft

k σ1 − σ2 ≤ fc

−σ2 ≤ fc

(11)

where σ1 and σ2 are the largest and smallest principal stresses, respectively. ft is the
uniaxial tensile strength of the concrete, fc is the effective uniaxial compressive strength,
and k is a friction parameter. The yield condition is non-linear as it is given in terms of
the principal stresses. By introducing three auxiliary variables, the yield condition can
be formulated as a single conic constraint and three linear constraints [16].
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6 ANALYSIS AND DISCUSSION

The joint element and submodel yield criterion are compared to the detailed numerical
model [16] using the geometry and reinforcement layout of the tests by Hansen and Olesen
[2]. The normalised shear capacity is plotted as a function of the mechanical reinforcement
degree, respectively. The mechanical reinforcement degree is defined as

Φ =

∑
Asu fY u

t l fc
(12)

where Asu is the cross section area of one U-bar, fY u is the yield strength of the U-bars,
t is the thickness (see Fig. 2), and l is the total length of the joint.

The material parameters for the interface of the joint element, namely the cohesion
and friction coefficient, are fitted to the curve for the detailed model. The size of the
cohesion depends on both the geometry of the keys as well as the reinforcement layout.
To simulate that the joint section is a part of a long joint the axial nodal forces qN1 and
qN2 (see Eq. 3) are supported, hence, the force in the t-direction can be chosen freely by
the optimiser.

Hansen and Olesen investigated the behaviour of keyed joints with different reinforce-
ment layouts. Some of the experiments featured joints with a significant distance in-
between the U-bars (see Fig. 5), which yielded a lower shear capacity and the concrete
core was almost completely destroyed at failure.

The specimens had a length of 1200 mm, a width of 50 mm, and 14 keys total. The
keys have a depth of d = 6 mm, a length of h2 = 40 mm and the spacing between the
keys is h1 = 40 mm (see Fig. 2).

170 150

(a) Wall Joint: Specimen 24

90 70

(b) Wall Joint: Specimen 26

Figure 5: The two specimens with a significant distance between the U-bars tested by Hansen and
Olesen [2], measurements in millimetres.

Fig. 5 shows the two specimen (24 and 26) which features a significant distance between
the U-bars. For the remaining specimens the U-bars were placed with a distance of 10 mm.
For specimens 24 and 26 the shear capacity is illustrated as a function of the reinforcement
degree, and the results for all specimens is summed up in Tab. 1.

A friction coefficient of µ = 0.60 is used for all interfaces. The compressive concrete
strength of the joint concrete ranges from 13 MPa to 31 MPa (see Tab. 1), and the tensile
strength of the concrete is taken as zero.

Fig. 6 shows that the joint element captures the same behaviour as the detailed
model to a reasonable degree, and the plain interface combined with the pseudo cohesion
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Figure 6: Comparison of a single joint element with a submodel yield criterion, a detailed model using
several thousands elements, and experimental results for specimens 24 (a) and 26 (b).

represents the behaviour of the keyed interface well. The cohesion of the interface is taken
as c24 = 0.06 fc = 1.56 MPa for specimen 24, and c26 = 0.08 fc = 1.92 MPa for specimen
26 for the best fit. The figure also who a decent correlation between the numerical results
and the experiment.

Table 1: Results of the numerical models and experimental testing [2].

fc Φ τ/fc τ/fc τ/fc
Specimen [MPa] - Experimental Detailed model Joint element

23 31 0.025 0.080 0.083 0.075

24 26 0.030 0.072 0.068 0.074

25 24 0.076 0.161 0.131 0.126

26 24 0.076 0.124 0.128 0.126

27 15 0.139 0.213 0.189 0.193

28 13 0.235 0.286 0.230 0.242

Tab. 1 summarises the results of the joint element, the detailed numerical model, and
the experimental testing. It is seen that the joint element gives a reasonable estimate
of the shear capacity of keyed joints, and for practical design of structures, the joint
element is superior as Tab. 2 shows. The detailed model is heavy computationally and
the optimisation time also shows this, hence, the model is not feasible for lager precast
structures. The analysis is performed on a desktop PC with 12 GB RAM memory and an

883



Morten A. Herfelt, Peter N. Poulsen, Linh C. Hoang, and Jesper F. Jensen

Intel Xeon processeor with 8 CPUs and 3.2 GHz. The analysis is performed in MatLab.

Table 2: Comparison of problem data for the joint element and detailed model [16].

Joint element Detailed model

Number of equilibrium elements 3 20,024

Number of variables 302 1,364,509

Number of linear constraints 388 1,305,890

Number of conic constraints 44 134,472

Optimisation time 0.43 s 97.89 s

7 CONCLUSION

An equilibrium joint element for lower bound limit analysis has been presented. The
advanced submodel yield criterion makes the element capable of modelling in-situ cast
keyed joints between precast concrete panels using a single element. The submodel yield
criterion is based on three modified stringer models using the principle of superposition.
The submodel makes it possible to take local effects in the joint into account. The joint
element and submodel are formulated for second-order cone programming, which can be
solved reliably and efficiently by interior point methods.

The single joint element and submodel are verified by comparison to a detailed nu-
merical model, which uses several thousand equilibrium elements. The joint element
and submodel are capable of capturing the critical mechanisms and predict the same be-
haviour as the detailed model. The computational time and problem size of the joint
element makes it superior to the detailed model when it comes to practical design of
precast concrete structures and modelling of real size structures.
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neaux préfabriqués pour murs de batiments. Annales de L’Institut Technique du

Batiment et dês Travaux Publics 300, 86–103 (1972).

[4] Joergensen, H. B. and Hoang, L. C. Tests and limit analysis of loop connections

884



Morten A. Herfelt, Peter N. Poulsen, Linh C. Hoang, and Jesper F. Jensen

between precast concrete elements loaded in tension. Engineering Structures 52,
558–569 (2013).

[5] Jensen, B. C. On the ultimate load of vertical, keyed shear joints in large panel
buildings. In Symposium on Bearing Walls in Warsaw (1975).

[6] Nielsen, M. P. and Hoang, L. C. Limit Analysis and Concrete Plasticity, Third

Edition (Taylor and Francis, 2010).

[7] Issa, M. A. and Abdalla, H. A. Structural behavior of single key joints in precast
concrete segmental bridges. Journal of Bridge Engineering 12, 315–324 (2007).

[8] Kaneko, Y. and Mihashi, H. Analytical study on the cracking transition of concrete
shear key. Materials and Structures 32, 196–202 (1999).

[9] Hill, R. On the state of stress in a plastic-rigid body at the yield point. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42, 868–875
(1951).

[10] Drucker, D., Prager, W. and Greenberg, H. Extended limit design theorems for
continuous media. Quarterly of Applied Mathematics 9, 381–389 (1952).
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