
Tareador: a tool to unveil parallelization strategies
at undergraduate level

Eduard Ayguadé, Rosa M. Badia, Daniel Jiménez, José R. Herrero, Jesús Labarta, Vladimir Subotic and Gladys Utrera
Computer Sciences Department, Barcelona Supercomputing Center (BSC-CNS)

Computer Architecture Department, UPC–BarcelonaTech
Barcelona, Spain

Contact author: eduard.ayguade@bsc.es

Abstract—This paper presents a methodology and framework
designed to assist students in the process of finding appropriate
task decomposition strategies for their sequential program, as
well as identifying bottlenecks in the later execution of the
parallel program. One of the main components of this framework
is Tareador, which provides a simple API to specify potential
task decomposition strategies for a sequential program. Once
the student proposes how to break the sequential code into
tasks, Tareador 1) provides information about the dependences
between tasks that should be honored when implementing that
task decomposition using a parallel programming model; and 2)
estimates the potential parallelism that could be achieved in an
ideal parallel architecture with infinite processors; and 3) sim-
ulates the parallel execution on an ideal architecture estimating
the potential speed–up that could be achieved on a number of
processors. The pedagogical style of the methodology is currently
applied to teach parallelism in a third-year compulsory subject in
the Bachelor Degree in Informatics Engineering at the Barcelona
School of Informatics of the Universitat Politècnica de Catalunya
(UPC) - BarcelonaTech.

I. INTRODUCTION

For decades, single–core processors have been improving
their performance doubling in speed every two years, without
requiring major changes in the applications and relying on
compilers to optimize the code for each target architecture.
The move towards multicore architectures in less than a
decade, has changed the scenario due to severe technological
constraints and the difficulties to efficiently exploit the instruc-
tion level parallelism (ILP) on those single-core architectures.
Multicores have introduced the need to re-design (parallelize)
applications in order to utilize the increasing but still modest
number of cores currently available [1]: neither the compiler
nor the hardware can automatically detect and exploit the
parallelism needed to feed them.

Parallel programming is not an invention of the multicore
era. For decades, the high-performance community has been
programming multiprocessor systems, without caring much
about programming productivity. Tools to predict and ana-
lyze performance were also designed by and for the high-
performance computing community. Also parallel computing
was a subject just considered in courses at the advanced
levels of computer science and engineering curricula. In the
current scenario, in which current systems (from mobile to
desktop/laptop to servers) are mostly based on parallel archi-
tectures, the lack of parallel programming expertise in the IT

sector needs to be overcome in order to reach the efficiency
and scalability that future generations of software will need to
exploit those architectures.

Efforts are being done to introduce parallel programming to
undergraduate students. However, both the analysis of poten-
tial concurrency (task and data decomposition, task ordering
and data sharing constraints, ...) in applications and their par-
allelization using todays available programming models is still
a challenge for those students. We believe that a methodology
of study and tools to visually analyze and predict the potential
parallelism in those applications are necessary; both should be
designed to help these students in their first steps to understand
the key issues in the parallelization process.

In this paper we first present the proposed methodology
and framework that we propose for teaching parallelism to
”fresh” students and that has been successfully used to support
teaching activities in Parallelism, a third-year compulsory
subject in the Bachelor Degree in Informatics Engineering
at the Barcelona School of Informatics (FIB) of the Univer-
sitat Politècnica de Catalunya (UPC) - BarcelonaTech. This
subject is our first opportunity to teach parallelism at the
undergraduate level. Then we present the main component in
this framework, Tareador, which 1) offers an API to quickly
define task decompositions; 2) provides information about the
dependences that should be honored when implementing these
task decompositions; and 3) computes the parallelism offered
by the task decomposition and estimates the achievable speed–
up on an ideal parallel architecture with a certain number of
processors. The information provided by Tareador allows the
student to specify task decompositions using a parallel pro-
gramming model; in this introductory course we use OpenMP
[2] version 4.0, which provides support for tasks (including
task dependences) in addition to the traditional loop–level
parallleism which is considered as a particular case of the
generic tasking model. The framework also offers a dynamic
instrumentation and tracing package (Extrae [3]) and a trace
visualization tool (Paraver [3]) which allow the programmer
to understand the actual behavior of the parallel decomposition
when executed on a real parallel architecture. The complete
framework motivates the learning process, improves the under-
standing of the proposed task decompositions and significantly
reduces the time to reach parallel implementations of the
original sequential codes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41824618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The paper is organized as follows. Section II describes the
context of the course where the methodology and framework
are used. Then, Section III describes the main component in
this framework (Tareador) and Section IV presents an example
of use. Finally, section V presents some related work and
section VI concludes the paper.

II. CONTEXT, COURSE DESCRIPTION AND METHODOLOGY

Parallelism is a third-year (fifth term) compulsory subject in
the Bachelor Degree in Informatics Engineering. The subject
concerns parallel programming models and parallel computer
architectures; it comes after a series of courses on computer
organization and architecture, programming and data struc-
tures. The term effectively lasts for 15 weeks. There are 4
contact hours per week: 2 hours dedicated to theory/problems
(60 students per class) and 2 hours dedicated to laboratory
(15 students per class). Students are expected to invest about
5-6 additional hours per week to do homework and personal
study (over these 15 weeks). Thus, the total effort devoted to
the subject is 6 ECTS credits1

There are eight guided laboratory assignments. The first four
are to make students get familiar with the experimental en-
vironment: compilation, execution, performance measurement
and analysis with Paraver, analysis of potential parallelism
using Tareador when going from coarse- to fine-grain task
decomposition strategies using a simple example, and a very
practical OpenMP tutorial. The last four assignments are
devoted to parallelizing four different applications (the last
one is optional):
• Maldelbrot set (embarrassing parallel iterative task de-

composition). Two different task granularities are evalu-
ated (each row or point in the two–dimensional set) to
observe the influence of task generation overheads. The
program has load balancing issues due to differences in
the cost of computing each point in the Mandelbrot set,
suggesting the need of dynamic task/loop scheduling in
OpenMP.

• Multisort (divide–and–conquer recursive task decompo-
sition strategy). The divide–and–conquer strategy recur-
sively splits the vector in four parts which are sorted with
four totally independent invocations of sort. After these
sort tasks end, two merge tasks follow, each one joining
the results of two sort tasks. Their results are merged
again with a final merge call. Task dependencies are the
main concept in this code that can be satisfied with task
barriers or task dependencies in OpenMP.

• Heat equation (geometric iterative task decomposition).
Three different solvers are used: Jacobi, Red-Black
and Gauss-Seidel. The program makes use of a two–
dimensional data structure iteratively traversed using loop
nests. Different synchronization constructs to support

1The European Credit Transfer System (ECTS) is a unit of appraisal of the
academic activity of the student. It takes into account student attendance at
lectures, the time of personal study, exercises, labs and assignments, together
with the time needed to do examinations. One ECTS credit is equivalent to
25-30 hours of student work.

both loop and task parallel constructs are required in each
solver, including reductions, barrier and point–to–point
synchronization.

• Sudoku (branch–and–bound recursive task decomposi-
tion). The code is useful to show the need of data
replication to enable exploratory parallelization strategies
and the need to control task generation based on recursion
depth or number of tasks to avoid excessive overheads.

After compiling and executing the sequential version, the
students follow a similar approach in each of these four
parallel programming assignments: a) analysis of potential task
decompositions using Tareador; b) parallelization using task
and work–sharing constructs using OpenMP; and c) under-
standing performance by analyzing weak and strong scalability
of the implementations using Extrae and Paraver [3]. Table I
shows the parallelization strategies that the students explore to
express the different task decompositions in the applications
listed above.

TABLE I
OPENMP PARALLELIZATION STRATEGY USED IN EACH APPLICATION

tasks dependent tasks loop parallelism
Mandelbrot set X X
Heat equation X X X

Multisort X X initialization
Sudoku game X

The Tareador framework is also used at the master level
in Concurrency, Parallelism and Distributed Systems, another
subject part of the first term of the two-year Master in
Innovation and Research in Informatics in the same school.
In that subject, Tareador is used as the driver to explore task
decompositions to be expressed in MPI [4] and CUDA [5].
Finally, Tareador was also successfully exercised in a handson
HPC Educators session at Supercomputing SC’12 and SC’13
[6].

III. ANALYZING POTENTIAL PARALLELISM

Starting from a sequential specification of the program (in
C/C++ or Fortran), the objective is to find a decomposition of
the problem into pieces of work (tasks) that can be executed
concurrently ensuring that the same results are produced.
Tareador has been designed as a framework to help program-
mers in deciding the best decomposition strategy by 1) offering
an API to quickly define potential task decompositions in the
original sequential program; 2) providing information about
the dependences that should be honored when implementing
them using a parallel programming model; 3) estimating the
potential parallelism that could be achieved in an ideal parallel
architecture with infinite processors; and 4) simulating the
parallel execution and estimating the potential speed–up that
could be achieved on a number of processors. All that is done
prior to actually implementing the task decomposition using a
specific parallel programming model (e.g. OpenMP or MPI).

The annotated code is executed sequentially – all annotated
tasks are executed in the order of their instantiation. Tareador
dynamically instruments the sequential execution and collects

a log with the data regions accessed by each potential task.
Once the log is generated, Tareador calculates inter-task
dependencies and evaluates the potential parallelism of the
decomposition providing the results to the user in the form
of:
• task dependency graph with all task instances represented

in a hierarchical way (task nesting is allowed in the API);
• visualization of the data accessed by each task;
• simulation of the parallel execution when using a number

of processors.
Through a refinement process, students can easily explore
different task decompositions, from very coarse- to fine-
grained ones, and analyze the influence of some algorithmic
parameters.

A. Tareador API

The input to Tareador is a sequential application with simple
annotations (in this paper we just present the API for C/C++)
that specify a possible task decomposition for the sequential
code. The API provides two functions to initialize and finalize
Tareador:
tareador_ON();

...
tareador_OFF();

and two functions to specify task boundaries:
tareador_start_task(name_string);

...
tareador_end_task(name_string);

These functions allow the specification of any arbitrary task
decomposition (nesting of tasks is supported). name_string
is used to provide a name to each task and can be dynamically
built (e.g. using sprintf from the libc library) in order
to use different labels. Initially this process does not require
any refactoring of the sequential code; however, some code
refactoring (e.g. privatization of data structures) could be
useful in order to remove some dependences, easing the later
parallel coding step. The API provides a couple of functions
to filter objects, removing them from the Tareador dependence
analysis:
tareador_disable_object(address of object);

...
tareador_enable_object(address of object);

The programmer can filter a data object to discover the
parallelism of the application if he/she already knows how
to protect the dependences (data sharing) that are generated
by that object.

B. Tareador implementation

The Tareador environment integrates various internally and
externally developed tools. The framework (Figure 1) takes
the annotated sequential code and compiles it with an LLVM-
based [7] compiler. The execution of the binary generates the
information that is processed, once the execution is finished,
by the Tareador backend embedded into the Tareador GUI.

Sequential

Code

(potentially

annotated)

TAREADOR LLVM

compiler
execution

log

instrumented

sequential execution

TAREADOR GUI

Time-plot visualizer (Paraver) Task graph visualizer (Graphviz) Data usage visualizer

TAREADOR

BACKEND

Dimemas

simulator

Fig. 1. Tareador framework

This Tareador backend produces the task dependency graph,
which can be queried to find out the cause of each data
dependence in the graph (dataview). The Tareador backend
also generates an execution trace that feeds the Dimemas [8]
simulator which generates Paraver [9] time-plots showing the
potential parallel execution.

The LLVM-based compiler dynamically instruments the
sequential application in order to collect information about
all annotated tasks and the memory locations accessed. The
compiler allows the user to manually annotate tasks by wrap-
ping arbitrary code sections using the described Tareador API.
Furthermore, by intercepting all allocations and releases of
the memory, the tool maintains the pool of all alive mem-
ory objects. The instrumentation tracks all memory objects,
intercepting and recording accesses to them at the granularity
of one byte. The instrumentation introduces a non-negligible
overhead (1000x slowdown) which suggests the use of small
input datasets.

The Tareador backend is a Python program that consumes
the logs generated by the instrumentation and produces inputs
for the different modules in the Tareador GUI. Given the result
of the instrumentation, Tareador identifies all task instances
and read-after-write dependencies among them. As a result, the
backend generates the trace with all the information necessary
for Dimemas to simulate the parallel temporal behavior on a
configurable ideal target architecture. The trace contains bursts
that correspond to instances of the programmer-annotated tasks
and the inter-task synchronizations based on the identified
inter-task dependences.

C. Tareador example: dot product

This subsection illustrates the main features and views pro-
vided by Tareador using a very simple dot product example.
The annotated source code is shown in Figure 2, in bold font
showing the annotations introduced to specify tasks at different
task granularities. The code to initialize the two vectors A
and B, as well as the function computing the dot_product
are initially marked as potential tasks. For a finer-grain task
decomposition, the programmer could also specify as a task

void dot_product (long N, double A[N], double B[N],
double *acc) {

double prod;

*acc=0.0;
for (int i=0; i<N; i++) {

// tareador start task(”dot product loop”);
prod = my_dot(A[i], B[i]);
// tareador disable object(acc);
*acc += prod;
// tareador enable object(acc);
// tareador end task(”dot product loop”);
}

}

int main(int argc, char **argv) {
double result;

tareador ON ();
tareador start task(”init A”);
for (int i=0; i< size; i++) A[i]=i;
tareador end task(”init A”);

tareador start task(”init B”);
for (int i=0; i< size; i++) B[i]=2*i;
tareador end task(”init B”);

tareador start task(”dot product”);
dot_product (size, A, B, &result);
tareador end task(”dot product”);

tareador OFF ();
}

Fig. 2. Annotated sequential code for a simple dot product

each iteration of the loop inside the dot_product function,
as shown with the commented lines.

For the coarsest-grain decomposition, Figure 3.a shows the
task graph obtained by Tareador, a directed acyclic graph
where each node represents a task instance and each edge
represents a data dependence between two task instances.
In the task graph, the size of the node is proportional to
the number of instructions executed in the task. In this
graph, the green and red nodes represent tasks init_A and
init_B, respectively, while the yellow node represents the
single instance of dot_product. The graph shows that
dot_product depends on both init_A and init_B, with
no much parallelism to be exploited. If tasks are refined, so
that a task corresponds to one iteration of the loop inside
function dot_product, the we obtain the task graph in
Figure 3.b. By clicking on each of the edges between a yellow
node and the others we obtain dataview windows similar to
the ones shown in Figure 3.c, which reveal the variables (or
portion of them) that cause the dependences. Observe that the
serialization between two consecutive iterations of the loop
(yellow tasks) is caused by the accumulative operation on vari-
able result (which in the code is accessed through pointer
acc). If we disable the analysis of this variable in the excerpt
of code between the tareador_disable_object and
tareador_enable_object calls (initially commented in
the code in Figure 2) then we obtain the task dependence
graph in Figure 3.d. By filtering this object the programmer
is assuming that he/she will guarantee the dependence (data
sharing without race condition) in some way (for example

using the reduction clause in OpenMP).
The second Tareador output is the timeline of the simulated

potential parallel execution when using a specified number of
processors (4 in Figure 3.e). The timeline shows, for each
of the 4 cores in the parallel machine (y-axis), which task
is executed at any time (x-axis). The colors representing task
types match the colors used in the task dependency graph.

I

IV. HEAT DIFFUSION EXAMPLE

This section presents one of the codes used in the un-
dergraduate course mentioned before. The code simulates
heat diffusion in a solid body using three different solvers
for the heat equation (Jacobi, Red-Black and Gauss-Seidel).
Each solver has different numerical properties, which are not
relevant for the purposes of the example, and present different
parallel behaviors.

The code at the top in Figure 4 shows the iterative loop
executing one of the three solvers on a 2D data array u of
size np by np. When Jacobi is used, the solver returns the
result in an auxiliary data array uhelp, which is copied to the
original u. The other two solvers return their result in place.
Solvers also compute a residual that is used to determine
convergence and the termination of the iterative loop. The
iterative loop also finishes if convergence is not reached after
a certain number of iterations maxiter.

The listing at the bottom in Figure 4 shows the annotated
code for the Gauss-Seidel solver. In this solver, matrix u
is updated in place, causing the dependences among the
computation of blocks shown in the task graph in Figure 5
(for NB=8 in this case). As we did for dot_product, we
have filtered the analysis for object sum (in OpenMP, that can
be done, for example, using a reduction clause). The student
can observe how the computation of each block depends on
its neighbors and the data regions that cause the dependences.

For the Gauss-Seidel solver, Figure 6 shows the timelines
obtained by Tareador when simulating the parallel execution
using 2, 4 and 8 processors. All three timelines are in the same
temporal scale, so the student can observe good scalability
when going from 1 to 2 and from 2 to 4 processors. However,
using more than 4 processors is not scaling well in this case
due to having an insufficient number of blocks.

A. Other examples

To conclude this section about the heat diffusion example,
Figure 7 shows the task graphs generated by Tareador for two
of the other codes used in the undergraduate course. Specifi-
cally, Figure 7.a shows the embarrassingly parallel nature of
the Mandelbrot program as is observed in the corresponding
task graph obtained by Tareador. However, notice that nodes
have different sizes, which should suggest to the students
the existence of a load unbalance problem and the need to
use some dynamic loop schedule that tries to fight against
that. The task graph in Figure 7.b shows how the divide and
conquer nature in the Multisort program results in four totally
independent invocations of sort (rectangular boxes), each one

(a) Coarse-grain
task dependence
graph

(b) Fine-grain task dependence graph (c) Data dependences for a node

(d) Fine-grain task dependence graph (if the dependences caused by result are filtered)

(e) Simulated parallel execution with 4 processors

Fig. 3. Applying Tareador on the dot product kernel.

dividing again in the same 4 independent calls (red circle,
yellow circle, green square and red trapezoid). After the sort
tasks the merge tasks follow, joining two sort tasks (pink and
green boxes) or two previous join tasks (magenta hexagon).

V. RELATED WORK

There is a wide discussion on the need of introducing
parallel programming concepts to undergraduate education and
the best way to expose them. Such concepts are often not easy
to be understood by early students, specially if they come with

a strong sequential programming background. There is much
effort dedicated to analyzing whether parallel programming
concepts have to be taught during several courses on program-
ming, or there should be a dedicated course introducing all
the concepts at once [10], [11], to cite a few. Experiences,
methods, pedagogical approaches, tools and techniques for
teaching parallel and distributed computing topics in the
Computer Science and Engineering curriculum are collected
in the EduPar workshop series [12], with special emphasis on
undergraduate education in the last couple of years.

iter = 0;
while(1) {

switch(param.algorithm) {
case 0: // JACOBI

residual = relax_jacobi(param.u, param.uhelp,
np, np);

// Copy uhelp into u
for (i=0; i<np; i++)

for (j=0; j<np; j++)
param.u[i*np+j] = param.uhelp[i*np+j];

break;
case 1: // GAUSS

residual = relax_gauss(param.u, np, np);
break;

case 2: // RED-BLACK
residual = relax_redblack(param.u, np, np);
break;

}
iter++;
// solution good enough ?
if (residual < 0.00005) break;

// max. iteration reached ? (no limit with maxiter=0)
if (param.maxiter>0 && iter>=param.maxiter) break;
}

double relax_gauss (double *u, unsigned sizex,
unsigned sizey) {

double unew, diff, sum=0.0;
int nbx, bx, nby, by;
int ii, jj, i, j;

nbx = NB; nby = NB;
bx = sizex/nbx; by = sizey/nby;
for (ii=0; ii<nbx; ii++)

for (jj=0; jj<nby; jj++) {
sprintf(stringMessage,”Gauss (%d-%d)”,ii, jj);
tareador start task(stringMessage);
for (i=1+ii*bx; i<=min((ii+1)*bx, sizex-2); i++)

for (j=1+jj*by; j<=min((jj+1)*by,sizey-2);j++){
unew= 0.25 * (u[i*sizey + (j-1)]+

u[i*sizey + (j+1)]+
u[(i-1)*sizey + j]+
u[(i+1)*sizey + j]);

diff = unew - u[i*sizey+ j];
tareador disable object(&sum);
sum += diff * diff;
tareador enable object(&sum);
u[i*sizey+j]=unew;

}
tareador end task();

}
return sum;
}

Fig. 4. Excerpts of code from the Heat diffusion example

We believe that Tareador is a tool that can help students in
this gradual transition from sequential computing to parallel
computing, visualizing if different sections in their code can
be simultaneously executed and which are the reasons that
preclude their parallel execution. We also believe their learning
experience is further enhanced through the examples that we
have selected covering different kind of task decompositions.
We also promote the use of a directive-based parallel program-
ming model (e.g. OpenMP) as the way to teach parallelism
when coming from sequential programming courses. For ex-
ample [13] states that with OpenMP students find it easier to
exploit concurrency.

Some tools are available, both from academia and industry,
to assist programmers in the parallelization process. None of
them is specially designed for undergraduate students so we

Gauss (0-0)
ID=1

inst=2204
nesting=1

Gauss (0-1)
ID=2

inst=2204
nesting=1

Gauss (1-0)
ID=9

inst=2204
nesting=1

Gauss (0-2)
ID=3

inst=2204
nesting=1

Gauss (1-1)
ID=10

inst=2204
nesting=1

Gauss (0-3)
ID=4

inst=2204
nesting=1

Gauss (1-2)
ID=11

inst=2204
nesting=1

Gauss (0-4)
ID=5

inst=2204
nesting=1

Gauss (1-3)
ID=12

inst=2204
nesting=1

Gauss (0-5)
ID=6

inst=2204
nesting=1

Gauss (1-4)
ID=13

inst=2204
nesting=1

Gauss (0-6)
ID=7

inst=2204
nesting=1

Gauss (1-5)
ID=14

inst=2204
nesting=1

Gauss (0-7)
ID=8

inst=2204
nesting=1

Gauss (1-6)
ID=15

inst=2204
nesting=1

Gauss (1-7)
ID=16

inst=2204
nesting=1

Gauss (2-0)
ID=17

inst=2204
nesting=1

Gauss (2-1)
ID=18

inst=2204
nesting=1

Gauss (2-2)
ID=19

inst=2204
nesting=1

Gauss (2-3)
ID=20

inst=2204
nesting=1

Gauss (2-4)
ID=21

inst=2204
nesting=1

Gauss (2-5)
ID=22

inst=2204
nesting=1

Gauss (2-6)
ID=23

inst=2204
nesting=1

Gauss (2-7)
ID=24

inst=2204
nesting=1

Gauss (3-0)
ID=25

inst=2204
nesting=1

Gauss (3-1)
ID=26

inst=2204
nesting=1

Gauss (3-2)
ID=27

inst=2204
nesting=1

Gauss (3-3)
ID=28

inst=2204
nesting=1

Gauss (3-4)
ID=29

inst=2204
nesting=1

Gauss (3-5)
ID=30

inst=2204
nesting=1

Gauss (3-6)
ID=31

inst=2204
nesting=1

Gauss (3-7)
ID=32

inst=2204
nesting=1

Gauss (4-0)
ID=33

inst=2204
nesting=1

Gauss (4-1)
ID=34

inst=2204
nesting=1

Gauss (4-2)
ID=35

inst=2204
nesting=1

Gauss (4-3)
ID=36

inst=2204
nesting=1

Gauss (4-4)
ID=37

inst=2204
nesting=1

Gauss (4-5)
ID=38

inst=2204
nesting=1

Gauss (4-6)
ID=39

inst=2204
nesting=1

Gauss (4-7)
ID=40

inst=2204
nesting=1

Gauss (5-0)
ID=41

inst=2204
nesting=1

Gauss (5-1)
ID=42

inst=2204
nesting=1

Gauss (5-2)
ID=43

inst=2204
nesting=1

Gauss (5-3)
ID=44

inst=2204
nesting=1

Gauss (5-4)
ID=45

inst=2204
nesting=1

Gauss (5-5)
ID=46

inst=2204
nesting=1

Gauss (5-6)
ID=47

inst=2204
nesting=1

Gauss (5-7)
ID=48

inst=2204
nesting=1

Gauss (6-0)
ID=49

inst=2204
nesting=1

Gauss (6-1)
ID=50

inst=2204
nesting=1

Gauss (6-2)
ID=51

inst=2204
nesting=1

Gauss (6-3)
ID=52

inst=2204
nesting=1

Gauss (6-4)
ID=53

inst=2204
nesting=1

Gauss (6-5)
ID=54

inst=2204
nesting=1

Gauss (6-6)
ID=55

inst=2204
nesting=1

Gauss (6-7)
ID=56

inst=2204
nesting=1

Gauss (7-0)
ID=57

inst=2204
nesting=1

Gauss (7-1)
ID=58

inst=2204
nesting=1

Gauss (7-2)
ID=59

inst=2204
nesting=1

Gauss (7-3)
ID=60

inst=2204
nesting=1

Gauss (7-4)
ID=61

inst=2204
nesting=1

Gauss (7-5)
ID=62

inst=2204
nesting=1

Gauss (7-6)
ID=63

inst=2204
nesting=1

Gauss (7-7)
ID=64

inst=2204
nesting=1

Fig. 5. Task graph for the Gauss-Seidel solver

believe that they don’t really help to bridge the gap between
sequential and parallel programming mentioned before. For
example, Embla [14] is a Valgrind-based tool that estimates
the potential speed-up for Cilk programs. On the other hand,
Kremlin [15] identifies regions of a serial program that can
be parallelized with OpenMP and proposes a parallelization
planner for the user to parallelize the target program. The
major drawback of both tools is that they are limited to fork-
join loop-level parallelism.

Companies have also been recently developing solutions for
assisted parallelization. For example, Intel’s Parallel Advisor
[16] assists parallelization with Thread Building Blocks (TBB)
[17]. Parallel Advisor provides timing profile that suggests to
the programmer which loops should be parallelized. Critical
Blue provides Prism [18], a tool to do “what-if” analysis that
anticipates the potential benefits of parallelizing certain parts
of the code. Vector Fabrics provides Pareon [19], another tool
for “what-if” analysis to estimate the benefits of parallelizing
loop iterations. All the three mentioned tools provide rich GUI
and visualization of the potential parallelization, although not
tailored to early adopters.

Although not offered to early adopters, Tareador is also
able to automatically explore parallelization strategies and
find the one that exposes the highest potential parallelism
[20]. Two new steps are added in this version of Tareador:
one that dynamically instruments the sequential application
identifying all potential regions for parallel execution (loops
and function invocations) and another one that performs the
automatic exploration of parallelization strategies driven by
some heuristics and cost metrics (task length, number of task
dependencies and task concurrency).

Fig. 6. Visualization of the simulated parallel execution for 1, 2, 4 and 8 processors for the Gauss-Seidel solver

(a)
multisort
ID=1

inst=1652

multisort_1
ID=2

inst=1656

multisort_2
ID=10

inst=1670

multisort_3
ID=18

inst=1670

multisort_4
ID=26

inst=1677

multisort_start_parent
ID=1

inst=1652
nesting=1

multisort_end_parent
ID=1

inst=1652
nesting=1

multisort_1_start_parent
ID=2

inst=1656
nesting=2

multisort_1_end_parent
ID=2

inst=1656
nesting=2

merge_rec_1
ID=34

inst=221292
nesting=2

multisort_1
ID=3

inst=576445
nesting=3

merge_rec_1
ID=7

inst=55401
nesting=3

multisort_2
ID=4

inst=570250
nesting=3

multisort_3
ID=5

inst=568872
nesting=3

merge_rec_2
ID=8

inst=55420
nesting=3

multisort_4
ID=6

inst=570052
nesting=3

merge_rec_3
ID=9

inst=110693
nesting=3

multisort_2_start_parent
ID=10

inst=1670
nesting=2

multisort_2_end_parent
ID=10

inst=1670
nesting=2

multisort_1
ID=11

inst=570287
nesting=3

merge_rec_1
ID=15

inst=55400
nesting=3

multisort_2
ID=12

inst=569595
nesting=3

multisort_3
ID=13

inst=569481
nesting=3

merge_rec_2
ID=16

inst=55407
nesting=3

multisort_4
ID=14

inst=568838
nesting=3

merge_rec_3
ID=17

inst=110691
nesting=3

multisort_3_start_parent
ID=18

inst=1670
nesting=2

multisort_3_end_parent
ID=18

inst=1670
nesting=2

merge_rec_2
ID=35

inst=221295
nesting=2

multisort_1
ID=19

inst=569433
nesting=3

merge_rec_1
ID=23

inst=55404
nesting=3

multisort_2
ID=20

inst=569509
nesting=3

multisort_3
ID=21

inst=568777
nesting=3

merge_rec_2
ID=24

inst=55418
nesting=3

multisort_4
ID=22

inst=571042
nesting=3

merge_rec_3
ID=25

inst=110694
nesting=3

multisort_4_start_parent
ID=26

inst=1677
nesting=2

multisort_4_end_parent
ID=26

inst=1677
nesting=2

multisort_1
ID=27

inst=568668
nesting=3

merge_rec_1
ID=31

inst=55395
nesting=3

multisort_2
ID=28

inst=569095
nesting=3

multisort_3
ID=29

inst=571070
nesting=3

merge_rec_2
ID=32

inst=55421
nesting=3

multisort_4
ID=30

inst=568907
nesting=3

merge_rec_3
ID=33

inst=110695
nesting=3

merge_rec_3
ID=36

inst=442835
nesting=2

(b)

Fig. 7. Tasks graphs for mandelbrot set (upper) and multisort (lower)

VI. CONCLUSIONS

In this paper we have presented a methodology with a
complete framework, that significantly reduces the effort re-
quired by students to understand different task decomposition
strategies and their constraints in terms of task orderings and
data sharing. The framework offers an API to quickly define
task decompositions, provides information about the depen-
dences that should be honored when implementing them using
a parallel programming model, and performs estimates of the

potential parallelism and speed–up that could be achieved in an
ideal parallel architecture with a certain number of processors.

We have described the main components of the system (with
major focus on Tareador) and provided a complete example
of use. Our experience in a third-year undergraduate subject
shows that students are able to perform the analysis and the
parallelization in the hours assigned to each of the assign-
ments, plus the time required to finish the analysis and writing
of the deliverable at home. In general, students usually spend
less than 2 hours to analyze the different task decompositions,

their potential parallelism and dependences, task ordering and
data sharing analysis. The rest of the time is devoted to
defining the task decomposition and task ordering/data sharing
constraints using OpenMP and understanding the performance
that is achieved.

We believe that Tareador is a tool that helps students in
this gradual transition from sequential computing to parallel
computing, visualizing if different sections in their code can
be simultaneously executed and which are the reasons that
preclude their parallel execution. Based on the experience of
use, we are in the process of designing an introductory parallel
programming MOOC course based on the use of Tareador,
using similar examples to the ones commented in this paper,
through its web portal [21] for experimentation. The tool is
also available for installation on Linux platforms through the
same web portal, as well as Extrae and Paraver through the
Barcelonal Supercomputin Center tools website [3].

ACKNOWLEDGMENTS

We thank the other professors in the Parallelism course
(Nacho Navarro, Jordi Tubella and Jordi Garcia) for their
feedback on the laboratory sessions where Tareador and
associated methodology are used. We also thank the two
developers (Arturo Campos and Alejandro Velasco) that have
been working on different parts of Tareador. This work has
been supported by the grant SEV-2011-00067 of the Severo
Ochoa Program, awarded by the Spanish Government, by
the Spanish Ministry of Science and Innovation (contract
TIN2012-34557) and by Generalitat de Catalunya (contracts
2014-MOOC-00057 and 2014-SGR-1051).

REFERENCES

[1] K. Asanovic, R. Bodik, J. J. Catanzaro, Bryan Christopher an d Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Y elick, “The landscape of parallel computing
research: A view from berkeley,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[2] OpenMP Architecture Review Board. OpenMP 4.0 Specification.
[Online]. Available: http://www.openmp.org/

[3] Barcelona Supercomputing Center. BSC Performance Tools. [Online].
Available: https://www.bsc.es/computer-sciences/performance-tools

[4] R. L. Graham, “The MPI 2.2 Standard and the Emerging MPI 3
Standard,” in Proceedings of the 16th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 2–2.

[5] Nvidia. CUDA Parallel Computing Platform. [Online]. Available:
http://www.nvidia.com/object/cuda home new.html

[6] E. Ayguadé and R. M. Badia, “Unveiling parallelization strategies at
undergraduate level,” HPC Educator, Supercomputing 2012. [Online].
Available: http://pm.bsc.es/SC12 training session

[7] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Intl. Symp. on Code Generation
& Optimization, San Jose, CA, USA, Mar 2004, pp. 75–88.

[8] Barcelona Supercomputing Center. Dimemas: performance analysis
tool for message-passing programs. [Online]. Available: http://www.
bsc.es/computer-sciences/performance-tools/dimemas/general-overview

[9] ——. Paraver: a flexible performance analysis tool. [Online]. Avail-
able: http://www.bsc.es/computer-sciences/performance-tools/paraver/
general-overview

[10] C. Brown, Y.-H. Lu, and S. Midkiff, “Introducing parallel programming
in undergraduate curriculum,” in Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th Inter-
national, May 2013, pp. 1269–1274.

[11] A. Minaie and R. Sanati-Mehrizy, “Incorporating parallel computing
in undergraduate computer science curriculum,” in Proceedings of
American Society for Engineering Education Annual Conference, 2009.

[12] NSF/TCPP, “Workshop on Parallel and Distributed Computing Educa-
tion,” http://cs.gsu.edu/ tcpp/curriculum/?q=edupar.

[13] H. de Freitas, “Introducing parallel programming to traditional under-
graduate courses,” in Frontiers in Education Conference (FIE), Oct 2012,
pp. 1–6.

[14] J. Mak, K.-F. Faxén, S. Janson, and A. Mycroft, “Estimating and
Exploiting Potential Parallelism by Source-Level Dependence Profiling,”
in Euro-Par (1), 2010, pp. 26–37.

[15] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking
and rebooting gprof for the multicore age,” in PLDI, 2011, pp. 458–469.

[16] Intel Corporation., “Intel Parallel Advisor,” http://software.intel.com/en-
us/intel-advisor-xe, active on 10.11.2014.

[17] C. Pheatt, “Intel threading building blocks,” J. Comput. Sci. Coll.,
vol. 23, no. 4, pp. 298–298, apr 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1352079.1352134

[18] Critical Blue., “Prism,” http://www.criticalblue.com/, active on
10.11.2014.

[19] Vector Fabrics., “Pareon,” http://www.vectorfabrics.com/products, active
on 10.11.2014.

[20] V. Subotic, A. Campos, A. Velasco, E. Ayguade, J. Labarta, and
M. Valero, “The unbearable lightness of exploring parallelism,” in
8th International Parallel Tools Workshop, Stuttgart, Germany, October
2014.

[21] Barcelona Supercomputing Center. Tareador Portal. [Online]. Available:
http://pm.bsc.es/tareador/service

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.openmp.org/
https://www.bsc.es/computer-sciences/performance-tools
http://www.nvidia.com/object/cuda_home_new.html
http://pm.bsc.es/SC12_training_session
http://www.bsc.es/computer-sciences/performance-tools/dimemas/general-overview
http://www.bsc.es/computer-sciences/performance-tools/dimemas/general-overview
http://www.bsc.es/computer-sciences/performance-tools/paraver/general-overview
http://www.bsc.es/computer-sciences/performance-tools/paraver/general-overview
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://pm.bsc.es/tareador/service

	Introduction
	Context, course description and methodology
	Analyzing potential parallelism
	Tareador API
	Tareador implementation
	Tareador example: dot product

	Heat diffusion example
	Other examples

	Related work
	Conclusions
	References

